

An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term
Evolsution [GA: 101096456]

Deliverable 6.3

NANCY Integrated System – Final Version

Programme: HORIZON-JU-SNS-2022-STREAM-A-01-06

Start Date: 01 January 2023

Duration: 36 Months

NANCY project has received funding from the Smart Networks and Services Joint Undertaking
(SNS JU) under the European Union's Horizon Europe research and innovation programme under
Grant Agreement No 101096456.

D6.3 – NANCY Integrated System – Final Version

2

Document Control Page

Deliverable Name NANCY Integrated System – Initial Version

Deliverable Number D6.3

Work Package WP6 NANCY System Integration, Validation & Demonstration

Associated Tasks Task 6.3 - Interoperability check and joint-optimization

Dissemination Level Public

Due Date 31 October 2025

Completion Date 31 October 2025

Submission Date 31 October 2025

Deliverable Lead Partner Netcompany-Intrasoft

Deliverable Author(s) Panos Matzakos, Olga Segou, Konstantinos Fragkos (INTRA), Athanasios
Tziouvaras (Bi2S), Dimitrios-Christos Asimopoulos (MINDS), Cristina Regueiro,
Marisa Escalante (TECNALIA), Stratos Vamvourellis, Ilias Theodoropoulos (8BELLS),
Georgios Tsiouris, Maria Belesioti (OTE), Wenting Li, FranciscoJavier
deVicenteGutierrez (NEC), Milosheski (IJS), Gonzalo Alarcón, Rodrigo Asensio,
Ramon Sanchez (UMU), Giorgos-Nektarios Panayotidis, Theofanis Xifilidis, Dimitris
Kavallieros (CERTH), Giuseppe Celozzi, Marco Tambasco (TEI), Emanuele De Santis,
Andrea Wrona, Simone Gentile, Valentina Becchetti, Federico Baldisseri, Antonio
Di Paola, Mohab, Mahdy Helmy Atanasious (CRAT), Miguel Catalán Cid, Juan
Sebastian Camargo, Hatim Chergui (i2CAT), Georgios P. Katsikas (UBI), Alvise Rigo,
Anna Panagopoulou (VOS), Damien Bertonnier (TDIS), Alessandro Biondi (SSS),
Jorge Sasiain (EHU), Konstantinos Kyranou (SID), Georgios Michoulis (SID),
Anastasios Lytos (SID), Panagiotis Sarigiannidis (UOWM), Thomas Lagkas (UOWM),
Athanasios Liatifis (UOWM), Anna Triantafyllou (UOWM), Dimitrios Pliatsios
(UOWM), Sotirios Tegos (UOWM), Nikolaos Mitsiou (UOWM), Vasiliki Kotsiouba
(UOWM), Pigi Papanikolaou (UOWM)

Version 1.0

Document History

Version Date Change History Author(s) Organisation

0.1 21/07/2025 Initial version

Panos Matzakos,
Olga Segou,

Konstantinos
Fragkos

INTRA

0.2 21/08/2025
Updated version with

placeholders for receiving
partners contributions

Panos Matzakos,
Olga Segou,

Konstantinos
Fragkos

INTRA

0.21 12/09/2025 MINDS Contributions
Dimitrios-Christos

Asimopoulos
MINDS

0.22 17/09/2025 Section 2-4 initial contributions
from NEC

FranciscoJavier
deVicenteGutierrez

NEC

D6.3 – NANCY Integrated System – Final Version

3

0.23 17/09/2025 Sections 3-5 contributions from
TECN

Cristina Regueiro,
Marisa Escalante

TECN

0.24 18/09/2025 Sections 3-4 contributions from
8BELLS

Ilias Theodoropoulos 8BELLS

0.25 20/09/2025 SID Contributions

Konstantinos
Kyranou, Georgios

Michoulis,
Anastasios Lytos

SID

0.3 22/09/2025 Section 3 contribution

Stratos
Vamvourellis, Ilias
Theodoropoulos

8Bells

0.31 23/09/2025 Sections 3-4 contributions Ljupcho Milosheski IJS

0.32 24/09/2025 Sections 3 and 4 contributions

Gonzalo Alarcon,
Rodrigo Asensio,
Ramon Sanchez

UMU

0.33 24/09/2025 Sections 3 and 4 contributions

Giorgos-Nektarios
Panayotidis,

Theofanis Xifilidis,
Dimitris Kavallieros

CERTH

0.34 25/09/2025 Sections 3-4 contributions
Giuseppe Celozzi,
Marco Tambasco

TEI

0.35 29/09/2025 Sections 3-4 contributions

Emanuele De Santis,
Andrea Wrona,
Simone Gentile,

Valentina Becchetti,
Federico Baldisseri,
Antonio Di Paola,
Mohab, Mahdy

Helmy Atanasious

CRAT

0.4 30/09/2025 Updates in contributions from
NEC in sections 2 and 5

FranciscoJavier
deVicenteGutierrez,

Wenting Li
NEC

0.41 30/09/2025 Sections 2, 4.3 and 5
contributions

Panos Matzakos INTRA

0.42 02/10/2025 Sections 3-4 contributions from
VOS

Alvise Rigo, Anna
Panagopoulou

VOS

0.43 02/10/2025 Contributions in sections 3-4 Damien Bertonnier TDIS

0.44 03/10/2025 Contributions in sections 3-4 Alessandro Biondi SSS

0.45 05/10/2025 Contributions in sections 3-4 Stylianos Trevlakis INNO

0.46 07/10/2025 Contributions in sections 2-4

Miguel Catalán Cid,
Juan Sebastian

Camargo, Hatim
Chergui

I2CAT

D6.3 – NANCY Integrated System – Final Version

4

0.47 10/10/2025 Contributions in section 5.3 Jorge Sasiain EHU

0.48 14/10/2025 Section 5 contributions Georgios Tsiouris OTE

0.5 18/10/2025 Executive summary, Introduction
and Conclusions

Panos Matzakos,
Olga Segou,

Konstantinos
Fragkos

INTRA

0.6 20/10/2025 Section 2, Section 3 contributions Georgios P. Katsikas UBI

0.8 23/10/2025 Release version for internal
review

Panos Matzakos,
Olga Segou,

Konstantinos
Fragkos

INTRA

0.9 30/10/2025
Release version for final QA after

addressing internal review
comments

Panos Matzakos,
Olga Segou,

Konstantinos
Fragkos, Ljupcho
Milosheski, Ilias

Theodoropoulos,
Jorge Sasiain

INTRA, IJS, 8Bells, EHU

1.0 31/10/2025 Final revisions and quality check

Dimitrios Pliatsios,
Anna Triantafyllou,

Panagiotis
Sarigiannidis,

Thomas Lagkas,
Athanasios Liatifis,

Sotirios Tegos,
Vasiliki Kotsiouba,
Pigi Papanikolaou

UOWM

Internal Review History

Name Organisation Date

Anna Panagopoulou
Alvise Rigo

VOS 28/10/2025

Hatim Chergui i2CAT 27/10/2025

Quality Manager Revision

Name Organisation Date
Dimitrios Pliatsios, Anna

Triantafyllou
UOWM 31/10/2025

D6.3 – NANCY Integrated System – Final Version

5

Legal Notice

The information in this document is subject to change without notice.
The Members of the NANCY Consortium make no warranty of any kind about this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the NANCY Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.
Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or SNS JU. Neither the European
Union nor the SNS JU can be held responsible for them.

D6.3 – NANCY Integrated System – Final Version

6

Table of Contents
Table of Contents .. 6

List of Figures .. 9

List of Tables ... 11

List of Acronyms .. 13

Executive summary ... 15

1. Introduction .. 16

1.1. Purpose of the Document ... 16

1.2. Relation to Other Tasks and Deliverables ... 16

1.3. Structure of the Deliverable .. 17

2. Deployment View of NANCY Reference Architecture .. 18

2.1. Central Management Domain and Testbeds/Demonstrators ... 18

2.1.1. Maestro and OpenSlice Connection with Greek testbeds/demonstrators 18

2.1.2. SliceManager Connection with Spanish demonstrator... 21

2.2. Inter-Operator Domain and Testbeds/Demonstrators ... 24

3. Functional Testing of NANCY Components ... 26

3.1. Multi Radio Access Technologies – Nomadic Connectivity Provider (MRAT-NCP) 26

3.2. Identity Management .. 28

3.3. Digital Agreement Creator (DAC) .. 29

3.4. Blockchain .. 30

3.5. Wallet .. 32

3.6. AI Virtualizer .. 34

3.7. B-RAN Model ... 35

3.8. SemCom ... 36

3.9. Quantum Key Distribution Network Simulator (QKDSim) ... 38

3.10. VoSysMonitor .. 41

3.11. Marketplace ... 45

3.12. Maestro ... 46

3.13. Models ... 50

3.14. Self-Evolving Model Repository (SEMR) .. 51

3.15. Elasticity ... 52

3.16. Post Quantum Cryptography Signature (PQCSig) .. 53

3.17. Traffic Forecasting Service (TFS) .. 55

3.18. RAN Intelligent Controller Manager (RICMngr)... 56

3.19. Artificial Intelligence Network Quality Module (AINQM) .. 61

D6.3 – NANCY Integrated System – Final Version

7

3.20. Network Information Framework (NIF) ... 62

3.21. Smart Pricing Policies (SPP) ... 64

3.22. Explainable AI (XAI) .. 68

3.23. Federated Learning Intrusion Detection System (FL-IDS) ... 71

3.24. Memory Traffic Generator - Resource Monitor (MTG-RM) .. 75

3.25. Post Quantum Cryptography – Secure Communications (PQC-SC) 77

3.26. Distributed Anomaly Detection and Mitigation (D-ADM) ... 79

3.27. ETSI Openslice .. 82

4. Updates on Integration of NANCY Components and Services .. 85

4.1. Integration Points Updates .. 85

4.2. Integration Testing of NANCY Integration Points .. 91

4.2.1. Multi Radio Access Technologies & ID Management (MRAT-NCP & ID-Mngnt) 91

4.2.2. Multi Radio Access Technologies & SemCom (MRAT-NCP – SemCom) 92

4.2.3. Multi Radio Access Technologies, Models & Traffic Forecasting Service (MRAT-NCP –
Models –TFS) ... 95

4.2.4. ID Management & Wallet (ID-Mngnt – Wallet) .. 96

4.2.5. ID Management & VoSysMonitor (ID-Mngnt – VoSySMonitor) 98

4.2.6. Digital Agreement Creator & Marketplace (DAC – Marketplace) 99

4.2.7. Blockchain Component & Wallet (BC – Wallet) .. 99

4.2.8. Blockchain Component & Marketplace (BC – Marketplace) ... 100

4.2.9. Wallet – Marketplace .. 100

4.2.10. AI Virtualiser & VoSysMonitor (AIVirt– VoSySMonitor) ... 103

4.2.11. AI Virtualiser & Self-Evolving Model Repository (AIVirt –SEMR) 104

4.2.12. Marketplace & Smart Pricing Policies (Marketplace – SPP) 106

4.2.13. Models – Self Evolving Model Repository (SEMR) .. 107

4.2.14. Self-Evolving Model Repository & Federated Learning Intrusion Detection System
(SEMR – FL-IDS) ... 110

4.2.15. Post Quantum Cryptography Sign & Secure Communications (PQCSign –
PQCSecCom) ... 112

4.2.16. AI Network Quality Module & Network Information Framework (AINQM – NIF) ... 113

4.2.17. AI Network Quality Module (AINQM) – XAI .. 114

4.2.18. Explainable AI & Federated Learning Intrusion Detection System (XAI – FL-IDS) 117

4.3. Integration Monitoring .. 118

5. NANCY Platform – System-Level Validation Workflows ... 121

5.1. Self Sovereign Identity (SSI) Authentication and Authorization .. 121

5.2. Service Activation through BSS and Maestro Service Orchestrator 126

D6.3 – NANCY Integrated System – Final Version

8

5.2.1. Prerequisites to the Workflow .. 126

5.2.2. Workflow Description ... 127

5.3. Service Activation through BSS and Slice Manager ... 130

5.4. Service Level Agreement (SLA) Creation and Marketplace Mediation (Inter-Operator
Domain) ... 132

6. Conclusions ... 141

Bibliography .. 142

D6.3 – NANCY Integrated System – Final Version

9

List of Figures
Figure 1: NANCY platform operation domains and deployment of the NANCY architecture. 18
Figure 2: OpenVPN client connected to UOWM Greek indoor testbed site. 19
Figure 3: IPSec tunnel established with OTE Greek outdoor demonstrator site. 19
Figure 4: Maestro pods deployed in a Kubernetes cluster in the NANCY Central Management
domain. ... 19
Figure 5: Maestro swagger API showing a set of TMF Service Management APIs relevant for NANCY.
 .. 20
Figure 6: Maestro swagger API with a service order request towards the Greek outdoor
demonstrator at OTE premises. .. 21
Figure 7: Warp CLI interface in the MEC server .. 21
Figure 8: Slice Manager API .. 22
Figure 9: Compute post API from Slice Manager .. 23
Figure 10: network_service_instance post endpoint from Slice Manager ... 24
Figure 11: Latency Analysis for PC5 Interface ... 27
Figure 12: Comparison of bandwidth and packet loss at different data rates 28
Figure 13: Latency comparison using Uu and PC5 interfaces ... 28
Figure 14: Snapshot of the expected outcome of one of the tests (localization service) 51
Figure 15: Report on running components in k8s cluster console ... 52
Figure 16: Definition of the Near-RT RIC in the Non-RT RIC framework .. 58
Figure 17: Definition of the A1 policy type in the Non-RT RIC .. 59
Figure 18: Reception of Slice Manager requests by the rApp (create, update, delete) 59
Figure 19: Reception of the A1 policy by the Non-RT RIC and forwarding to the Near-RT RIC 60
Figure 20: Generated A1 policy instance in the Non-RT RIC ... 60
Figure 21: Near-RT RIC and xApp validation and application of the A1 policy 61
Figure 22: Environment test terminal output ... 66
Figure 23: Average Agent Behavior .. 66
Figure 24: Winning Prices Distribution ... 67
Figure 25: Training Rewards ... 67
Figure 26: Load test terminal output .. 67
Figure 27: Step 2 of the FL-ADM_001 test .. 81
Figure 28: Step 4 of the FL-ADM_001 test .. 81
Figure 29: Results of steps 2 and 4 of D-ADM_F002 .. 81
Figure 30: Execution time as a function of the number of multi-view frames (UMU dataset) 94
Figure 31: Required data as a function of the number of multi-view frames for conventional and
SemCom systems (UMU dataset) ... 94
Figure 32: Example of localization experiment with ~2m average error. Horizontal and vertical axis
represent longitude and latitude, and y_true and y_pred are the location vectors containing x and y
coordinate. .. 96
Figure 33: Graph derived from retrained TFS model for UDP protocol, tested with Nokia operator
data; Ground Truth lines stem from separate forecasting horizon steps (step=1 to 10) 96
Figure 34: Concurrent requests vs latency in seconds ... 106
Figure 35: Inference speedup vs number of replicas .. 108
Figure 36: Mean latency vs. Number of parallel Requests ... 109
Figure 37: Execution time of different AI/ML workflow systems and dataset size 110
Figure 38: High-level view of dedicated Github project for NANCY integration monitoring 119
Figure 39: Example of integration point-specific reporting view ... 120

D6.3 – NANCY Integrated System – Final Version

10

Figure 40: SSI Architecture with NANCY wallet and NANCY blockchain ... 122
Figure 41: SSI authentication and authorization procedures ... 123
Figure 42: Start a UE wallet gateway service at address ‘localhost:5000’ with uid='UE' and
corresponding DID='did:nancy:UE-7kb29s3uKveUdfkuGZeg9J' ... 124
Figure 43: Invoke RequestCredential call to UE wallet with a claim of ‘age:20’ to issuer wallet service
at '195.37.154.23:8881'. ... 124
Figure 44: Invoke RequestAuthorization call to UE wallet with the acquired VC to verifier wallet
service at '195.37.154.23:8881' .. 125
Figure 45: Verifier wallet received and processed the authorization request from UE. 125
Figure 46: UE application requests UE wallet to sign a request payload digest. 125
Figure 47: Verifier wallet verifies the request payload signature. ... 125
Figure 48: Look up authorization results of the UE DID on the verifier wallet service. 126
Figure 49: An example of a preconfigured service inside the BSS featuring all the necessary fields for
a service order to Maestro.. 127
Figure 50: Service activation workflow ... 127
Figure 51: BSS user enrollment dedicated web page ... 128
Figure 52: BSS logs for user service registration ... 129
Figure 53: Service orders and their status as seen in the BSS. ... 130
Figure 54: Service activation through BSS and Slice Manager workflow ... 131
Figure 55: Deployment of target application’s helm chart in Kubernetes cluster of EHU’s MEC based
on SLA specification .. 131
Figure 56: SLA creation and Marketplace mediation workflow ... 134
Figure 57: Start provider wallet service at port 5000 and created DID 'did:nancy:provider-
LAqUYpNi4zwj8VwUjA36N1' .. 135
Figure 58: Start consumer wallet service at port 6000 an created DID 'did:nancy:consumer-
55pHm6at6WuwDKHN5BMK7F' ... 135
Figure 59: Call both provider and consumer wallet to subscribe to SLA events 136
Figure 60: Provider creates a provider profile on marketplace .. 136
Figure 61: Provider application creates a new service profile through its wallet 136
Figure 62: Consumer creates a search on the marketplace which returns matched services 137
Figure 63: Both provider and consumer received notification of new SLAInit event with SLA_ID=292
 .. 138
Figure 64: Consumer signs the SLA ID=292 ... 139
Figure 65: Both parties receive the SigningSLA event and SLA id=292 now has the consumer
signature. .. 139

D6.3 – NANCY Integrated System – Final Version

11

List of Tables
Table 1: MRAT-NCP functional tests summary ... 26
Table 2: ID Management functional tests summary ... 29
Table 3: DAC functional tests summary .. 29
Table 4: Blockchain functional tests summary ... 31
Table 5: Wallet functional tests summary .. 32
Table 6: AI Virtualizer functional tests summary .. 35
Table 7: B-RAN Model functional tests summary ... 36
Table 8: SemCom functional tests summary .. 36
Table 9: QKDSim functional tests summary .. 39
Table 10: VoSysMonitor functional tests summary .. 41
Table 11: Marketplace functional tests summary .. 45
Table 12: Maestro functional tests summary ... 46
Table 13: Models functional tests summary ... 50
Table 14: SEMR functional tests summary ... 51
Table 15: Elasticity functional tests summary .. 52
Table 16: Averaged performance metrics for dynamic load .. 53
Table 17: PQCSig functional tests summary ... 54
Table 18: TFS functional tests summary ... 56
Table 19: RICMngr functional tests summary ... 57
Table 20: AINQM functional tests summary ... 61
Table 21: NIF functional tests summary ... 62
Table 22: SPP functional tests summary ... 64
Table 23: XAI functional tests summary ... 68
Table 24: FL-IDS functional tests summary ... 72
Table 25: MTG-RM functional tests summary .. 76
Table 26: PQC-SC functional tests summary ... 78
Table 27: FL-IDS functional tests summary ... 79
Table 28: OpenSlice functional tests summary ... 82
Table 29: NANCY integration matrix ... 86
Table 30: Integration points specification summary .. 87
Table 31: MRAT-NCP - ID-Mngnt integration tests summary ... 91
Table 32: MRAT-NCP – Semcom integration tests summary .. 92
Table 33: MRAT-NCP – Models -TFS integration tests summary .. 95
Table 34: ID-Mngnt - Wallet integration tests summary .. 96
Table 35: ID-Mngnt - VoSySMonitor integration tests summary ... 98
Table 36: ID-Mngnt - VoSySMonitor integration tests summary ... 99
Table 37: BC - Wallet integration tests summary ... 99
Table 38: BC - Marketplace integration tests summary ... 100
Table 39 Wallet - Marketplace integration tests summary .. 100
Table 40: AI Virt - VoSySMonitor integration tests summary ... 103
Table 41: AI Virt - SEMR integration tests summary ... 105
Table 42: Marketplace - SPP integration tests summary .. 106
Table 43: Models - SEMR integration tests summary ... 107
Table 44: SEMR – FL-IDS integration tests summary .. 110
Table 45: PQC Sign – PQC SecCom integration tests summary .. 112
Table 46: AINQM - NIF integration tests summary ... 113

D6.3 – NANCY Integrated System – Final Version

12

Table 47: AINQM - ΧΑΙ integration tests summary ... 114
Table 48: ΧΑΙ – FL-IDS integration tests summary .. 117

D6.3 – NANCY Integrated System – Final Version

13

List of Acronyms
Acronym Explanation

5G 5th Generation
AI Artificial Intelligence

AI Virt AI Virtualizer
AINQM AI Network Quality Module

API Application Programming Interface
ASL American Sign Language

AR/VR Augmented Reality/ Virtual Reality
BC Blockchain Component

B5G Beyond 5th Generation
BSS Business Support System

B-RAN Blockchain RAN
CA Certificate Authority

CI/CD Continuous Integration/ Continuous Delivery
CNN Convolutional Neural Network
COW Coherent-One-Way
CSV Comma-separated values

CV-QKD Continuous-Variable Quantum Key Distribution
DAC Digital Agreement Creator

D-ADM Distributed Anomaly Detection and Mitigation
DevOps Development and Operations

DID Decentralised Identifier
DT Digital Twin

ETSI European Telecommunications Standards Institute
FL Federated Learning

FL-IDS Federated Learning-Intrusion Detection System
GRPC gRPC Remote Procedure Call

HA Highly Available
HTTPS Hypertext Transfer Protocol Secure

ID Mgnt Identity Management
JSON JavaScript Object Notation
K8s Kubernetes

K8s-aaS Kubernetes-as-a-Service
KMS Key Management System
KPI Key Performance Indicator

LaaS Localisation-as-a-Service
LLM Large Language Model

MARL Multi-Agent Reinforcement Learning
MEC Multi-Access Edge Computing
ML Machine Learning

MLOps Machine Learning Operations
MRAT-NCP Multi Radio Access Technologies – Nomadic Connectivity

Provider
MTG-RM Memory Traffic Generator-Resource Monitor
NAOMI Network AI Workflow Democratisation

NBI Northbound Interface
NFVO Network Functions Virtualisation Orchestrator

NI NANCY Interface

D6.3 – NANCY Integrated System – Final Version

14

NIS NANCY Interface Set
NIF Network Information Framework

OBU Onboard Unit
OP-TEE Open Trusted Execution Environment

OSS Operations Support System
OQS Open Quantum Safe
P2P Point-to-Point
PQC Post-Quantum Cryptography

PC5 / Uu Interfaces from 3GPP context (i.e., Device-to-Device,
Cellular UE-to-Network link)

QBER Quantum Bit Error Rate
QKDSim Quantum Key Distribution Network Simulator

RAN Radio Access Network
RIC RAN Intelligent Controller

RICMngr RAN Intelligent Controller Manager
RSU Roadside Unit
SAE Secure Application Entity

SEMR Self-Evolving Model Repository
SLA Service Level Agreement
SM Slice Manager
SO Service Orchestrator
SP Smart Pricing

SPP Smart Pricing Policies
SSI Self-Sovereign Identity
SSL Secure Sockets Layer
TEE Trusted Execution Environment
TLS Transport Layer Security
TFS Traffic Forecasting Service
TMF TeleManagement Forum
UE User Equipment

V2X Vehicle-to-Everything
VNF Virtual Network Function

vOBU Virtual Onboard Unit
VPN Virtual Private Network
XAI Explainable AI

YAML YAML Ain't Markup Language
IMSI International Mobile Subscriber Identity
SMF Session Management Function

D6.3 – NANCY Integrated System – Final Version

15

Executive summary
This deliverable presents in detail the final results of T6.3 - Interoperability check and joint-
optimization related to NANCY integration activities, which aim to incorporate the outcomes of the
development tasks (WP2-WP5) into the final release of the NANCY unified platform. To this end, this
deliverable builds on the outcomes of T6.1 and T6.2 relative to the integration points specifications
and the associated functional and integration testing plans, as well as the platform’s initial deployment
view (reported in [1]and [2]). More specifically, it initially describes how the interconnection among
NANCY platform’s operation domains and the different testbeds/demonstrators was achieved. Then
it delves into the specifics of functional and bilateral integration tests (initially described in [2])
providing their detailed execution specifications. The test specifications follow a common template
including information on the test objectives, configuration and detailed description of the testing
steps. In this context, the updates with respect to [2] concerning the initially envisioned integration
points are also highlighted providing the details about newly identified or dropped integration points.

Moreover, D6.3 provides the implemented system level validation workflows, as the advanced
validation/verification of selected NANCY integrated system operations to be demonstrated within
the different testbeds/demonstrators. These workflows, often horizontal (i.e., common) across
different NANCY use cases, represent end-to-end processes which involve multiple steps among
multiple NANCY integration points towards a specific objective (e.g., get authenticated and authorized
to use a specific service, or create a Service Level Agreement (SLA) between the end-users and
different operators).

To this end, the final release of the NANCY unified platform, validated through comprehensive tests
at different levels, provides a prototype suitable for the final use-case specific tests and evaluation at
the different NANCY pilots.

D6.3 – NANCY Integrated System – Final Version

16

1. Introduction

1.1. Purpose of the Document

This document presents the final version of the NANCY integrated system. It illustrates how NANCY
brings together secure and intelligent resource management and flexible networking using cutting-
edge research in Artificial Intelligence, Blockchain, Orchestration, etc. In terms of networking, novel
architectures, namely point-to-point (P2P) connectivity for device-to-device communication, mesh
networking, and relay-based communications, are introduced to build a secure core platform for B5G
communications.

The project realizes its ambitious approach to the provision of the necessary Beyond 5G
functionalities, bringing together a multitude of disparate and complex technologies to create its core
platform, on top of five unique experimental testbeds. The deployment view of the core platform is
presented herein, along with results from the functional, integration, and end-to-end testing that was
performed by the Consortium in order to validate the NANCY workflows “from start to finish”.

1.2. Relation to Other Tasks and Deliverables

This document concludes the integration work that was first presented in D6.2 “NANCY Integrated
System – Initial Version”. The first iteration showcased the progress up to M25 of the project, while
the current version provides the details of the final version of the NANCY Core Platform.

As also stated in [2], the Integration task received inputs from the key technical work packages,
namely:

• WP2 “Usage Scenario and B-RAN Modelling, Network Requirements and Performance
assessment” for requirements and modelling of B-RAN and Network Information Framework,

• WP3 “NANCY Architecture and Orchestration” for the core artificial intelligence and
orchestration components,

• WP4 “Dynamic Resource Management and Smart Pricing” for the components implementing
the computational off-loading, caching, resource elasticity, cell-free cooperative access, smart
pricing and beyond-Shannon performance, and

• WP5 “Security, Privacy and Trust Mechanisms” for the quantum key distribution, blockchain-
based security and privacy, self-healing/self-recovery, and explainable AI.

The remaining integration activities that took place after the initial release of the NANCY integrated
system, following the integration timeline presented in [2] and in conjunction with the guidelines
delineated in [3], were strongly related to the initial validation/testing activities carried-out at the
different testbeds and demonstrators (T6.5-T6.9), and thus they provided valuable feedback for
refinements with respect to NANCY components and integration points. These activities led to the
final release of the NANCY integrated system, described analytically in the current deliverable. This
release serves as a prototype ready to be further tested, validated and evaluated within the use cases
of the different testbeds and demonstrators (T6.5-T6.9). The results of this evaluation will be
analytically reported in D6.10: “NANCY Pilots' Documentation and Evaluations”.

D6.3 – NANCY Integrated System – Final Version

17

1.3. Structure of the Deliverable

This document is structured as follows:

• Chapter 1 - Introduction defines the structure and purpose of the document.
• Chapter 2 - Deployment View of NANCY Reference Architecture describes the central

management and inter-operator domains, as well as their connection to the NANCY testbeds
and demonstrators.

• Chapter 3 - Functional Testing of NANCY Components details the specification and results of
the functional testing of each component of the project’s platform to ensure that they work
according to their requirements and within their specifications.

• Chapter 4 - Updates on Integration of NANCY Components and Services provides an update
on the project integration points, the specifications, and results of inter-component integration
tests.

• Chapter 5 – NANCY Platform – System-Level Validation Workflows provides the results of
system-level tests to verify the readiness of the NANCY platform for execution at the different
demonstrations.

• Chapter 6 – Conclusions summarizes and concludes the document.

D6.3 – NANCY Integrated System – Final Version

18

2. Deployment View of NANCY Reference Architecture
In the current section, information is provided regarding the interconnection of NANCY’s main
operation domains: Central Management, Inter-Operator and Testbeds/Demonstrators sites (Figure
1). The objective is to provide a high-level view of the components of each domain invoked at each
testbed or demonstrator, as well as information on how the networking/interfacing among these
components is implemented (e.g., VPN setups, etc.).

Figure 1: NANCY platform operation domains and deployment of the NANCY architecture.

2.1. Central Management Domain and Testbeds/Demonstrators

2.1.1. Maestro and OpenSlice Connection with Greek testbeds/demonstrators

Maestro acts as the NANCY service orchestrator and OpenSlice acts as the NANCY resource
orchestrator as per the NANCY integration architecture introduced in [1]. Both orchestrators serve the
Greek indoor testbed and Greek outdoor demonstrator in applying the SLAs and corresponding service
configurations and automating the deployment of the corresponding components at the subsequent
Kubernetes clusters (indoor testbed or outdoor demonstrator). This integration is depicted in Figure
1. Maestro and OpenSlice (outlined with green color) reside in the NANCY Central Management
Domain, establishing a connection (also outlined with green color) with the Greek facilities at the
bottom right part in Figure 1. As part of this integration, Maestro interacts with the BSS components
of the two experimental sites. To do so, two private network connections are established from the
Maestro location (hosted by INTRA under Hetzner’s cloud) towards (i) the UOWM Greek indoor
testbed over OpenVPN (see Figure 2) and (ii) the OTE Greek outdoor demonstrator over an IPSec
tunnel (see Figure 3). The integration specifics are provided in Section 5.2

D6.3 – NANCY Integrated System – Final Version

19

.

Figure 2: OpenVPN client connected to UOWM Greek indoor testbed site.

Figure 3: IPSec tunnel established with OTE Greek outdoor demonstrator site.

Figure 4 visualizes the Maestro services provisioned in INTRA’s Hetzner cloud premises. These services
are instantiated as Kubernetes pods in a Kubernetes cluster acting as a management cluster where
both Maestro and OpenSlice are deployed.

Figure 4: Maestro pods deployed in a Kubernetes cluster in the NANCY Central Management domain.

D6.3 – NANCY Integrated System – Final Version

20

Figure 5 depicts a snapshot of Maestro’s swagger API showing a set of TMF Service Management
APIs relevant to NANCY.

Figure 5: Maestro swagger API showing a set of TMF Service Management APIs relevant for NANCY.

Figure 6 visualizes an existing service order made by Maestro towards the Greek outdoor
demonstrator testbed of OTE. The JSON body of this service order shows a service order made in
October 2025 for the Minds AR/VR application (Viewcube) that participates in the Greek outdoor
demonstrator hosted by OTE.

D6.3 – NANCY Integrated System – Final Version

21

Figure 6: Maestro swagger API with a service order request towards the Greek outdoor demonstrator at OTE premises.

2.1.2. SliceManager Connection with Spanish demonstrator

In the Spanish demonstrator, the SliceManager orchestrator is responsible for enforcing the SLA of
requested services by deploying the corresponding applications in the MEC and applying relevant
radio network configurations, involving reconfiguring their allocated resources (e.g., CPU, memory,
PRB). The demonstrator’s testbed in EHU and the SliceManager in i2CAT premises reach each other
via a VPN established in a MEC server in EHU towards the corporate Cloudflare VPN server in i2CAT
(outlined in red color in Figure 1), allowing the Kubernetes cluster in the MEC and the srsRAN-based
5G to be registered in SliceManager. The connection is established using the Warp CLI, which sets up
a CloudflareWARP interface in the MEC server (Figure 7).

Figure 7: Warp CLI interface in the MEC server

SliceManager provides a REST API in an instance listening at 192.168.123.67:8989 as shown in the
following figure:

D6.3 – NANCY Integrated System – Final Version

22

Figure 8: Slice Manager API

This API is reachable from EHU using the VPN tunnel. As part of the initial setup, the Kubernetes cluster
is first registered using the /compute/post endpoint, which accepts the cluster’s kubeconfig file.

D6.3 – NANCY Integrated System – Final Version

23

Figure 9: Compute post API from Slice Manager

The helm charts used by EHU’s services are uploaded using the /network_service/post endpoint. Then,
upon a user request, the corresponding service is instantiated using the
/network_service_instance/post endpoint.

D6.3 – NANCY Integrated System – Final Version

24

Figure 10: network_service_instance post endpoint from Slice Manager

2.2. Inter-Operator Domain and Testbeds/Demonstrators

The Inter-operator Domain typically includes the NANCY Blockchain together with its smart contracts
(deployed on-chain), its oracles (deployed off-chain), and the Smart Pricing and DAC components. The
set of these components is utilized for the use cases of the Greek in-lab testbed. Specifically, the
NANCY Blockchain is a NEC-hosted, Hyperledger Fabric v2.2.0-based blockchain, with some security
and privacy improvements. Both the Marketplace and the SLARegistry smart contracts are deployed
on the NANCY Blockchain (thus, hosted by NEC in its Heidelberg laboratory), together with the
Blockchain oracles; while the Smart Pricing and DAC components are deployed at 8Bells and DRAXIS
premises respectively, in Greece. Oracles and off-chain components communicate using HTTPS
requests.

As indicated in [4], the NANCY wallet is a Kotlin gRPC server that exposes calls for working with the
NANCY blockchain, the PQC component, and the SSI infrastructure. This means that the Greek in-Lab
testbed, which is the one that demonstrates operations in the Inter-operator Domain, must be – and
is – equipped with NANCY wallets, specifically for the service orchestrator and business support
system (BSS) of the operators working inside the in-Lab testbed.

D6.3 – NANCY Integrated System – Final Version

25

By adding resources in the Marketplace, the BSS of a given operator can make them available to other
domains. Consequently, any local operator, by means of the wallet of its service orchestrator, can
search for available resources in other domains that are able to fulfill an SLA that the local operator’s
capabilities cannot fulfill. More information can be found again in [4] and later in this deliverable
(Section 5.4).

There is no VPN fabric between the Greek in-Lab testbed and the Inter-operator Domain. The NANCY
wallet stores user identities, which typically include “(1) X.509 certificates as issued by the Fabric's
Certificate Authority (CA) to authenticate a user or organization's identity, (2) the user’s self-generated
DIDs, and (3) private keys used to sign transactions on behalf of the user”. Therefore, communication
between the wallet and the blockchain is secured under TLS and said certificates/keys. Requests are
visible in the transaction history in the ledger.

D6.3 – NANCY Integrated System – Final Version

26

3. Functional Testing of NANCY Components
This section presents the functional testing activities performed on all NANCY components integrated
within the NANCY reference architecture. Each subsection corresponds to a distinct component and
provides its objectives, testing configuration, preconditions, test sequence, and final verdict. The
testing activities aim to verify that each module operates according to its technical specifications and
achieves functional readiness for system-level integration.

3.1. Multi Radio Access Technologies – Nomadic Connectivity Provider
(MRAT-NCP)

The MRAT-NCP component, as described in [5], is responsible for extending coverage and optimizing
connectivity in 5G networks, particularly in rural or densely populated urban areas where traditional
infrastructure is limited or costly. It leverages PC5 links for direct device-to-device (D2D) and multi-
hop communications, allowing data to be relayed through nearby nodes until it reaches the 5G
infrastructure or the MRAT-NCP itself, enhancing network coverage, resilience, and reliability. In
addition, it integrates Identity Management and secure data storage mechanisms using encrypted
caching to ensure authentication, data integrity, and low latency in dynamic multi-hop scenarios.
Furthermore, MRAT-NCP works in conjunction with machine learning models to continuously select
the optimal network operator for each UE and to infer the location of remote UEs based on network
metrics, enabling more efficient resource allocation and improved service quality. Table 1 summarizes
the functional tests, while Figure 11, Figure 12, and Figure 13 illustrate the test results.

Table 1: MRAT-NCP functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

MRAT-NCP_F001 Test PC5 link reliability and requirements. Completed

MRAT-NCP_F002 Test the tandem connection for PC5 and 5G
connectivity. Completed

MRAT-NCP_F003 Test intra-network connectivity to compute
nodes. Completed

Analytic Functional Test Description
Test type Functional
Identifier MRAT-NCP_F001, MRAT-NCP_F002, MRAT-NCP_F003
Tester UMU
Test Purpose Allow access to 5G network for a remote non-5G subscriber, but NANCY subscriber.
References [5], Section 3.2 "Multi-hop Coverage Extension"

[5], Section 3.6 Trustworthy Grant/Cell-free Cooperative Access Workflow"

Configuration Cohda MK6, Raspberry Pi 5 and LattePanda

Pre-test
conditions

There must be Ethernet connectivity between each of the Cohda devices and their
respective module (Raspberry Pi or Lattepanda).
The provider module must have connectivity with at least one of the 5G operators.
The Cohda devices must have GPS signal and PC5 coverage between them.

Test
Sequence

Step Type Description Result

1 1 Stimulus Measure and verify latency, bandwidth, and packet
loss over the PC5 link.

Pass

D6.3 – NANCY Integrated System – Final Version

27

 2 Check Test connection stability and reliability. Pass
2 3 Check Validate that the connectivity between the MRAT-

NCP and both operators is properly established and
functioning.

Pass

 4 Check Confirm that the tandem configuration can switch
between provider operators correctly, according to
the selected interface.

Pass

 5 Check Ensure that this tandem connection functions
correctly, without service interruptions and with a
smooth user experience (Figure 11 - Figure 13).

Pass

 6 Check Verify that data transmission through the selected
operator occurs without errors or interruptions.

Pass

 7 Check Verify that there is end-to-end connectivity from
the PC5 link to each of the operators.

Pass

 8 Check Integrate the ML models to select the optimal
operator, the throughput forecast estimation and
the models to infer the UE ubication.

On going

Test
Verdict

The PC5 connection and tandem configuration operate stably and
continuously, with correct switching between operators, error-free
transmission, and the integration of machine learning models to optimise
UE performance and location.

Pass

Figure 11: Latency Analysis for PC5 Interface

D6.3 – NANCY Integrated System – Final Version

28

Figure 12: Comparison of bandwidth and packet loss at different data rates

Figure 13: Latency comparison using Uu and PC5 interfaces

3.2. Identity Management

The Identity Management, as described in [5] and [4], is responsible for ensuring secure device
authentication. It integrates with MRAT-NCP so that a remote user can reliably and privately access
the services offered by the provider. In this context, the remote UE generates a credential using its p-
ABC wallet, ensuring it complies with the format and requirements specified by the provider. The
MRAT-NCP then verifies this credential by checking its authenticity against the issuer’s public key
stored on the blockchain. Only after successful verification is the UE granted access to the requested
services, maintaining both security and privacy throughout the process. Table 2 summarizes the
functional tests.

D6.3 – NANCY Integrated System – Final Version

29

Table 2: ID Management functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

ID_Mgnt _F001 Test key derivation and generation of
credentials. Completed

ID_Mgnt _F002 Test Configuration of the wallet. Completed
ID_Mgnt _F003 Test verification of credentials. Completed

Analytic Functional Test Description
Test type Functional
Identifier ID_Mgnt _F001, ID_Mgnt _F002, ID_Mgnt _F003
Tester UMU
Test Purpose The main purpose of the test is to validate the entire verification flow.
References [5] Section 3.6 "Trustworthy Grant/Cell-free Cooperative Access Workflow"

[6] Section 3.3 “Further Mechanisms for Ensuring the Security and Privacy of the Users”

Configuration Cohda MK6, Raspberry Pi 5 and LattePanda

Pre-test
conditions

The remote UE and the MRAT-NCP have correctly configured their own p-ABC wallet
(both of them) and blockchain wallet (only the MRAT-NCP)
There is connectivity between the MRAT-NCP and the remote UE.

Test
Sequence

Step Type Description Result

1 1 Check Correct configuration of the wallet. Pass
 2 Check Credential generation. Pass
 3 Check Credential validation Pass
Test
Verdict

It is confirmed that the wallet configuration, credential generation, and
verification are performed correctly.

Pass

3.3. Digital Agreement Creator (DAC)

The DAC component is responsible for generating and managing smart contracts within the NANCY
framework. It exposes a RESTful interface built in Spring Boot, allowing the creation of SLA-based
smart contracts for the Hyperledger Fabric Ledger. Specifically, it:

• Accepts structured JSON input describing service-level agreements.
• Dynamically generates chain code files.
• Stores them locally using a hash of the contract as a unique filename.
• Supports downloading these smart contract files via a REST endpoint.
• Interacts with the NANCY marketplace and NANCY Blockchain.

Table 3 summarizes the functional tests of the Digital Agreement Creator.

Table 3: DAC functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

DAC _F001 Test API endpoint for creating smart contracts
with valid input. Completed

DAC _F002 Test API endpoint with invalid or missing input
data. Completed

DAC_F003 Test API response time and ensure it meets
performance criteria. Completed

Analytic Functional Test Description

D6.3 – NANCY Integrated System – Final Version

30

Test type Functional

Identifier DAC_F001, DAC_F002, DAC_F003

Tester DRAXIS

Test Purpose To verify the correctness, robustness, and performance of the API endpoints for smart
contract generation and retrieval.

References [7] , paragraph 4.3.1
[4], paragraph 2.3.2.1

Configuration - DAC service deployed as Spring Boot REST API (Docker containerized)
- Preconfigured Swagger/OpenAPI interface
- JVM 17, Maven build

Pre-test
conditions

- DAC REST service is deployed and reachable
 - Java runtime and Docker environment running
 - Valid SLARequest JSON available for testing

Test
 Sequence

Step Type Description Result

 1 Stimulus Call POST /DAC/createSLA with a valid SLARequest
payload

 Chaincode
generated

 2 Stimulus Call GET /DAC/getSmartContract/{hash} using
returned hash

 File is
downloaded

 3 Check Call POST /DAC/createSLA with malformed JSON
or missing fields

 Error 400 or 500

 4 Check Response times consistently < 500ms, all contracts
created

Pass

 5 Check Downloaded file content matches the generated
smart contract

Pass

 6 Check Error message returned, no file is created Pass

 7 Stimulus Repeat POST /DAC/createSLA for 100 valid inputs
(performance test)

Monitor API
timing

Test
Verdict

 Pass

3.4. Blockchain

Blockchain provides a shared platform for different users and partners to publish, verify, and look up
information. Its decentralized nature avoids a single point of failure and allows any partner to validate
a request and reach consensus on the updated data state. More specifically, validation is conducted
by smart contracts as small applet copies deployed on each user/partner’s blockchain client, and the
consensus protocol run by all blockchain clients helps them to reach an agreement on the latest
system state.

NANCY Blockchain is a permissioned blockchain maintained by the consortium of NANCY partners,
where a user can only access the blockchain by providing the certificates acquired from the CA of the
blockchain. This provides the first level of access control to the blockchain. On the NANCY blockchain,
we deployed several smart contracts used for our different use cases as follows:

- Marketplace: allows posts of 5G services and automates the process of service search and
proposes initial SLA contracts for matched services with smart pricing.

- SLARegistry: manages SLA creation and SLA signature verification process.
- DIDRegistry: manages DID document registration.

D6.3 – NANCY Integrated System – Final Version

31

- VCRegistry: manages VC (verifiable credentials) revocation registration.

Table 4 summarizes the functional tests of the Blockchain.

Table 4: Blockchain functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

BC_F001

Adding new user:
The network administrator uses their admin
identity to register a new user with the CA. This
step associates the new user with a specific role
and organisation.

Completed

BC _F002 Smart contract unit tests:
Test the functionalities in each smart contract Completed

Analytic Functional Test Description
Test type Functional
Identifier BC_F001
Tester NEC
Test Purpose Verify the access to the blockchain network.
References Architecture and component interaction described in [4].
Configuration Permissioned blockchain network has been set up and the CA service is up and running. The

allowed organization list is configured in the CA service in the affiliation attribute. CA (and
TLSCA) certificates as well as admin credentials are deployed to the tester for server
authentication.

Pre-test
conditions

Not applicable

Test
Sequence

Step Type Description Result

1 1 Stimulus Send a request to the CA service to register a new
user using the admin credentials

 2 Check If the enrollment ID of the new user is new,
registration is successful the enrollment ID is
returned.

Pass

 3 Check If the enrollment ID of the new user is already seen,
registration fails, and the corresponding error
message is returned.

Pass

 4 Check If the enrollment ID is malformed, registration fails
and corresponding error message is returned.

Pass

2 1 Stimulus Send a request to the CA service to enroll an
unregistered user.

Pass

 2 Check Registration fails and an error message is returned. Pass
3 1 Stimulus Send a request to the CA service to enroll the newly

registered user providing a random password.
Pass

 2 Check User receives the enrollment certificate referring to
the corresponding enrollment ID.

Pass

4 1 Stimulus Send a request to the CA service to enroll the newly
registered user without providing password.

Pass

 2 Check User receives the enrollment certificate referring to
the corresponding enrollment ID and returns a
random password supplied by the CA service.

Pass

Test Verdict Pass

D6.3 – NANCY Integrated System – Final Version

32

3.5. Wallet

NANCY wallet provides SSI capabilities to users and devices of NANCY partners, and at the same time,
simplifies the interaction between the partner applications and the blockchain. Table 5 summarizes
the functional tests of the Wallet component.

Firstly, the wallet creates and manages the DIDs and their credentials for the partner applications and
takes care of the DID registration to the NANCY blockchain, which serves as the public data registry to
look up DID authentication methods. It further implements the VC issuance and verification procedure
so that the authorization process for application services follows the VC data model defined by W3C
standards.

Secondly, the wallet also wraps the blockchain queries with gRPC APIs that simplify communication
with the Blockchain. The wallet serves as a registrar for NANCY partners to register and enroll each of
their users and devices to access the blockchain. All access credentials are bound to their DID, so that
smart contracts will apply access control checks on DID-related operations such as DID records update
or SLA signature verification.

Table 5: Wallet functional tests summary

Functional
Test ID Objective Status

Wallet_F001

SSI capabilities: User DID creation and registration:
Start the wallet gateway provided with a specified uid. A
unique and anonymous DID is created for this uid and a
certificate corresponding to the created DID is acquired from
the CA of this organisation. The public DID document is
registered to the DIDRegistry smart contract in the blockchain,
so that other users are able to look up for the verification
methods of this DID.

Completed

Wallet _F002

SSI capabilities II: acquire and verify verifiable credentials
(Provided Wallet_F001) Start a wallet gateway on an ID holder,
a credential issuer, and a service verifier. respectively. The
holder acquires a verifiable credential from the issuer by
means of their wallets, then the holder wallet generates a
verifiable presentation from the acquired verifiable credential
and delivers it to the verifier’s wallet service for verification.
The verification returns successfully.

Completed

Wallet _F003

SSI capabilities III: revoke the verifiable credential
Same setup as in Wallet_F002, but the issuer revokes the
previous verifiable credential issued to the holder. The last
verification step then fails.

Completed

Analytic Functional Test Description
Test type Functional
Identifier Wallet_F001, Wallet_F002, Wallet_F003
Tester NEC
Test Purpose Test the SSI capabilities of the wallet

References The wallet functions and interfaces are described in D5.2.
Configuration The blockchain network, which is used as the public data registry in the VC data model, is

set up and the access credentials are available for the wallet service. Additionally, the
required smart contracts, i.e., DIDRegistry and VCRegistry, are deployed in the
blockchain.

D6.3 – NANCY Integrated System – Final Version

33

Pre-test
conditions

Unit tests for the deployed smart contracts are passed successfully.

Test
Sequence

Step Type Description Result

1 1 Stimulus Start the wallet gateway service on a given port
with a specified new uid in non-UE (PQC) mode.

 2 Check The wallet has created a new DID derived from the
provided ui and a corresponding ECDSA keypair is
generated for the DID.

Pass

 3 Check The wallet has successfully enrolled the DID in the
blockchain and acquired and saved the enrolment
certificate locally.

Pass

 4 Check The wallet has registered the corresponding DID
document in the DIDRegistry smart contract.

Pass

 5 Check The wallet has saved the generated keypairs of the
new DID locally.

Pass

 6 Check Invoke listDIDs API calls to the wallet service
returns all saved DID ids in the wallet.

Pass

 7 Check Invoke lookDID API calls with the new DID id to any
wallet service returns the DID document
information.

Pass

 8 Check The wallet gateway service started listening on the
given port.

Pass

2 1 Stimulus Start the wallet gateway service with an existing
uid on a given port.

 2 Check The corresponding DID of the existing uid is loaded
as the default DID of the wallet.

Pass

 3 Check The wallet gateway service started listening on the
given port.

Pass

3 1 Stimulus Start the wallet gateway service with a specified
new uid in EU (PQC) mode in simulation mode on
a given port.

 2 Check The wallet has created a new DID derived from the
provided ui and a corresponding PQC keypair is
generated from the simulation library.

Pass

 3 Check Same check as in 1.3-1.8 Pass
4 1 Stimulus Start a holder wallet service and an issuer wallet

service, invoke the requestCredential API call to
the holder wallet service by providing the holder
DID information and the issuer wallet service
address.

 2 Check If referred holder DID information does not exist in
the holder wallet, holder wallet returns error with
a corresponding error message.

Pass

 3 Check If the issuer wallet service is not accessible at the
referred address, holder wallet returns error with
corresponding error message.

Pass

 4 Check If provided information in the request is all correct
and valid, holder wallet returns a VC (verifiable
credential) acquired from the issuer wallet service.

Pass

 5 Check The returned VC contains the correct information,
e.g., issuer DID, holder DID, holder claims, issuer
signature, etc.

Pass

D6.3 – NANCY Integrated System – Final Version

34

 6 Check Invoke listVCs API call to the holder wallet and the
issuer wallet service returns the newly created VC
overview.

Pass

5 1 Stimulus Keep the holder wallet service in test 5 running and
start a verifier wallet service, invoke the
requestAuthorization API call to the holder wallet
service by providing the holder DID information,
the VC used for authorization and the verifier wallet
address.

 2 Check Check 4.2 and 4.3 (with verifier address) Pass
 3 Check If referred VC does not exist in the holder’s wallet,

holder wallet returns error with a corresponding
error message.

Pass

 4 Check If provided information in the request is all correct
and valid, holder wallet returns the VC verification
result acquired from the verifier wallet service.

Pass

 5 Check Invoke listAuthorizationResults API call to the
verifier wallet service, the returned authorization
results show a successful authorization record
regarding this test with a correct timestamp.

Pass

6 1 Stimulus Invoke the revokeVC API call to the issuer wallet
service referring to the VC used in test 5. Repeat
test 5 to invoke the requestAuthorization API call to
the holder wallet service with the same input.

 2 Check The holder wallet returns error with an error
message that the authorization failed because of
revoked VC.

Pass

 3 Check Invoke listAuthorizationResults API call to the
verifier wallet service, the returned authorization
results show a failed authorization record regarding
this test with a correct timestamp.

Pass

Test
Verdict

 Pass

3.6. AI Virtualizer

The developed AI-Virtualizer is a Multi-Agent Reinforcement Learning (MARL) model that enables
adaptive and conflict-free orchestration of shared computing resources across multiple network slices.
Each slice is represented by an autonomous agent that observes local traffic conditions and resource
states and jointly learns optimal CPU allocation policies through interaction with the environment.
The agents operate under a cooperative reward scheme that penalizes resource conflicts and latency,
thereby promoting balanced performance across services. To improve learning efficiency and
coordination, the model integrates two key mechanisms: an Information Bottleneck (IB) encoder that
compresses observations into task-relevant latent representations, and an emergent communication
layer through which agents exchange discrete coordination messages. Together, these mechanisms
allow agents to develop lightweight communication protocols and context-aware decisions, achieving
faster convergence and higher stability. The AI-Virtualizer model has been fully integrated with the
Slice Manager via REST APIs, enabling real-time enforcement of learned policies over Kubernetes
namespaces in a cloud-native testbed. Table 6 summarizes the functional tests of the AI Virtualizer.

D6.3 – NANCY Integrated System – Final Version

35

Table 6: AI Virtualizer functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

AI-virtualizer _F001 Test the Kafka bus communication between
agents. Completed

AI-virtualizer _F002 Test the Slice Manager API response to IJS
remote calls. Completed

AI-virtualizer _F003 Test Grafana visualisation. Completed
Analytic Functional Test Description

Test type Functional
Identifier AI-Virtualizer_F001 - AI-Virtualizer_F003
Tester i2CAT
Test Purpose Test the minimization of conflicts during the training of the AI-Virtualizer using a cloud-

native environment.
References [8]
Configuration The experiment involved three slice-agents deployed as independent Kubernetes Pods,

each representing a network slice with default CPU shares of th =15,15,10 Gcycles/s. The
agents were trained for 500 episodes, exchanging discrete messages via a Kafka message
bus at every reinforcement-learning cycle. The shared infrastructure capacity was fixed
at 40 Gcycles/s, ensuring that contention could occur when cumulative allocations
exceeded this limit. Conflicts were automatically logged whenever the aggregated CPU
demand surpassed the total available capacity. All metrics, including the conflict rate per
episode, were collected through Prometheus and visualized in Grafana dashboards,
enabling real-time monitoring of convergence behavior and the effectiveness of inter-
agent communication in reducing contention across slices.

Pre-test
conditions

Before executing the conflict-rate evaluation, the cloud-native testbed must be fully
operational, with all components correctly deployed and interconnected. The Kubernetes
cluster should be running with at least three active namespaces, each corresponding to
an instantiated slice-agent Pod. The Slice Manager must be reachable through its REST
API and properly configured to modify the CPU quotas of each namespace via the
ResourceQuota mechanism.

Test
Sequence

Step Type Description Result

 1 Stimulus Use Simulated traffic to train the models Pass
 2 Check Obtain training results after the final episode Pass
 3 Check Visualize the conflicts for both models after the

training is done
Pass

Test
Verdict

We successfully trained the model with the simulated traffic and gathered
the models conflicts through time.

Pass

3.7. B-RAN Model

The NANCY’s B-RAN analytical model described in [9], evaluates both single-chain and Hierarchical
(with a nested secondary) blockchain. The model allows configuration of multiple key parameters,
including the number of requests in a block, incoming request traffic rate, mining rate, and service
rate across multiple scenarios. The model finally provides the average latency metrics for performance
analysis of the system. Table 7 summarizes the functional tests of the B-RAN Model.

D6.3 – NANCY Integrated System – Final Version

36

Table 7: B-RAN Model functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

BRAN-model _F001 Test the B-RAN model estimated performance
for various system configurations. Completed

BRAN-model _F002 Test the functionality of the B-RAN model for
various extreme cases. Completed

Analytic Functional Test Description
Test type Functional
Identifier BRAN-model _F001 & BRAN-model _F002
Tester INNO
Test Purpose Evaluation of the B-RAN architecture's performance and robustness across dynamic

network loads and resource capacities
References [9]
Configuration This test focuses on the single-chain B-RAN architecture (BRAN-model_F001) and the

Hierarchical B-RAN (HB-RAN) model (BRAN-model_F002), which uses nested blockchains
for coverage expansion scenarios..

Pre-test
conditions

Analytic prerequisites require establishing network stability (arrival rate must be less than
service capacity), defining the initial request processing states, and configuring all
network rates, including the necessary number of confirmations

Test
Sequence

Step Type Description Result

 1 Stimulus Define transition rate matrix Q from B-RAN
configuration and solve for steady-state probability
distribution P.

Pass

 2 Check Calculate expected number of waiting requests
using steady-state probabilities.

Pass

 3 Stimulus Vary key parameters (traffic intensity, block
capacity, service links, confirmations) across
multiple scenarios.

Pass

 4 Check Compute average latency using queuing models
with confirmation delays.

Pass

Test
Verdict

 Pass

3.8. SemCom

The SemCom model, which is described in [10], consists of two main architectures. The first model
demonstrates the enhanced performance and data efficiency in a DT model for V2X communications,
where semantic encoders on the devices (car, RSU, drone) extract only the essential information from
the videos and transfer them to a semantic decoder on an edge server for the DT reconstruction. The
second model evaluates the SemCom efficiency for ASL transmission, using a CNN semantic encoder,
to extract and modulate meaningful symbols from source images with a custom modulation scheme
(24QAM). Both configurations support resource utilization measurement in order to compare
performance against conventional methods. Table 8 summarizes the SemCom functional tests.

Table 8: SemCom functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

SemCom_F001 Test SemCom performance for V2x and DT
creation. Completed

D6.3 – NANCY Integrated System – Final Version

37

SemCom _F002 Test SemCom energy and data efficiency
improvement for ASL transmission. Completed

Analytic Functional Test Description
Test type Functional
Identifier SemCom_F001
Tester INNO
Test Purpose Demonstrate the enhanced performance and data efficiency of SemCom in successful

Digital Twin (DT) creation for Vehicle-to-Everything (V2x) communications.
References [10]
Configuration Goal-oriented SemCom architecture deployed for V2x DT creation. Semantic encoders on

network nodes (car, RSU, drone cameras) extract only essential object coordinates from
video frames, transferring this minimal data to an edge server equipped with the
semantic decoder for DT reconstruction. The configuration supports resource utilization
measurement.

Pre-test
conditions

Semantic encoders must be trained and deployed on V2x source devices for effective
object detection and semantic information extraction. A precise quantitative baseline for
data volume must be established using conventional systems transmitting full video
frames to enable the measurement of SemCom data efficiency gains.

Test
Sequence

Step Type Description Result

 1 Stimulus Network devices capturing video of the observed
location (e.g., car, RSU, drone cameras) activate the
SemCom encoder module via a request (e.g.,
through task offloading to the base station)

Pass

 2 Stimulus The semantic encoder processes the video frames
and extracts only the essential semantic
information, such as the coordinates of detected
objects, for transmission

Pass

 3 Check Verify that this minimal semantic information is
successfully transferred through the network to the
semantic decoder deployed on the edge server

Pass

 4 Check Confirm the data efficiency increases by comparing
the volume of transferred semantic against the
established baseline of full frames.

Pass

 5 Check Confirm that the semantic decoder successfully
reconstructs the Digital Twin scene (a top view map
showing the cameras and identified objects)

Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier SemCom _F002
Tester INNO
Test Purpose Evaluate the Semantic Communications (SemCom) system's efficiency by confirming

improved data and energy performance for American Sign Language (ASL) transmission
References [10]
Configuration Goal-oriented SemCom architecture deployed for ASL transmission. This configuration

uses a CNN semantic encoder to extract and modulate meaningful symbols (e.g., one of
24 letters) from source images, utilizing a specialized modulation scheme (e.g., 24QAM).
The setup is ready to measure resource usage for comparison with conventional
methods.

D6.3 – NANCY Integrated System – Final Version

38

Pre-test
conditions

The CNN semantic encoder must be trained and deployed for ASL image processing. A
precise quantitative baseline for data volume and power consumption must be
established using conventional systems that transmit the full, unprocessed source image
data.

Test
Sequence

Step Type Description Result

 1 Stimulus Input ASL image data into the Semantic
Communications (SemCom) system; the CNN-
based semantic encoder processes the image data
and extracts the essential semantic information,
which corresponds to one of the 24 distinct letters
in the ASL alphabet

Pass

 2 Stimulus The extracted semantic information (e.g., requiring
5 bits) is converted into symbols and modulated
using the proposed 24QAM scheme for
transmission over the physical channel

Pass

 3 Check Measure the required data volume and power
consumption for transmitting the semantic
information and compare it against the established
quantitative baseline of conventional full-image
transmission.

Pass

 4 Check The received signal is decoded and demodulated at
the destination using the 24-QAM decision regions,
identifying the corresponding symbol and bit
representation

Pass

 5 Check The semantic decoder interprets the extracted
message (the identified letter) based on its
knowledge base and converts it into its ASL image
representation, verifying that the system achieved
semantic equivalence

Pass

Test
Verdict

 Pass

3.9. Quantum Key Distribution Network Simulator (QKDSim)

The QKDSim model described in [11] verifies the successful deployment and operability of a
containerized QKD simulator that exposes the classical KMS layer via the ETSI-014 REST API, enabling
Secure Application Entities (SAEs) to authenticate and retrieve cryptographic keys. The simulation
deploys QKDSim and SAEs (such as Base Station demonstrators BS1/BS2) using Docker containers,
configured to run protocols like COW, with SAEs initiating key requests via the ETSI-014 KMS interface.
Additionally, the model evaluates QKDSim performance under extreme conditions infeasible in
laboratory settings by simulating maximum physical degradation through extreme fiber distances and
high loss, measuring impacts on QBER and key generation rates, while stressing security mechanisms
through maximum eavesdropping interference using the CV-QKD simulation environment. The model
supports comprehensive resource utilization and performance analysis under both operational and
extreme degradation scenarios. Table 9 summarizes the QKDSim functional tests.

D6.3 – NANCY Integrated System – Final Version

39

Table 9: QKDSim functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

QKDSim _F001 Test the deployment and communication with
the dockerised QKDSim. Completed

QKDSim _F002 Test the functionality of QKDSim for various
extreme cases Completed

Analytic Functional Test Description
Test type Functional
Identifier QKDSim _F001
Tester INNO
Test Purpose Verify the successful deployment and operability of the QKDSim running in a container

technology. Confirm that the QKDSim exposes the classical Key Management System
(KMS) layer via the ETSI-014 REST API. Validate that Secure Application Entities can
authenticate and retrieve cryptographic material keys.

References [11]
Configuration Deploy the QKDSim and a SAE, such as one of the Base Station demonstrator applications

(BS1/BS2), using Docker containers. The QKDSim should be configured to run a specific
protocol, such as Coherent-One-Way (COW). The SAE will initiate a key request via the
ETSI-014 KMS interface.

Pre-test
conditions

The QKDSim must be operational, mocking the KMS functionality and classical
communication stack. The SAE Docker container must have a pre-deployed client
certificate used for mutual TLS authentication with the QKD device. Both QKD simulation
and SAE must have the same IP.

Test
Sequence

Step Type Description Result

 1 Stimulus Start the QKDSim and a Secure Application Entity
(SAE), such as BS1 or BS2, as Docker containers.

Pass

 2 Stimulus The SAE (e.g., BS1) initiates a key request to the
QKDSim via the ETSI-014 REST API

Pass

 3 Check The QKDSim/KMS must successfully authenticate
the SAE using the pre-deployed client certificate via
mutual TLS.

Pass

 4 Check The SAE must receive the requested cryptographic
material key and key identifier (KeyID) from the
QKDSim, confirming the KMS layer is operational.

Pass

 5 Check The SAE (BS1) uses the received key to encrypt a
payload via AES256, and subsequently, a second
SAE (BS2) requests the same key from the
QKDSim/KMS to successfully decrypt the payload,
storing the clear text.

Pass

 6 Check Deployment and communication are successful if
the key request, authentication, and subsequent
encryption/decryption process are completed
without errors.

Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier QKDSim _F002
Tester INNO
Test Purpose Evaluate the QKDSim's performance under conditions that are challenging or unfeasible

to replicate in a laboratory setting. Simulate maximum physical degradation by setting

D6.3 – NANCY Integrated System – Final Version

40

extreme fiber distance and high loss. Measure the resulting impact on QBER (Quantum
Bit Error Rate) and key generation rate. Additionally, Stress the protocol's security
mechanisms by simulating maximum eavesdropping interference.

References D5.1
Configuration Utilize the Continuous-Variable QKD (CV-QKD) simulation environment. Configure the

following parameters for maximum degradation: Distance set to an extreme length, Loss
set to maximum value, and Eve Presence set to exclude.

Pre-test
conditions

The QKDSim must be initialized for CV-QKD simulation. A clear baseline measurement
(e.g., low distance/loss) must be established for comparison. The simulation output
should display an anticipated high average QBER, reflecting that high fiber loss causes a
significant rise in QBER regardless of eavesdropping.

Test
Sequence

Step Type Description Result

 1 Stimulus Configure the QKDSim to run the Continuous-
Variable QKD (CV-QKD) simulation. Set the Distance
parameter to an extreme length (longest possible)
and the Loss parameter to its maximum value.

Pass

 2 Stimulus Run the simulation for a defined Number of
Transmissions

Pass

 3 Check Observe the output chart for QBER (Quantum Bit
Error Rate). The QBER value must be unacceptably
high, reflecting that high fiber loss causes a
significant rise in QBER regardless of eavesdropping

Pass

 4 Check Observe the output chart for Key Generation Rate.
The rate must be severely degraded or approach
zero, consistent with the high QBER

Pass

 5 Check Simulation is successful if the measured QBER is
near the maximum possible value and the Key
Generation Rate is minimal due to the extreme
physical channel degradation

Pass

 6 Stimulus Configure the QKDSim for Discrete-Variable QKD
(DV-QKD), selecting a protocol like BB84 or B92.

Pass

 7 Stimulus Enable Eve Presence and set the Eve Scale
parameter to its maximum interference level

Pass

 8 Stimulus Run the simulation for a defined Number of
Transmissions

Pass

 9 Check Observe the output chart for Key Generation Rate.
The rate, particularly for the 32-bit key length, must
plummet to practically nil (values around 0),
confirming substantial interruption due to
eavesdropping combined with large key size

Pass

 10 Check Observe the output chart for QBER. The QBER value
must register a significant increase, generally
higher than in the non-eavesdropping scenario,
indicating the intruder successfully intercepted the
quantum states.

Pass

 11 Check Simulation is successful if the combination of
maximum eavesdropping and the large key size
results in the lowest possible Key Generation Rate
(near 0), highlighting the sensitivity of performance
to large key lengths under attack

Pass

Test
Verdict

 Pass

D6.3 – NANCY Integrated System – Final Version

41

3.10. VoSysMonitor

The VOSySmonitor is a low-level firmware that accommodates the consolidation of multiple, isolated
bare-metal Operating Systems or Compartments in a single ARMv8 board. VOSySmonitor serves as
core component of NANCY and is detailed in [8], in [12] and in [5]. VOSySmonitor is part of two
concrete NANCY solutions:

1. A novel, bare-metal virtualization solution for VNFs execution at the network edge

Extensions to VOSySmonitor have been provided to NANCY to realize this solution, namely
the vManager (result reported in [8]) and the Cross-compartment Virtio-loopbak (result
reported in [12]). The first two functional tests will address the vManager and the Cross-
compartment Virtio-loopback testing, respectively. The solution is validated at the Italian In-
lab testbed [T6.7].

2. A secure data store solution with OPTEE and VOSySmonitor
This result has been reported in [5]. The third functional test will address the Secure data
storage with VOSySmonitor. The solution is validated at the Spanish Extension In-lab testbed.

Table 10 summarizes the functional tests of VoSysMonitor.

Table 10: VoSysMonitor functional tests summary

Functional Test ID Objective Status

VOSySmonitor _F001 Test vManager partitions operations (create,
deploy, destroy etc.). Completed

VOSySmonitor _F002
Test availability of virtio devices inside the
partitions for deploying VNFs (Cross-
compartment Virtio-loopback solution testing)

Completed

VOSySmonitor _F003
Test OPTEE Secure Storage service functions
with VOSySmonitor (store, load sensitive
content).

Completed

vManager Partitions Operations Testing
Test type Functional
Identifier VOSySmonitor _F001
Tester VOS
Test Purpose The purpose of the test is to validate the behaviour of the vManager when it comes to

operations carried out on the partitions.
References [8], Section 3: “AI Virtualiser and Edge-level Resource Exploitation”
Configuration For this scenario we need an ARMv8 board with VOSySmonitor firmware deployed and

one management partition (a Linux OS) booted.

Pre-test
conditions

To start the testing, we load the vManager driver on the management partition (making
/dev/vmanager available) and we verify the availability of the vmanctl vManager
controller binary.

Test
Sequence

Step Type Description Result

 1 Stimulus vmactl create-partition —cores
<number_of_cores> —memsize
<partition_memory_GB> —secure
<true/false>

D6.3 – NANCY Integrated System – Final Version

42

 2 Check New device /dev/vmanX appears (X: new partition
ID)

Pass

 3 Check vManager marks partition as READY Pass
 4 Stimulus vmactl deploy —kernel

path/to/kernel_image —dtb
path/to/device_tree_blob
<partition_ID>

 5 Check vManager marks partition as DEPLOYED

Pass

 6 Stimulus vmactl reboot <partition_ID>

 7 Check vManager stops CPUs execution, reloads the
partition’s assets and executes again. Partition is
marked as DEPLOYED in the end.

Pass

 8 Stimulus vmactl suspend <partition_ID>

 9 Check vManager marks partition as SUSPENDED. Pass

 10 Stimulus vmactl restore <partition_ID>

 11 Check vManager marks a previously SUSPENDED
partition as DEPLOYED.

Pass

 12 Stimulus vmactl shutdown <partition_ID>

 13 Check vManager marks a previously DEPLOYED partition
as READY. Partition can be re-deployed afterwards
on the same resources.

Pass

 14 Stimulus vmactl destroy-partition
<partition_ID>

 15 Check vManager releases the resources of a previously
READY partition. Note that a DEPLOYED partition
cannot be destroyed.

Pass

Test
Verdict

All the available operations on vManager’s partitions are tested through
the vmanctl tool and provided the expected outcomes.

Pass

Cross-compartment Virtio-loopback Testing
Test type Functional
Identifier VOSySmonitor _F002
Tester VOS
Test Purpose The purpose of the test is to validate the availability of virtio devices inside an ARMv8

bare-metal partition/compartment, when the Cross-compartment Virtio-loopback
technology (solution that extends VOSySmonitor) is employed. This test will focus in
particular on a virtio block device, to test operations on this device.

References [12], Section 2.5: “Resource handling at the edge” and Section 3.2.8: “Edge-resource
management”

Configuration For this scenario, we need an ARMv8 board with VOSySmonitor firmware deployed and
two partitions/compartments up and running. One of the two partitions will be the main
one (or “server side”) and the other one will be a secondary one (or “client side”). The
“server side” has access to all peripherals of the board.

Pre-test
conditions

To start the testing, on the server side, we need to have available the
“loopback_driver_server” module and the “crossworld” driver module.
On the client side, we need to have available the “loopback_driver_client” module and
the “crossworld” driver module.

D6.3 – NANCY Integrated System – Final Version

43

Also, on the server side, the "vhost-user-blk" executable should be available, as well as
the “adapter” executable. Last but not least, on the server side, a demo.img” disk image
should be ready to use.

Test
Sequence

Step Type Description Result

 1 Stimulus insmod loopback_driver_client.ko
(client side)

Pass

 2 Stimulus insmod crossworld.ko
(client side)

Pass

 3 Stimulus insmod loopback_driver_server.ko
(server side)

Pass

 4 Stimulus insmod crossworld.ko
(server side)

Pass

 5 Stimulus vhost-user-blk –s <socket_path> -b
demo.img
(server side). The <socket path> is to connect with
the adapter through the following command.

Pass

 6 Stimulus adapter –s <socket_path> -d vhublk
(server side)

Pass

 7 Check New device /dev/vdX is now available on the client
side.

Pass

 8 Stimulus mount /dev/vdX <mount_path> && ls
<mount_path>

(client side)

Pass

 9 Check Able to see the contents of the demo.img on the
client side (secondary partition)

Pass

 10 Check Able to create new files, write data into files,
delete files or data of the demo.img from the
client side. Verified that the status persists when
unmounting the device and mounting it again,
either in the client or in the server side.

Pass

Test
Verdict

All the available operations on vManager’s partitions are tested through
the vmanctl tool and produced the expected outcomes.

Pass

VOSySmonitor and OPTEE Secure Storage Testing
Test type Functional
Identifier VOSySmonitor _F003
Tester VOS
Test Purpose The purpose of the test is to validate the Secure Storage solution with OPTEE and

VOSySmonitor for secure data caching at the edge.
References D4.3
Configuration For this scenario we need a Trustzone-capable ARMv8 board with VOSySmonitor

firmware deployed with one main, non-Secure partition with Linux OS booted and an
OPTEE OS deployed at the Secure world.

Pre-test
conditions

To start the testing, the REE_FS Secure Storage Service should be available. Parts of it
are established in the main, Non-Secure OS (e.g., TEE Supplicant module to be available)
and parts of it are established in the Secure OS (e.g., the Trusted Application).

D6.3 – NANCY Integrated System – Final Version

44

Regarding the workflow, a Client Application on the Non-Secure OS is the starting point
to invoke Secure Storage Operations towards the Trusted Application on the Secure OS.
Each operation always passes through the secure firmware (VOSySmonitor), ensuring
the security of the operations.

For this test, we employ two Client Applications on the Non-Secure OS: a "store"
 application and a "load” application, that respectively store and load a secure asset
to/from the data store. The storage happens on a key-value fashion.

Test
Sequence

Step Type Description Result

 1 Stimulus store “userA” “serviceA, serviceB,
serviceC"

(Invoke the client application to store a user in the
data store with specific capabilities on NANCY
services)

Pass

 2 Check Prepare session with the TA..Session ready! Pass

 3 Check Store object in the TA secure storage..Object
stored!

Pass

 4 Check Session closed

Pass

 5 Stimulus load “userA”

(Invoke the client application to load the
capabilities of a specific user from the data store)

Pass

 6 Check Prepare session with the TA..Session ready! Pass

 7 Check Find and load object "userA".. Pass

 8 Check Object Found. Id=userA, Value=serviceA, serviceB,
serviceC

Pass

 9 Check Session closed

Pass

 10 Stimulus load “userB”

(Invoke the client application to load the
capabilities of a specific user that is not part of the
data store)

Pass

 11 Check Prepare session with the TA..Session ready! Pass

 12 Check Find and load object "userB".. Pass

 13 Check load: Failed to read an object from the secure
storage

Pass

 14 Check Session closed Pass

 15 Stimulus ls /var/lib/tee

(Check the persistent data)

Pass

 16 Check 0
1
2
dirf.db

(Expected amount of items, in encrypted format)

Pass

D6.3 – NANCY Integrated System – Final Version

45

Test
Verdict

The REE_FS Secure Storage service of OPTEE is validated to work fine
with the new Client Applications “load” and “store”, to store data assets
in a key-value format.

Pass

3.11. Marketplace

The marketplace is the NANCY component where all the details about available operators and services
are gathered for allowing offloading processes. It is based on smart contracts having been deployed
in the NANCY Blockchain network and, consequently, all the interactions happen through the NANCY
Blockchain wallets. The operation of the marketplace for an offloading process requires internal
interactions with the Smart Pricing and Digital Agreement Creator. The marketplace and its operation
have been deeply described in [4]. Table 11 summarizes the Marketplace functional tests.

Table 11: Marketplace functional tests summary

Functional Test ID Objective Status
Marketplace _F001 Test connection with SP. Completed
Marketplace _F002 Test connection with DAC. Completed

Marketplace _F003 Test connection with Blockchain wallet
(receive requests). Completed

Marketplace _F004 Test connection with other smart contracts. Completed
Analytic Functional Test Description

Test type Functional
Identifier Marketplace _F001, Marketplace _F002, Marketplace _F003, Marketplace _F004
Tester TECNALIA, NEC
Test Purpose The marketplace complete operation is validated for an offloading process following

the inter-operator flow described in [4].

References [4] describes the complete inter-operator flow as well as wallet, marketplace and DAC
interactions.
[13] describes the smart pricing operation.

Configuration Not needed

Pre-test
conditions

Different operators and services have already been registered in the marketplace.

Test
Sequence

Step Type Description Result

 1 Stimulus A suitable service request is received from the
wallet in the marketplace

Pass

 2 Check The marketplace automatically selects suitable
services according to the search definition

Pass

 3 Check The marketplace makes a request to the SP for the
most suitable service and price: https://nancy-
smart-
pricing.8bellsresearch.com/price_calculation

Pass

 4 Check The marketplace sends the selected service details
to the DAC for the agreement creation:
http://188.245.61.44:8090/DAC/createSLA.

Pass

 5 Check The marketplace automatically sends the created
agreement to the signature management smart
contract

Pass

D6.3 – NANCY Integrated System – Final Version

46

Test
Verdict

 Pass

3.12. Maestro

Maestro [14] is a service orchestration platform for managing the lifecycle of end-to-end services atop
geo-distributed heterogeneous infrastructures. At the northbound, Maestro exposes a set of open,
standardized service and resource management APIs based on TMForum, to facilitate interaction with
stakeholders (e.g., end-users, service providers, etc.), while at the southbound Maestro peers with
one or more Operations Support Systems (OSS), such as ETSI OpenSlice [15], i.e., the NANCY Resource
Orchestrator, to consume resource-as-a-service APIs for accommodating end-to-end services atop
compute and network (e.g., 5G) resources. A detailed description of Maestro can be found in [16].

A summary of functional tests conducted for Maestro’s integration into the NANCY platform is
provided in Table 12. All these integration activities are now concluded as Maestro demonstrates
readiness for the final NANCY use case demonstration and validation activities.

Table 12: Maestro functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

Maestro _F001 Test connection with Resource
Orchestrator via NIS2 Completed

Maestro _F002 Test connection with Compute Controller
via NIS6. Completed

Maestro _F003 Test connection with service Telemetry via
NIS5. Completed

Maestro _F004 Test compute enforcement APIs via
Compute Controller and NIS1. Completed

Maestro _F005 Test connection with Service
Repository/Registry via NIS3. Completed

Maestro _F006 Test Connection with BSS via NIS1. Completed
Analytic Functional Test Description

Test type Functional
Identifier Maestro_F001
Tester UBITECH
Test Purpose Test connection with the NANCY Resource Orchestrator (OpenSlice) via interface NIS2
References [16], [1], and [2]
Configuration -

Pre-test
conditions

Maestro and OpenSlice instances deployed. IP connectivity between Maestro and
OpenSlice already established. OpenSlice has available services in its service catalogue.

Test
Sequence

Step Type Description Result

 1 Stimulus User login to Maestro portal or swagger API

Pass

2 Check POST command to Maestro TMF Party
Management API to create an OpenSlice
organization

Pass

3 Check POST command to Maestro peering API to initiate
peering with the OpenSlice organization added in
Step 2

Pass

D6.3 – NANCY Integrated System – Final Version

47

4 Check POST command to OpenSlice TMF Party
Management API to initiate peering with Maestro

Pass

5 Check GET command to OpenSlice TMF Service Catalog
API to fetch all available service specifications

Pass

6 Check User selects the desired specifications to import
from the OpenSlice catalog

Pass

7 Check GET command to Maestro TMF Service Catalog API
to verify that the selected service specifications
from the OpenSlice service catalog are now
onboarded into the Maestro service catalog

Pass

Test
Verdict

Maestro successfully peers with OpenSlice and fetches services from the
OpenSlice service catalog

Pass

Analytic Functional Test Description
Test type Functional
Identifier Maestro_F002
Tester UBITECH
Test Purpose Test connection with the NANCY Compute Controller (Kubernetes) via interface NIS6
References [16], [1], and [2]
Configuration -

Pre-test
conditions

Test Maestro_F001 already conducted, thus Maestro is already peered with OpenSlice
and relevant OpenSlice services are already in Maestro’s service catalogue. The
Kubernetes cluster exposed by OpenSlice (to Maestro) is reachable from the Maestro
instance.

Test
Sequence

Step Type Description Result

 1 Stimulus POST command to Maestro TMF service order API
to order a K8saaS service from OpenSlice

Pass

2 Check POST command to OpenSlice TMF service order
API to order this service

Pass

3 Check GET command to OpenSlice TMF service order API
to periodically check the status of this order (until
state=COMPLETED)

Pass

4 Check GET command to OpenSlice TMF Service Inventory
API to fetch the kubeconfig service characteristic

Pass

5 Check GET command to Maestro TMF service order API
to verify that the service order is now completed

Pass

6 Check Get command to Maestro TMF Service Inventory
API to verify that the kubeconfig file is also
reflected in Maestro

Pass

7 Check POST command to Maestro TMF service order API
to order a K8saaS service from OpenSlice

Pass

8 Check Maestro establishes a connection with the
Kubernetes cluster via the terminal window on its
portal

Pass

9 Check Maestro issues a test ‘kubectl’ command to verify
that the exposed cluster offers the right
permissions

Pass

Test
Verdict

Maestro successfully orders a K8saaS and connects to the Kubernetes
cluster

Pass

Analytic Functional Test Description
Test type Functional
Identifier Maestro_F003
Tester UBITECH

D6.3 – NANCY Integrated System – Final Version

48

Test Purpose Test connection with the NANCY Telemetry service via interface NIS5
References [16], [1], and [2]
Configuration -

Pre-test
conditions

Test Maestro_F002 already conducted, thus Maestro has already onboarded a compute
cluster (with a telemetry service already there). An end user service specification is
already available on Maestro’s service catalogue.

Test
Sequence

Step Type Description Result

 1 Stimulus POST command to Maestro TMF service order API
to order an end user service on top of an existing
Kubernetes cluster

Pass

2 Check Maestro ensures that the Kubernetes cluster to
host the end user’s service is accessible and offers
enough resources for this service

Pass

3 Check Maestro Package Manager validates that the end
user service is a valid (deployable) service package

Pass

4 Check Maestro Package Manager connects to the
underlying Kubernetes cluster

Pass

5 Check Maestro Package Manager performs end user
service deployment (e.g., helm install) on the
Kubernetes cluster

Pass

6 Check Maestro pulls the necessary container images
from the service repository/registry
(Maestro_F0005 via NIS3)

Pass

7 Check Maestro Package Manager activates the deployed
service

Pass

8 Check Maestro dispatches a request to the Maestro
telemetry service to create a telemetry dashboard

Pass

9 Check Maestro telemetry service instructs the Telemetry
service of the cluster to federate specific service-
level metrics to the Maestro Telemetry engine

Pass

10 Check Validate that the service metrics are correctly
federated to Maestro Telemetry service

Pass

 11 Check Maestro creates telemetry dashboards and
exposes the dashboard endpoints to the user via a
Portal view and the TMF Service Inventory API
(customer facing service exposed to the user)

Pass

Test
Verdict

Maestro successfully creates service-level telemetry dashboards using
interface NIS5

Pass

Analytic Functional Test Description
Test type Functional
Identifier Maestro_F004
Tester UBITECH
Test Purpose Test compute enforcement APIs via Compute Controller and NIS1
References [16], [1], and [2]
Configuration -

Pre-test
conditions

Test Maestro_F002 already conducted, thus Maestro has already onboarded a
compute cluster.

Test
Sequence

Step Type Description Result

D6.3 – NANCY Integrated System – Final Version

49

 1 Stimulus PATCH command to Maestro TMF service
inventory API using the K8saaS service ID as a
service identifier. The PATCH command requires
to update certain service characteristics of the
K8saaS service, such as the number of worker
nodes of the cluster.

Pass

2 Check Maestro translates this TMF API request to an
action towards the Compute Controller, which
requests a new worker node to join the compute
cluster

Pass

3 Check Compute controller verifies the new state of the
cluster by checking that the number of worker
nodes is indeed increased

Pass

4 Check Maestro reflects the cluster’s new state on its API
by showing an increased number of working nodes
at the TMF API level

Pass

Test
Verdict

Maestro successfully enforces a compute cluster decision (e.g., cluster
scale out) through the compute controller

Pass

Analytic Functional Test Description
Test type Functional
Identifier Maestro_F005
Tester UBITECH
Test Purpose Test connection with Service Repository/Registry via NIS3
References [16], [1], and [2]
Configuration -

Pre-test
conditions

Test Maestro_F002 already conducted, thus Maestro has already onboarded a compute
cluster (with a telemetry service already there). An end user service specification is
already available on Maestro’s service catalog.

Test
Sequence

Step Type Description Result

 1 Stimulus Repeat test Maestro_F003 up until step 6 Pass
Test
Verdict

Maestro successfully pulls service artefacts from a service
repository/registry

Pass

Analytic Functional Test Description
Test type Functional
Identifier Maestro_F006
Tester UBITECH
Test Purpose Test connection with the NANCY BSS via interface NIS1
References [16], [1], and [2]
Configuration -

Pre-test
conditions

Repeats Maestro_F003 but now the request comes from an upper layer system (i.e.,
BSS) which translates a product order to the order of one or more services related to
this product.

Test
Sequence

Step Type Description Result

 1 Stimulus Execute a service order from BSS towards Maestro
as per Maestro_F003

Pass

2 Check BSS periodically performs a GET command
towards Maestro TMF Service Order API to get the
status of the service order (until state =
COMPLETED)

Pass

D6.3 – NANCY Integrated System – Final Version

50

Test
Verdict

BSS verifies the outcome of the service order Pass

3.13. Models

The tested component consists of three machine learning models offering inference capabilities as API
endpoints. These include:

• Localization model

• Anomaly detection model

• Spectrum sensing model

Each model is packaged as a containerized service for flexible deployment across cloud or edge
infrastructures. The APIs provide access to infeσrence routines, returning predictions for supplied
input features. The models rely on pre-trained weights stored in serialized Python pickle files. This test
verifies the basic functionality, availability, and inference capability of these APIs. The functional tests
are summarized in Table 13, while Figure 14 illustrates a snapshot of the test.

Table 13: Models functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

Models _F001
Testing ML algorithms to make prediction on
the location of the users, providing Localisation
as a Service (LaaS).

Completed

Models_F002
Testing ML algorithms to detect anomaly in the
signals with key network performance
indicators.

Completed

Models_F003 To assess the spectrum occupancy with ML-
based Radio spectrum sensing techniques. Completed

Analytic Functional Test Description
Test type Functional
Identifier Models _F001, Models_F002, Models_F003
Tester IJS
Test Purpose Test FastAPI Endpoint for localization (e.g., Figure 14), anomaly detection and spectrum

sensing services.
References Detailed model description in [17] and [18]

Integration point description in [2]
Configuration Requirement: API for model inference has to be containerized so that we are able to

deploy it on different operating infrastructure.

Pre-test
conditions

A valid pickle file containing a trained model exists at the given path.

Test
Sequence

Step Type Description Result

 1 Stimulus User runs push or pull request command

 2 Check Checkout code for test-localization-api Finished
 3 Check Spawn docker container Pass
Test
Verdict

Step-by-step report of the executed steps and elapse time in github. Pass

D6.3 – NANCY Integrated System – Final Version

51

Figure 14: Snapshot of the expected outcome of one of the tests (localization service)

3.14. Self-Evolving Model Repository (SEMR)

The Self-Evolving Model Repository (SEMR) is a key component in the NANCY system, enabling the
lifecycle management of deployed AI/ML models. SEMR automates model evolution, tracks
performance metrics, and supports retraining workflows. It is deployed on the NAOMI orchestration
framework [19] using Kubernetes (K8s) and Helm. Table 14 summarizes the functional tests, while
Figure 15 illustrates an instance of the k8s cluster.

Table 14: SEMR functional tests summary

Functional Test ID Objective Status

SEMR_F001 Testing on NAOMI [19] for AI workflow
orchestration. Completed

Analytic Functional Test Description
Test type Functional
Identifier SEMR_F001
Tester IJS
Test Purpose Verify deployment and scalability of the SEMR (Figure 15)

References Detailed description in [18]

D6.3 – NANCY Integrated System – Final Version

52

Configuration Scenario assumption: Deployment of SEMR on k8s cluster.

Pre-test
conditions

HELM chart description file.

Test
Sequence

Step Type Description Result

 1 Stimulus Run HELM chart

 2 Check Status of all SEMR components Running
Test
Verdict

Manual inspection of running components in k8s cluster console. Pass

Figure 15: Report on running components in k8s cluster console

3.15. Elasticity
Table 15 summarizes the functional tests. Specifically, the Elasticity_F001 test verifies the ability of
the Localization-as-a-Service (LaaS) deployment to dynamically adapt compute resources based on
fluctuating inference demand. The resource scaling is managed by a reinforcement learning-based
elasticity model. This test checks whether the system can elastically scale CPU usage up and down in
response to real-time changes in inference load (from 10 to 1000 concurrent requests and back). This
test confirms the core functionality and stability of dynamic resource allocation.

Table 15: Elasticity functional tests summary

Functional Test ID Objective Status

Elasticity _F001 Testing the developed computing resource
elasticity techniques. Completed

Analytic Functional Test Description
Test type Functional
Identifier Elasticity _F001

D6.3 – NANCY Integrated System – Final Version

53

Tester IJS
Test Purpose Verifying elasticity of resource allocation using Localization-as-a-service (LaaS) model

concurrent requests.

References Model described in detail in [16]
Configuration Deployed Localization-as-a-service model as a docker container in k8s cluster,

dynamically changing number of localization inference requests.

Pre-test
conditions

K8s cluster
Reinforcement learning elasticity model.
C-adviser in the localization service to monitor CPU consumption.

Test
Sequence

Step Type Description Result

 1 Stimulus API request to the localization service

 2 Check Increase the number of inferences from 10 to
1000 concurrent requests and check if it is
dynamically increasing the CPU resources.

Pass

 3 Check Lower the concurrent tests from 1000 to 10 and
check if it is dynamically decreasing CPU
resources.

Pass

Test
Verdict

Verify adapting resources and stability of the process. Pass

A detailed performance evaluation of this test is presented in Table 16, summarizing averaged results
over 20 runs. The comparison includes three algorithms: MARLISE-Continuous, a multi-agent
reinforcement learning algorithm based on the Proximal Policy Optimization (PPO) approach;
MARLISE-Discrete, which follows the Deep Q-Network (DQN) paradigm; and a heuristic policy-driven
method that adjusts resource allocation using CPU and memory usage trends with predefined scaling
thresholds. The Continuous approach achieves the best performance, with the lowest violations
(12.05%) and fastest response time (0.14 s) for microservice 3, compared to Discrete (24.53%, 0.31 s)
and the heuristic (25.99%, 0.28 s). However, the heuristic allocates the fewest resources (578 mc),
while Discrete and Continuous allocate 648 mc and 667 mc, respectively. This demonstrates a trade-
off: MARLISE-Discrete and especially MARLISE-Continuous achieve faster responses at the cost of
higher resource usage, while the heuristic remains more conservative but less responsive.

Table 16: Averaged performance metrics for dynamic load

Metrics/Algorithm Heuristic MARLISE-Discrete MARLISE-Continuous
Microservices 1 2 3 1 2 3 1 2 3
Violations (%) 10.43 19.60 25.99 7.14 21.12 24.53 8.67 19.26 12.05

Mean Response
time (s) 0.09 0.22 0.28 0.08 0.24 0.31 0.08 0.22 0.14

Mean resource
delta (mc) 415 488 578 645 615 648 532 709 667

3.16. Post Quantum Cryptography Signature (PQCSig)

D6.3 – NANCY Integrated System – Final Version

54

PQCSig is a middleware and smartcard provided by TDIS that will generate and verify signatures with
ML_DSA key. This package will bring the possibility to guarantee the authenticity of data. Table 17
summarizes the PQCSig functional tests.

Table 17: PQCSig functional tests summary

Functional Test ID Objective
Status (Completed,
Dropped, New and

completed)

TC_NE_C_SignInit::testCKM_ML_DSA Initialisation of Signature
sequence. Completed

TC_NE_C_Sign::testCKM_ML_DSA
Signature single-part
creation using ML_DSA keys. Completed

TC_NE_C_SignUpdate::testCKM_ML_DSA
Signature update of multiple-
part signature operation using
ML_DSA keys .

Completed

TC_NE_C_SignFinal::testCKM_ML_DSA
Signature finalisation of a
multiple-part signature
operation using ML_DSA keys.

Completed

TC_NE_C_VerifyInit::testCKM_ML_DSA Initialisation of Verification
sequence. Completed

TC_NE_C_Verify::testCKM_ML_DSA

Signature single-part data
verification using ML_DSA
keys.

Completed

TC_NE_C_VerifyUpdate::testCKM_ML_DSA
Signature multiple-part update
verification using ML_DSA
keys.

Completed

TC_NE_C_VerifyFinal::testCKM_ML_DSA
Signature multiple -part data
verification using ML_DSA
keys.

Completed

Analytic Functional Test Description
Test type Functional
Identifier TC_NE_C_SignInit::testCKM_ML_DSA, TC_NE_C_Sign::testCKM_ML_DSA,

TC_NE_C_VerifyInit::testCKM_ML_DSA, TC_NE_C_Verify::testCKM_ML_DSA
Tester TDIS
Test Purpose Signature single-part creation and verification using ML_DSA keys using the

PKCS#11 functions

Returns CKR_MECHANISM_INVALID if mechanism is not supported.
References
Configuration Smartcard personalized

Pre-test
conditions

Smartcard inserted into the reader and personalized

Test
Sequence

Step Type Description Result

 1 Stimulus C_SignInit Pass

 2 Check Check the API answer Pass

 3 Stimulus C_Sign Pass

 4 Check Check the API answer Pass

 5 Stimulus C_VerifyInit Pass

 6 Check Check the API answer Pass

D6.3 – NANCY Integrated System – Final Version

55

 7 Stimulus C_Verify Pass

 8 Check Check the API answer Pass
Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier TC_NE_C_SignInit::testCKM_ML_DSA,

TC_NE_C_SignUpdate::testCKM_ML_DSA,
TC_NE_C_SignFinal::testCKM_ML_DSA,
TC_NE_C_VerifyInit::testCKM_ML_DSA,
TC_NE_C_VerifyUpdate::testCKM_ML_DSA
TC_NE_C_VerifyFinal::testCKM_ML_DSA

Tester TDIS
Test Purpose Signature multi-part creation and verification using ML_DSA keys using the

PKCS#11 functions

Returns CKR_MECHANISM_INVALID if mechanism is not supported.
References

Configuration Smartcard personalized

Pre-test
conditions

Smartcard inserted into the reader and personalized

Test
Sequence

Step Type Description Result

 1 Stimulus C_SignInit Pass

 2 Check Check the API answer Pass

 3 Stimulus C_SignUpdate Pass

 4 Check

Check the API answer Pass

 5 Stimulus

C_SignFinal Pass

 6 Check Check the API answer Pass

 7 Stimulus C_VerifyInit Pass

 8 Check Check the API answer Pass

 9 Stimulus C_VerifyUpdate Pass

 10 Check Check the API answer Pass

 11 Stimulus C_VerifyFinal Pass

 12 Check Check the API answer Pass

Test
Verdict

 Pass

3.17. Traffic Forecasting Service (TFS)

TFS is an AI-driven tool provided by CERTH, which aims to provide a real-time prediction of near near-
future actual bitrate, that is, throughput values. The Throughput Forecasting Service has not only been
delineated but also analyzed in depth and breadth in [17]. It is actually a tool tightly connected to two
distinct functionalities, namely analytics and decision-making. There is a connection between TFS and

D6.3 – NANCY Integrated System – Final Version

56

the software MRAT-NCP component. Also, TFS is a part of the Telemetry and AI/Analytics NANCY
architectural element. Table 18 summarizes the functional tests of the Traffic Forecasting Service.

Table 18: TFS functional tests summary

Functional Test ID Objective Status (Completed, Dropped,
New and completed)

TFS_F001 Throughput forecasting intended for network
analytics purposes. Completed

TFS_F002
Throughput forecasting for assessment of
upcoming network performance and mitigation
of anticipated performance degradation

Completed

Analytic Functional Test Description
Test type Functional
Identifier TFS_F001, TFS_F002
Tester CERTH
Test Purpose Verify the receipt and plausibility of forecasts for an immediate future time horizon

References [17]
Configuration High-end commercial workstation or Docker Container API Environment

Pre-processed Dataset available, comprising of 118 separate time-series
AI model complete with fine-tuning and testing via validation and testing data

Pre-test
conditions

 The Docker Container RESTful API has already been built, alongside with its multitude of
dependencies, in the workstation, which has been prepared for execution.

Test
Sequence

Step Type Description Result

 1 Stimulus Docker Component/service is executed/run within
the testing environment

Completed

 2 Stimulus A value is inserted for the android walk time-series
number

Completed

 3 Stimulus A value is inserted for the number of steps the
forecasting has to take place and both sent (via
POSTMAN or curl tool)

Completed

 n Check Pass

Test
Verdict

 Pass

3.18. RAN Intelligent Controller Manager (RICMngr)

The RIC Manager in NANCY acts a Non-RT RIC which exposes A1 policies to external entities, such as
the Slice Manager. Particularly, once receiving a request of the Slicer Manager (via REST API) to modify
the priority of a given RAN slice, it generates O-RAN-compliant slice SLA policy which is sent to the O-
RAN Near-RT RIC from O-RAN Software Community (version adapted for srsRAN deployments1). Once
receiving the policy, the Near-RT RIC follows it to the Slicing xApp, which applies slicing prioritization
by modifying the PRB allocation of the UEs available in the slice (E2 RAN Control Service Model). The

1 https://docs.srsran.com/projects/project/en/latest/tutorials/source/near-rt-ric/source/index.html

D6.3 – NANCY Integrated System – Final Version

57

RICMngr functional tests are summarized in Table 19, while Figure 16 to Figure 21 showcase athe the
steps of deploying a near-RT RIC.

Table 19: RICMngr functional tests summary

Functional Test ID Objective Status

RICMngr_F001 Successful communication with the Slice
Manager via the defined interface. Completed

RICMngr_F002 Successful communication with the near-RT
RIC via A1 interface. Completed

RICMngr_F003 Successful implementation of the required
control-loop workflow.

Ongoing, to be completed in
Spanish demonstrator

Analytic Functional Test Description
Test type Functional
Identifier RICMngr_F001, RICMngr_F002
Tester I2CAT
Test Purpose The purpose of this test if to validate the workflow required to apply an A1 policy in a

specific xApp, once generated by the Slice Manager: i.e., Slice Manager sends request to
RIC Manager/rApp, the rApp creates an A1 policy and sends it to the Near-RT RIC, and
the Near-RT RIC forwards it to the xApp.

References
Configuration We have two RAN slices pre-deployed, with equal priority. We have the Slicing SLA A1

policy type defined in both the Non-RT and Near-RT RIC

Pre-test
conditions

srRAN with two slices, Slice Manager reaches RIC Manager, which reaches the OSC
Near-RT RIC.

Test
Sequence

Step Type Description Result

 1 Stimulus The Slice Manager requests a modification of the
slice priority (update or delete)

Pass

 2 Check The rApp receives the request, decodes it and
generates an A1 policy.

Pass

 3 Check The A1 policy is received by the Non-RT RIC,
evaluated and forwarded to the Near-RT RIC.

Pass

 4 Check The A1 policy is received by the Near-RT RIC,
evaluated and forwarded to the xApp.

Pass

 5 Check The xApp executes the policy according to the
number of UEs in the slice.

Pass

Test
Verdict

 Pass

D6.3 – NANCY Integrated System – Final Version

58

Figure 16: Definition of the Near-RT RIC in the Non-RT RIC framework

D6.3 – NANCY Integrated System – Final Version

59

Figure 17: Definition of the A1 policy type in the Non-RT RIC

Figure 18: Reception of Slice Manager requests by the rApp (create, update, delete)

D6.3 – NANCY Integrated System – Final Version

60

Figure 19: Reception of the A1 policy by the Non-RT RIC and forwarding to the Near-RT RIC

Figure 20: Generated A1 policy instance in the Non-RT RIC

D6.3 – NANCY Integrated System – Final Version

61

Figure 21: Near-RT RIC and xApp validation and application of the A1 policy

3.19. Artificial Intelligence Network Quality Module (AINQM)

The Artificial Intelligence Network Quality Module is a module designed to carry out predictions about
upcoming network outages. Outages are essentially events and intervals of highly dissatisfactory
service. The AINQM in the form of its Docker Container API in fact delivers probability outputs, which
measure how probable the event of an outage is. Additionally, post-processing was put to use, so that
the final output of the module is in actuality binary: outage (1) or uptime/available (0). The work
carried out in this framework is meticulously laid out in [20]. Table 20 summarizes the AINQM
functional tests.

Table 20: AINQM functional tests summary

Functional Test ID Objective Status

AINQM_F001 Prediction of network outage probability for
analytics. Completed

AINQM_F002
Prediction of network outage probability to
anticipate network events and support
decision-making.

Completed

Analytic Functional Test Description
Test type Functional
Identifier AINQM_F001, AINQM_F002
Tester CERTH
Test Purpose Verify the receipt and plausibility of probability predictions for upcoming network

outages.

References [20]
Configuration High-end commercial workstation or Docker Container API Environment

Pre-processed Dataset (COLOSSEUM) [21] available

D6.3 – NANCY Integrated System – Final Version

62

AI model complete with fine-tuning and testing via validation and testing data

Pre-test
conditions

 The Docker Container RESTful API has already been built, alongside with its multitude of
dependencies, in the workstation, which has been prepared for execution.

Test
Sequence

Step Type Description Result

 1 Stimulus
Docker Component/service is executed/run within
the testing environment

Completed

 2 Stimulus Values are inserted as body arguments/payload
parameters (CSV, range) and both sent (via the
POSTMAN or curl tool)

Completed

 3 Check Get a prediction that is plausible for upcoming
outages

Pass

Test
Verdict

 Pass

3.20. Network Information Framework (NIF)

This component describes the development and validation of the Network Information Framework
(NIF), a comprehensive system designed to assess and optimize Blockchain-based Radio Access
Networks. The framework incorporates three AI-driven predictive models addressing key
performance indicators:

• Coverage Probability Prediction Model – Estimates network coverage reliability across urban
environments, leveraging datasets such as the University of Murcia’s 5G deployment
produced by NANCY.

• Outage Probability Prediction Model – Predicts the likelihood of network outages using
datasets like the Colosseum urban simulation [21].

• Latency Prediction Model – Evaluates blockchain consensus-induced latency across multiple
consensus mechanisms, enabling comparison and optimization of performance and security
trade-offs.

The NIF is integrated into an interactive web-based platform, allowing users to upload datasets,
execute model predictions, and visualize performance outcomes in real time. More information can
be found in [20]. The functional tests for the Network Information Framework are summarized in Table
21.

Table 21: NIF functional tests summary

Functional Test ID Objective Status

NIF_F001 AI model testing with synthetic data to ensure
reasonable predictions. Completed

NIF_F002 Ensure the AI model’s loss function converges
without overfitting. Completed

NIF_F003 Successful creation of users and data upload
process. Completed

Analytic Functional Test Description
Test type Functional
Identifier NIF_F001, NIF_F002, NIF_F003

D6.3 – NANCY Integrated System – Final Version

63

Tester 8BELLS
Test Purpose Verify the NIF’s AI models training, prediction quality, and user/data handling

functionalities.

References [20]
Configuration •Test environment deployed with default system settings

•AI models configured with baseline hyperparameters (batch size, learning rate, epochs)
•Synthetic dataset stored in designated test data directory
•Database schema applied and connection strings configured
•User management and authentication modules enabled
•Logging and monitoring services configured for test runs

Pre-test
conditions

•Services running
•Test accounts created and accessible
•Synthetic dataset available and valid
•Database initialized and empty
•Admin credentials verified
•Logging and monitoring enabled
•Network connectivity verified
•Compute resources allocated (GPU/CPU/memory)

Test
Sequence

Step Type Description Result

 1 Stimulus
 Start services and verify endpoints are reachable.

Completed

 2 Stimulus
Load synthetic dataset into the test environment. Completed

 3 Check
 Dataset format and validity confirmed. Pass

 4 Stimulus

Train AI models (all three) using synthetic dataset
with baseline hyperparameters.

Completed

 5 Check
Training losses decrease and converge within
expected range for all models.

Pass

 6 Stimulus
Create new user account. Completed

 7 Check
User record stored in database and accessible. Pass

 8 Stimulus
Upload sample dataset via user account. Completed

 9 Check
Data upload completes successfully and is
retrievable.

Pass

D6.3 – NANCY Integrated System – Final Version

64

Test
Verdict

 Pass

3.21. Smart Pricing Policies (SPP)

The Smart Pricing Module (SPM) is part of Task 4.5 “Smart Pricing Policies” and is described in detail
in [13] - Smart Pricing Policies. It provides AI-driven pricing and resource allocation mechanisms for
the B-RAN, leveraging Multi-Agent Reinforcement Learning (MARL) and multi-round blind reverse
auctions to ensure fair and competitive pricing. Within the NANCY framework, the SPM interacts
closely with the NANCY Marketplace through a dedicated API service, enabling dynamic price
discovery. Table 22 summarizes the functional test for the Smart Pricing Policies component.
Moreover, Figure 22 to Figure 26 illustrate indicative instances of the tests.

Table 22: SPP functional tests summary

Functional Test ID Objective Status (Completed, Dropped, New and
completed)

SPP_F001
Simulation environment testing
(Boundary conditions, auction rules
etc) with synthetic data.

Completed

SPP_F002 Ensure the neural network loss
function converges without overfitting. Completed

SPP_F003
Performance testing under load to
measure and improve latency and
throughput.

Completed

SPP_F004
Reinforcement learning model testing
with synthetic data to ensure
reasonable behaviour.

Completed

Analytic Functional Test Description

Test type Functional

Identifier SPM_F001

Tester 8BELLS

Test Purpose Validate that the SPM simulation PettingZoo environment correctly enforces
boundary conditions and auction rules using synthetic data.

References [13] (Section 3.2 Multi-round Blind Reverse Auction, Section 3.3 Training
Environment Parameters)

Configuration PettingZoo-based MARL environment with randomized providers, 10 auction rounds,
bid limits 20–100.

Pre-test conditions Environment initialized, at least 3 synthetic providers defined.

Test
 Sequence

Step Type Description Result

 1 Stimulus Initialize auction environment with
synthetic providers and random bids

Environment setup
succeeds

 2 Check Boundary conditions (min/max bids,
number of rounds) applied correctly

Constraints respected

 3 Check Auction completes after fixed number of
rounds without invalid states

Auction terminates
correctly

Test Verdict Pass

Analytic Functional Test Description

D6.3 – NANCY Integrated System – Final Version

65

Test type Functional

Identifier SPM_F002 + SPM_F004

Tester 8BELLS

Test Purpose Ensure that the neural network loss converges without overfitting and that the
reinforcement learning agents display reasonable, sustainable bidding strategies
under synthetic data.

References [13], (Section 3.3 Training Process, Section 3.3.3 Reward Function, Section 5
Performance Evaluation)

Configuration PPO training with PettingZoo MARL environment, 500 training steps, 2–10 providers,
randomized bid limits between 20–100.

Pre-test conditions Training environment initialized, RL agents seeded with default hyperparameters.

Test
 Sequence

Step Type Description Result

 1 Stimulus Start PPO training in auction environment Training begins

 2 Check Training loss decreases and stabilizes within
threshold

Loss converges

 3 Check Agents produce competitive but not
excessively low bids (≈30–35 range on average,
Figure 23)

Stable pricing
behavior

 4 Check Agents avoid collusion or repetitive degenerate
strategies

Behavior
reasonable

Test Verdict Pass

Analytic Functional Test Description

Test type Functional

Identifier SPM_F003

Tester 8BELLS

Test Purpose Evaluate the SPM’s latency and throughput when subjected to high-frequency
auction simulations.

References [13] (Section 5.1 Results from Testing and Simulations, Section 5.2 Performance
Benchmarks).

Configuration Containerized SPM testbed running 100 simulated auctions/minute with
randomized provider parameters.

Pre-test conditions Containerised SPM live, Load generator active

Test
 Sequence

Step Type Description Result

 1 Stimulus Run bulk auction simulations with randomized
parameters

Requests
processed

 2 Check Average response time (Figure 26) Latency
acceptable

 3 Check Throughput with no dropped auctions Throughput
acceptable

Test Verdict Pass

D6.3 – NANCY Integrated System – Final Version

66

Figure 22: Environment test terminal output

Figure 23: Average Agent Behavior

D6.3 – NANCY Integrated System – Final Version

67

Figure 24: Winning Prices Distribution

Figure 25: Training Rewards

Figure 26: Load test terminal output

D6.3 – NANCY Integrated System – Final Version

68

3.22. Explainable AI (XAI)

The NANCY Explainable AI (XAI) Component is a core building block of the NANCY framework, designed
to enhance transparency and interpretability of AI models across multiple network domains. As
detailed in [22], the component integrates several state-of-the-art explainability techniques including
SHAP for global interpretability, LIME for local instance level explanations, and GradCAM/SHAP hybrid
methods for vision based semantic communication scenarios. These techniques produce both visual
artifacts such as plots, bar charts, and heatmaps, and structured JSON outputs, enabling explanations
to be consumed by other NANCY components.

The XAI Component interacts with:

• FL IDS: Provides explainability for intrusion detection models, including those trained using
federated learning approaches.

• AINQM: Offers interpretability for outage prediction in 5G networks, clarifying the influence
of performance metrics such as PRBs, CQI, and buffer sizes.

• Semantic Communications models (ASL recognition and V2X object detection): Applies
GradCAM and SHAP to highlight how CNN and YOLO models focus on semantic features
within images.

• XAI Dashboard: Feeds structured explanations in both visual and JSON formats into the
interactive visualization platform for operator use.

• LLM Powered Analysis Component: Passes SHAP-derived feature attributions to the LLM,
which generates natural language explanations suitable for human decision makers.

Through this integration, the component ensures that AI driven predictions within NANCY are
explainable, auditable, and actionable. It serves as the central explainability layer, connecting model
outputs to human operators via dashboards and LLM interpretation. The functional tests of the XAI
component are summarized in Table 23.

Table 23: XAI functional tests summary

Functional Test ID Objective Status

XAI_F001 Validation of system ability to load a saved
model and retain its prediction methods. Completed

XAI_F002 Check that traffic data is preprocessed
correctly. Completed

XAI_F003 Validation of system generation of SHAP-based
global explanations. Completed

XAI_F004 Validation of system generation of LIME-based
local explanations. Completed

Analytic Functional Test Description
Test type Functional
Identifier XAI_F001
Tester MINDS
Test Purpose Verifies that a pre-trained model can be loaded successfully and works as expected. The

goal is to confirm that the model remains usable after loading, keeping its ability to
make predictions with both predict and predict_proba.

References From anomaly_detection_explainer.py module, the load_model method.
Configuration • A mock RandomForestClassifier is trained on random synthetic data.

• The trained model is serialized and saved as a pickle file in a temporary
directory.

D6.3 – NANCY Integrated System – Final Version

69

• Required libraries (scikit-learn, numpy, pickle, pytest framework) are installed
in the test environment.

Pre-test
conditions

• A valid pickle file containing a trained model exists at the given path.
• The environment permits reading the model file from disk.

Test
Sequence

Step Type Description Result

 1 Stimulus Call load_model method with the path to the
saved model file.

Model object
returned

 2 Check Verify that the loaded object is not None. Pass
 3 Check Verify that the loaded object has the method

predict.
Pass

 4 Check Verify that the loaded object has the method
predict_proba.

Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier XAI_F002
Tester MINDS
Test Purpose This test verifies that the preprocess_data method correctly prepares network traffic

data for machine learning models. The goal is to ensure that irrelevant columns are
removed, missing or infinite values are handled, and numerical features are properly
scaled using a provided pre-trained scaler, while preserving the target labels.

References From anomaly_detection_explainer.py module the preprocess_data method.
Configuration • A sample dataset simulating network traffic is generated with 50 instances,

including metadata columns (Flow ID, Src IP, Dst IP, Protocol, Timestamp,
Label) and numerical features used for modeling.

• A pre-trained StandardScaler is created and saved to a temporary file to
simulate the original scaler used.

• Required libraries (pandas, numpy, scikit-learn, joblib, pytest framework) are
available.

Pre-test
conditions

• The sample data and scaler file exist and are accessible.
• The environment permits reading the model and scaler files from disk.

Test
Sequence

Step Type Description Result

 1 Stimulus Call preprocess_data with the sample dataset and
mock scaler.

Returns X_scaled
DataFrame and

y_true Series
 2 Check Verify X_scaled is a pandas DataFrame. Pass
 3 Check Verify y_true is a pandas Series. Pass
 4 Check Verify non-feature columns (Flow ID, Src IP, Dst IP,

Protocol, Label) are removed from X_scaled.
Pass

 5 Check Ensure that X_scaled contains no NaN values. Pass
 6 Check Ensure that X_scaled contains no infinite values. Pass
Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier XAI_F003
Tester MINDS

D6.3 – NANCY Integrated System – Final Version

70

Test Purpose Verifies that the global_explain function can successfully generate global feature
importance explanations for a machine learning model using SHAP. The test ensures
that the function can process input data, calculate SHAP values, and save both visual
(PNG) and JSON outputs without raising exceptions.

References From anomaly_detection_explainer.py module the preprocess_data, load_model and
global_explain methods.

Configuration • Raw sample_data DataFrame containing network traffic features.
• A mock RandomForestClassifier saved as a pickle file (mock_model).
• A mock StandardScaler saved as a joblib file (mock_scaler), used for

preprocessing the numeric features.
• Temporary path (tmp_path/global_output) where explanation files (plots and

JSON) are stored.
• Required packages (shap, matplotlib, pandas, numpy, pytest framework) are

installed and available.

Pre-test
conditions

• The mock model has been trained and saved to disk.
• The mock scaler has been trained and saved to disk.
• Sample network traffic data has been created and contains all required

columns, including the features used by the model.
• The environment has write access to the temporary output directory

(tmp_path) and read access to load the model and scaler.

Test
Sequence

Step Type Description Result

 1 Stimulus Preprocess the sample_data using
preprocess_data and the mock scaler

Returns X_scaled
DataFrame

 2 Check Load the mock model from file using load_model. Returns the
trained model

object
 3 Check Call global_explain method to generate

explanations
Generates PNG
plots and JSON

files in the output
directory

 4 Verify that no exceptions are raised during the
execution of global_explain.

Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier XAI_F004
Tester MINDS
Test Purpose Verifies that the local_explain function can generate local explanations for a network

flow without raising exceptions. The test ensures that the function executes properly.
References From anomaly_detection_explainer.py module the preprocess_data, load_model and

local_explain methods.
Configuration

• Sample data (raw network flow dataset, not scaled).
• A mock model pretrained RandomForestClassifier and saved.
• A Mock Scaler used in preprocessing to scale numeric features.
• Flow ID set to 0 (first row of the dataset).
• Temporary directory tmp_path / "local_output" for storing PNG and JSON files.
• Required packages (LIME, matplotlib, json, pandas, numpy, pytest framework)

are installed and available.

D6.3 – NANCY Integrated System – Final Version

71

Pre-test
conditions • Sample data has been created (DataFrame with 50 network flows and relevant

features).
• The mock model has been trained and saved to disk.
• The mock scaler has been trained and saved to disk.
• The environment has write access to the temporary output directory

(tmp_path) and read access to load the model and scaler.

Test
Sequence

Step Type Description Result

 1 Stimulus Preprocess the sample_data using
preprocess_data and the mock scaler.

Returns X_scaled
DataFrame

 2 Stimulus Load the mock model from file using load_model. Returns the
trained model

object
 3 Stimulus Call local_explain method to generate

explanations for the first flow.
Generates PNG
plots and JSON

files in the output
directory

 4 Check Verify that no exceptions are raised during the
execution of local_explain.

Pass

Test
Verdict

 Pass

3.23. Federated Learning Intrusion Detection System (FL-IDS)

The FL-IDS component provides a privacy-preserving and scalable security mechanism for detecting
anomalies and cyber threats in Beyond 5G (B5G) and 6G networks. It leverages Federated Learning
(FL) to train intrusion detection models collaboratively across distributed clients, without centralizing
sensitive network traffic data. This approach aligns with the O-RAN distributed architecture,
minimizing bandwidth consumption and reducing privacy risks, while maintaining strong detection
performance.

The system, first detailed in [6], is implemented on the Flower (Flwr) framework and supports flexible
aggregation strategies (e.g., FedAdagrad), dynamic client scaling, containerized deployment, and
robust error handling. It includes a streaming-based preprocessing pipeline that transforms raw
network traffic into ML-ready features, ensuring consistency across clients and preserving privacy.

Beyond the FL-IDS neural network-based architecture, a second methodology has also been
developed for Federated Random Forest (FedRF) anomaly detection in cellular networks. This
consensus-based approach, as described in [6] and related publications, enables fully decentralized
feature selection and improves resilience against central points of failure.

Interactions with other NANCY components:

• Data Processing Pipelines: FL-IDS integrates with NANCY’s data collection and traffic
preprocessing components to extract flows and features.

• Orchestration & Deployment: Its Docker/Kubernetes-based deployment ensures smooth
integration with NANCY’s orchestration layer for scalable, distributed environments.

The tests for the FL-IDS are summarized in Table 24.

D6.3 – NANCY Integrated System – Final Version

72

Table 24: FL-IDS functional tests summary

Functional Test ID Objective Status

FL-IDS_F001 Validation that the client returns the
correct model parameters. Completed

FL-IDS_F002 Validation that the client model fit
works as expected. Completed

FL-IDS_F003 Validation of the client model
evaluation (loss, evaluation metrics). Completed

FL-IDS_F004
Validation that the client saves the
model and handles the directory
creation correctly.

Completed

FL-IDS_F005

Validation that the server initializes
without starting a real server
(mocked model and server
functions).

Completed

FL-IDS_F006
Validation that the client initializes,
without connecting to a server
(mocked data and start function).

Completed

FL-IDS_F007 Validation that the run_experiment
script can be imported. Completed

FL-IDS_F008 Verify that the weighted average of
metrics is calculated correctly. Completed

Analytic Functional Test Description
Test type Functional
Identifier FL-IDS_F001
Tester MINDS
Test Purpose Verify that the client can return its model parameters in the expected format
References From NancyClient class in the src.client.client module, the get_parameters method.
Configuration • Test environment using unittest with numpy package installed.

• Mock training data with 100 samples, 10 features, and 3 classes.

Pre-test
conditions

• NancyClient instance initialized with training and testing data.
• Random seed set to ensure reproducibility.

Test
Sequence

Step Type Description Result

 1 Stimulus Call get_parameters method with the argument
({}).

List of parameters
returned

 2 Check Verify output is a list Pass
 3 Check Verify each parameter is a numpy.ndarray. Pass
Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier FL-IDS_F002
Tester MINDS
Test Purpose Verify that the client can fit its local model and return updated parameters, number of

examples, and metrics.
References From NancyClient class in the src.client.client module, the fit method.
Configuration • Test environment using unittest and numpy package installed.

• Training dataset of 100 samples and 10 features.

Pre-test
conditions

• Client initialized with data and 1 training epoch.
• Initial parameters obtained via get_parameters.

D6.3 – NANCY Integrated System – Final Version

73

Test
Sequence

Step Type Description Result

 1 Stimulus Call fit method with initial_params and 1 epoch. Returns updated
parameters,
number of

examples, and
metrics

 2 Check Verify updated parameters are a list. Pass
 3 Check Verify num_examples equals to 100. Pass
 4 Check Verify returned metrics is a dict containing "loss"

and "accuracy".
Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier FL-IDS_F003
Tester MINDS
Test Purpose Verify that the client can evaluate its model and return loss, number of test examples,

and evaluation metrics.
References From NancyClient class in the src.client.client module, the evaluate method.
Configuration • Test environment using unittest.

• Test dataset of 50 samples.

Pre-test
conditions

• Client initialized with data.
• Model parameters obtained via get_parameters.

Test
Sequence

Step Type Description Result

 1 Stimulus Call evaluate method with retrieved parameters. Returns loss,
number of

examples, and
metrics

 2 Check Verify loss is a float. Pass
 3 Check Verify num_examples equals to 50. Pass
 4 Check Verify metrics is a dict. Pass
 5 Check Verify metrics include "accuracy", "tpr", "fpr", "f1",

"auc".
Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier FL-IDS_F004
Tester MINDS
Test Purpose Verify that the client can save its model to a specified path.
References From NancyClient class in the src.client.client module, the save_model method.
Configuration • Test environment using unittest with unittest.mock.patch to replace

Sequential.save and os.makedirs.
• TensorFlow must be installed, because the model is instantiated in the client

constructor.

Pre-test
conditions

• NancyClient initialized with mock data.
• Sequential.save patched to prevent actual file writing.
• os.makedirs patched to prevent directory creation.

D6.3 – NANCY Integrated System – Final Version

74

Test
Sequence

Step Type Description Result

 1 Stimulus Call save_model with “test/path” input. Model save
function invoked

 2 Check Verify mock_save was called once with "test/path"
as input.

Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier FL-IDS_F005
Tester MINDS
Test Purpose Verify that the Flower server can be initialized without actually starting a real server.
References From server module in the src.server directory, the start_server method.
Configuration • Test environment using unittest and unittest.mock.patch to mock model

creation (create_model) and Flower server start (flwr.server.start_server).
• Numpy, Tensorflow, Flwr packages installed.

Pre-test
conditions

• MagicMock model with get_weights method returning sample numpy arrays.
• create_model patched to return the mock model.
• flwr.server.start_server patched to prevent real server startup.

Test
Sequence

Step Type Description Result

 1 Stimulus Call start_server with test parameters Server
initialization

function called
successfully

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier FL-IDS_F006
Tester MINDS
Test Purpose Verify that a Flower client can be initialized without actually connecting to a server.
References From client module in the src.client directory, the start_client and load_data methods.
Configuration • Test environment with unittest

• Packages numpy, pandas, joblib, tensorflow and flwr installed.
• Mocks for load_data and flwr.client.start_numpy_client

Pre-test
conditions

• Mock load_data returns synthetic train/test datasets (100 train, 50 test
samples, 10 features, 3 classes)

• flwr.client.start_numpy_client patched to avoid real server communication
 1

Test
Sequence

Step Type Description Result

 1 Stimulus Call start_client with test parameters. Client initialization
function called

 3 Check Verify start_numpy_client is called once Pass
 4 Check Verify server_address argument matches

expected.
Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional

D6.3 – NANCY Integrated System – Final Version

75

Identifier FL-IDS _F007
Tester MINDS
Test Purpose Verify that the run_experiment script can be imported and contains a main function.
References From scripts directory the run_experiment module.
Configuration • Test environment with unittest.

Pre-test
conditions

• Script run_experiment.py exists in the expected location.

Test
Sequence

Step Type Description Result

 1 Stimulus From scripts import run_experiment. Module imported
successfully

 2 Check Verify the module has a main attribute. Pass
Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier FL-IDS_F008
Tester MINDS
Test Purpose Verify that the weighted_average function correctly computes a weighted average of a

list of metric values.
References From server module in the src.server directory, the weighted_average method.
Configuration • Test environment with unittest and numpy package installed.

Pre-test
conditions

• Sample list of metrics, corresponding weights and the expected weighted
average pre-computed.

Test
Sequence

Step Type Description Result

 1 Stimulus Call weighted_average with sample metrics and
weights.

Returns a numeric
result

 2 Check Verify the result is approximately equal to the
expected average.

Pass

Test
Verdict

 Pass

3.24. Memory Traffic Generator - Resource Monitor (MTG-RM)

The Memory Traffic Generator – Resource Monitor (MTG-RM) component is designed to evaluate,
stress, and control system behavior under memory traffic conditions. It provides a controlled
framework for generating and monitoring high levels of memory activity, which are representative of
both legitimate high-performance workloads and potentially malicious memory-bound applications.

The MTG-RM module serves a dual purpose:

1. Memory Traffic Generation (MTG): This subsystem is capable of producing intense and
configurable memory access patterns to simulate interference scenarios or denial-of-service
(DoS) conditions at the memory subsystem level.

2. Resource Monitoring (RM): The monitoring subsystem provides fine-grained insight into CPU-
level resource utilization and memory traffic intensity through the use of Performance
Monitoring Units (PMUs).

D6.3 – NANCY Integrated System – Final Version

76

The MTG-RM framework is therefore used for assessing the resilience of computing systems to
improve real-time performance and security. Table 25 summarizes the MTG-RM functional tests.

Table 25: MTG-RM functional tests summary

Functional Test ID Objective Status

MTG-RM_F001 Demonstrate capability of generating intense
memory traffic to simulate malicious behavior. Completed

MTG-RM_F002
Monitor the system resource usage at the CPU
level as provided by Performance
Measurement Units.

Completed

MTG-RM_F003 Limit the CPU resources assigned to malicious
application. Completed

Analytic Functional Test Description
Test type Functional
Identifier MTG-RM_F001
Tester SSS
Test Purpose The test aims to demonstrate the capability of generating intense memory traffic by

continuously accessing memory areas with a limit-case access pattern that maximizes
interference. The memory traffic generator application is further protected by
SCHED_DEADLINE to control its impact.

References
Configuration Selection of amount of memory to be accessed, selection of period and runtime for

SCHED_DEADLINE

Pre-test
conditions

None.

Test
Sequence

Step Type Description Result

 1 Stimulus
Launch a script with the following command:

taskset -c $core chrt -d -T $runtime -D $period -P
$period 0 ./dos-attack-sim-endless -m 131072

 2 Check The test is successful when a meaningful
slowdown of any other memory-bound application
is observed.

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier MTG-RM_F002
Tester SSS
Test Purpose The test aims to demonstrate the capability of the memory traffic monitor tool to

analyze the memory traffic of any application. The test consists in running the memory
traffic analyzer tool to read the ARM performance counters of a memory-intensive
application.

References
Configuration The application to be monitored is selected from the IsolBench benchmark suite,

specifically the "latency" application.

Pre-test
conditions

None.

D6.3 – NANCY Integrated System – Final Version

77

Test
Sequence

Step Type Description Result

 1 Stimulus The script used to test the monitor is "test-
monitor.sh" in the "sss_malicious_appl/monitor"
folder. What it does is launching the following
command:

taskset -c 1 chrt -r 99 ../appl/dos-attack-sim -m 1 -i
100000000 & ./start-monitor.sh $!

 2 Check The test is successful when the monitor creates a
.csv file in the "results" folder named with the PID
of the monitored application containing the value
of the counters read by the monitor, thus proving
that the monitor is able to read the performance
counter of the PMU.

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier MTG-RM_F003
Tester SSS
Test Purpose This test aims at assessing the capability of SCHED_DEADLINE Linux’s scheduling class of

controlling the amount of CPU interference generated by software tasks.
References
Configuration Selection of a CPU-eager application (yes), as well as SCHED_DEADLINE period, runtime

pair and target processor core.

Pre-test
conditions

None

Test
Sequence

Step Type Description Result

 1 Stimulus
Launch the following command to execute ‘'yes’
protected by SCHED_DEADLINE:

taskset -c $core chrt -d -T $runtime -D $period -P
$period 0 yes > /dev/null

 2 Check Monitor the CPU interference (i.e., usage) of ‘yes'
and corresponding impact of other processes.

Test
Verdict

 Pass

3.25. Post Quantum Cryptography – Secure Communications (PQC-SC)

This component enables MQTT communication secured with TLS through the Mosquitto broker,
leveraging OpenSSL for cryptographic operations. It supports both classical and post-quantum
algorithms, with the OpenSSL provider facilitating modular integration of PQC algorithms from the
Open Quantum Safe (OQS) library. This setup ensures encrypted, authenticated, and quantum-
resistant communication between MQTT clients and the broker. Further details can be found in [11]-
Section 5: PQC for Secure Communications.

D6.3 – NANCY Integrated System – Final Version

78

Table 26: PQC-SC functional tests summary

Functional Test ID Objective Status

PQC-SC_F001 Successful integration of PQC algorithms into
OpenSSL library. Completed

PQC-SC_F002 Successful communication using TLS of a
specific MQTT application. Completed

Analytic Functional Test Description
Test type Functional
Identifier PQC-SC_F001
Tester TEI
Test Purpose Integrate PQC algorithms for key exchange and digital signatures within the TLS protocol

considering OpenSSL library
References [11] - Section 5 PQC for Secure Communications
Configuration Containerized testbed environment with docker.

Pre-test
conditions

Network connectivity among the various elements of the testbed.

Test
Sequence

Step Type Description Result

 1 Stimulus Run a container using modified version of OpenSSL
integrated with OQS (Open Quantum Safe) as a
specific provider.

Pass

 2 Check Use the specific “openssl list” command to check if
post-quantum cryptography (PQC) signature
algorithms are available.

Pass

 3 Check Run the appropriate “openssl list” command to
verify that post-quantum cryptography (PQC) Key
Encapsulation Mechanism (KEM) algorithms are
available

Pass

Test
Verdict

 Pass

Analytic Functional Test Description
Test type Functional
Identifier PQC-SC_F002
Tester TEI
Test Purpose Demonstrate PQC algorithms integrated in OpenSSL TLS library in an MQTT protocol

communication scenario.
References [11] - Section 5 PQC for Secure Communications
Configuration Containerized testbed environment with docker.

Pre-test
conditions

Network connectivity among the various element of the testbed.

Test
Sequence

Step Type Description Result

 1 Stimulus Run Mosquitto MQTT broker integrated with
OpenSSL PQC enabled library

Pass

 2 Stimulus Run the Mosquitto client (publisher or subscriber)
with OpenSSL and the PQC library enabled, then
connect to the broker.

Pass

 3 Check Capture the communication using the tcpdump
utility to generate a pcap file, then verify in the TLS

Pass

D6.3 – NANCY Integrated System – Final Version

79

handshake that post-quantum cryptography
algorithms are being used.

Test
Verdict

 Pass

3.26. Distributed Anomaly Detection and Mitigation (D-ADM)

This component enables distributed anomaly detection and compensation on the edge. For the
anomaly detection part, it is based on machine learning models to detect anomalies in the edge
servers’ workload (e.g., CPU, RAM, disk, network usages), while for the anomaly compensation part it
is based on a game-theory algorithm for balancing network and computing resources in order to
dynamically equalize a certain metric (defined by the operator) among the different users, to reach a
so-called Wardrop User Equilibrium. Both components are detailed in [6], and in particular in sections
2.3 and 2.7 respectively. A summary of the functional tests of the FL-IDS is included in Table 27.

Table 27: FL-IDS functional tests summary

Functional Test ID Objective Status
D-ADM_F001 Application and validation of the automatic

anomaly detection methodology within a
testbed with data from malicious server
applications.

Completed

D-ADM_F002 Testing of anomaly compensation techniques in
a testbed for load balancing purposes. Completed

Analytic Functional Test Description
Test type Functional
Identifier D-ADM_F001
Tester CRAT
Test Purpose Demonstrate the correctness of the implementation of the components and of

the interfaces

References [6], Section 2.3: “Federated Learning Algorithm for Improved Anomaly Detection

in Cellular Networks“

Configuration The machine learning models have been trained using ITL datasets 2 and 3
(respectively for normal operation and under attack). The configuration is taken
by a Docker Compose script associated with an ENV file

Pre-test conditions Receiving metrics from the testbed or synthetic data for the prediction of

anomalies.

Test
Sequence

Step Type Description Result

 1 Stimulus Send a normal operation sample
(unseen at training stage) to the
anomaly detection module

 2 Check Check that the anomaly detection
modules classify it as normal execution
and send the correct data to the
visualization dashboard (if connected)
(Figure 27)

Pass

D6.3 – NANCY Integrated System – Final Version

80

 3 Stimulus Send a normal operation sample
(unseen at training stage) to the
anomaly detection module

 4 Check Check that the anomaly detection
modules classify it as anomaly and send
the correct data to the visualization
dashboard (if connected) (Figure 28)

Pass

Test Verdict Pass

Analytic Functional Test Description
Test type Functional
Identifier D-ADM_F002
Tester CRAT
Test Purpose Demonstrate the correctness of the implementation of the components and of the

interfaces

References [6], Section 2.7 “Adversarial Dynamic Healing based on Wardrop Equilibrium“
Configuration The configuration is passed at class instantiation time by the caller module

Pre-test
conditions

Receiving metrics from the testbed or synthetic data for load balancing

Test
Sequence

Step Type Description Result

 1 Stimulus Call the load balancing module to get the data
rates of the IoT device towards the different
available edge servers

 2 Check Check that the defined metric is equalized among
the different edge servers (e.g., load of the
servers in terms of received requests/s)

Pass

 3 Stimulus Reduce the load capacity of a server (by altering
its reported metric) at timestep 400

 4 Check Check that a new equilibrium is reached
considering the new capacity of the edge server

Pass

Test
Verdict

 Pass

Figure 27 and Figure 28 show specific steps of the tests, while the respective test results are
illustrated in Figure 29.

D6.3 – NANCY Integrated System – Final Version

81

Figure 27: Step 2 of the FL-ADM_001 test

Figure 28: Step 4 of the FL-ADM_001 test

Figure 29: Results of steps 2 and 4 of D-ADM_F002

D6.3 – NANCY Integrated System – Final Version

82

3.27. ETSI Openslice

A summary of functional tests conducted for OpenSlice integration into the NANCY platform is
provided in Table 28. All these integration activities are now concluded as OpenSlice demonstrates
readiness for the final NANCY use case demonstration and validation activities.

Table 28: OpenSlice functional tests summary

Functional Test ID Objective Status

OSL_F001 Test connection with Service Orchestrator via
NIS2. Completed

OSL_F002 Test connection with Service
Repository/Registry via NIS3. Completed

OSL_F003 Test connection with resource Telemetry via
NIS5. Completed

OSL_F004 Test connection with Compute Controller via
NIS6. Completed

OSL_F005 Test connection with NFVO.
Dropped due to no availability of

NFVO in the Greek testbeds
where OpenSlice was used

Analytic Functional Test Description
Test type Functional
Identifier OSL_F001
Tester UBITECH
Test Purpose Test connection with the NANCY Service Orchestrator (Maestro) via interface NIS2
References [16], [1], and [2]
Configuration -

Pre-test
conditions

Maestro and OpenSlice instances deployed. IP connectivity between Maestro and
OpenSlice already established. OpenSlice has available services in its service catalogue.

Test
Sequence

Step Type Description Result

 1 Stimulus Repeat Maestro_F001 Pass
Test
Verdict

Maestro successfully peers with OpenSlice and fetches services from the
OpenSlice service catalog

Pass

Analytic Functional Test Description
Test type Functional
Identifier OSL_F002
Tester UBITECH
Test Purpose Test connection with the NANCY service repository/registry via interface NIS3
References [16], [1], and [2]
Configuration -

Pre-test
conditions

OpenSlice and the NANCY service registry instances are deployed. A service
specification is onboarded onto the OSL catalogue and a Kubernetes cluster is already
linked with OpenSlice’s resource and service catalogues.

Test
Sequence

Step Type Description Result

 1 Stimulus User logins to OSL portal

Pass

 2 Check User orders the deployment of a helm-based
service (located in the NANCY service registry)
atop an existing Kubernetes cluster

Pass

D6.3 – NANCY Integrated System – Final Version

83

 3 Check OpenSlice initiates order and pulls service artifact
(i.e., helm chart) from the service registry

Pass

 4 Check OpenSlice successfully deploys service on the test
cluster

Pass

Test
Verdict

OpenSlice successfully pulls service artefacts from the NANCY service
registry

Pass

Analytic Functional Test Description
Test type Functional
Identifier OSL_F003
Tester UBITECH
Test Purpose Test connection with resource telemetry via interface NIS5
References [16], [1], and [2]
Configuration -

Pre-test
conditions

Maestro_F002 is already done, therefore a Kubernetes cluster is already created by
OpenSlice

Test
Sequence

Step Type Description Result

 1 Stimulus OpenSlice orders a Prometheus helm service atop
the created Kubernetes cluster

Pass

2 Check Prometheus get deployed on a specific port of the
cluster

Pass

3 Check OpenSlice exposes the Prometheus port through
ingress

Pass

4 Check User verifies that Prometheus API is indeed
exposed

Pass

Test
Verdict

OpenSlice successfully instantiates resource-level telemetry on existing
Kubernetes cluster using interface NIS5

Pass

Analytic Functional Test Description
Test type Functional
Identifier OSL_F004
Tester UBITECH
Test Purpose Test connection with compute controller via interface NIS6
References [16], [1], and [2]
Configuration -

Pre-test
conditions

OpenSlice instance already deployed. An OpenStack instance already deployed. IP
connectivity between OpenSlice and OpenStack

Test
Sequence

Step Type Description Result

 1 Stimulus OpenSlice user issues an order of a compute
resource (e.g., a VM) via the OpenSlice Resource
Order API

Pass

2 Check OpenSlice establishes connection with an
OpenStack Virtual Infrastructure Manager

Pass

3 Check OpenSlice requests an OpenStack VM Pass
4 Check OpenSlice attaches VM resource characteristics

(e.g., flavour info, IP, ssh key, etc.) to a resource
entry in its TMF Resource Inventory Management
API

Pass

 5 Check OpenSlice user consumes this information to
access the created VM

Pass

D6.3 – NANCY Integrated System – Final Version

84

Test
Verdict

OpenSlice successfully instantiates a compute resource using interface
NIS6

Pass

D6.3 – NANCY Integrated System – Final Version

85

4. Updates on Integration of NANCY Components and Services
This section presents the integration activities conducted to combine the diverse NANCY components.
Building upon the outcomes of the functional testing described in Section 3, the integration work
focused on ensuring the correct interaction among the NANCY components. The section first outlines
the final set of NANCY integration points, providing their final implementation status and possible
updates in their descriptions compared to the previous platform version documented in [2].
Subsequently, it provides a detailed description of the integration tests performed for each interaction
between components, including objectives, configuration details, execution steps, and test results.
Finally, the section reports the monitoring and coordination mechanisms used to oversee the
integration process, ensuring stability and consistency across all domains of the NANCY architecture.
The results confirm that the NANCY system has reached a high level of integration maturity, enabling
its readiness for end-to-end platform validation and deployment in the project.

4.1. Integration Points Updates

Table 29 is the updated NANCY integration matrix, which was initially presented in [2]. In this table,
there are a few integration points which have been dropped (marked with a strikethrough), as well as
new ones (highlighted in yellow) compared to what was shown in [2]. Table 30 provides the updated
summary of integration points specifications (initially identified and fully specified in [2]). For the
integration points that were dropped compared to [2], a justification is provided.

D6.3 – NANCY Integrated System – Final Version

86

Table 29: NANCY integration matrix

Integration
Points

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1. MRAT-NCP 1,2 1,8

 1,13 1,17

2. ID-Mngt

 2,5 2,10

3. DAC

 3,11

4. BC 4,5 4,11
5. Wallet 5,11 5,12 5,27
6. AI Virtualizer 6,10 6,14
7. BRAN-model
8. SemCom
9. QKDSim
10. VOSyS
Monitor

11. Marketplace 11,21
12. Maestro 12,27
13. Models 13,14 13,15 13,17
14. SEMR 14,19 14,23
15. Elasticity
16. PQC Sign. 16,25
17. TFS
18. RIC-mngr
19. AINQM 19,20 19,

22

20. NIF
21. SPP
22. XAI 22,23
23. FL-IDS
24. MTG-RM
25. PQC-
SecCom

26. D-ADM
27. BSS

D6.3 – NANCY Integrated System – Final Version

87

Table 30: Integration points specification summary

NANCY
Integration

Points

NANCY
Platfor

m
Interfac

e

Objective Protoc
ol

Integration in
testbeds/demon

strators
Status

MRAR-NCP-ID
Mngnt (1,2)

NIS13,
Uu,
PC5

Allow access for 5G
network usage for a
remote non-5G
subscriber.

HTTP
over
PC5

Spanish
expansion Completed

MRAT-NCP –
SemCom (1,8)

Uu,
S1,

NIS7,
NIS5,
NIS8

Send encoded video
and decode at the
edge

Offline
data

transfe
r

Spanish
expansion Completed

MRAT-NCP –
Models – TFS
(1,13, 1,17)

Uu,
S1,

NIS7,
NIS5,
NIS8

Infer location and
coverage depending
on radio metrics
extracted from the UE.
Throughput forecast
based on radio metrics
extracted from the UE.

Offline
transfe

r

Spanish
expansion Completed

ID Mngnt –
Wallet (2,5) N/A

Configure the wallet
with NANCY ID
credentials, use
credential to
authenticate towards
NANCY services.

gRPC Spanish
expansion

To be completed
during final

integration at
Spanish

expansion
testbed

ID Mngnt –
VoSyS Monitor

(2,10)
N/A

Instantiate OP-TEE
solution 2 for caching
mechanisms on ARM-
based far-edge device
included in the MRAT-
NCP. This will be used
to securely store the
access token of
NANCY subscriber to
accelerate
authorisation times.

API
based

on
Global
Platfor
m TEE
Client

API

Spanish
expansion Completed

DAC –
Marketplace

(3,11)
NI11

• Provide the required
information for
creating the digital
agreement.

• Receive the
generated digital

REST
API

over
HTTPS

All Completed

2 Introduced in D4.3: Trustworthy Grant/cell-free Cooperative
Access Mechanisms

D6.3 – NANCY Integrated System – Final Version

88

NANCY
Integration

Points

NANCY
Platfor

m
Interfac

e

Objective Protoc
ol

Integration in
testbeds/demon

strators
Status

agreement to be
signed

BC – Wallet
(4,5) NIS13

Once the identity is in
the wallet, the user
connects to the Fabric
network using a
connection profile
(YAML or JSON file).
Once connected, the
user can submit
transactions or query
the ledger through the
smart contract API.

gRPC All Completed

BC –
Marketplace

(4,11)
NI10

Deploy the Smart
Contracts of the
marketplace on the
Blockchain network

N/A All Completed

Wallet –
Marketplace

(5,11)
NI9

Send the required
transactions to the
Blockchain based
marketplace for any
operation (both read
and write). All the
interactions with the
marketplace happen
through the wallet (or
the oracles in specific
cases)

gRPC All Completed

Wallet –
Maestro (5, 12)

N/A Query the blockchain-
based marketplace for
potential service
providers and sign SLA
transactions. All the
interactions with the
blockchain happen
through the wallet
(which acts as a client
app).

gRPC All Dropped,
because the

wallet is
deployed at the
BSS, which then
interacts with

Maestro (section
5.2)

Wallet – BSS
(5,27) TBD

Publish services in the
blockchain-based
marketplace and
become aware of
signed SLAs involving
current clients. All the
interactions with the

gRPC All

Dropped
because it’s not

really an
integration but

rather an
independent app

(wallet)

D6.3 – NANCY Integrated System – Final Version

89

NANCY
Integration

Points

NANCY
Platfor

m
Interfac

e

Objective Protoc
ol

Integration in
testbeds/demon

strators
Status

blockchain happen
through the wallet
(which acts as a client
app).

deployed at the
BSS side

MAESTRO – BSS
(12,27) NIS1

Issue service orders to
MAESTRO to trigger
the instantiation of
the corresponding
services at the remote
target Kubernetes
cluster3.

REST
API

Greek In-lab
testbed and

Outdoor
demonstrator.

New and
Completed

AI_Virt – VoSyS
Monitor (6,10) N/A

Allow to deploy VNFs
from OpenStack Nova
into vManager
partitions

Libvirt
API

Italian InLab
testbed Completed

AI_Virt – SEMR
(6,14) NIS5

Integrate NAOMI in
Slice Manager and
further provide
MLOps to models that
are deployed on
NAOMI.

REST
API N/A Completed

Marketplace –
SPP (11,21) NI12

• Provide the
information used for
calculating the most
suitable price for the
better service.

• Receive the most
suitable price for the
most suitable
service fulfilling the
given features.

REST
API

over
HTTPS

Greek in-lab
testbed Completed

Models – SEMR
(13,14) N/A

Network AI Workflow
Democratisation
(NAOMI) can provide
MLOps for the models
that are going to be
deployed in repo

REST
API

Spanish
expansion Completed

Models –
Elasticity
(13,15)

NIS5

In-place resource
elasticity technique
allocating computing
resources within a
slice

REST
API

Spanish
expansion

Dropped as all
key parameters

are already
measured as part
of the "elasticity"

3 The integration testing among the BSS and MAESTRO is covered in section 3.12 and through the description
of the workflow in section 5.2 involving the Greek outdoor demonstrator’s BSS.

D6.3 – NANCY Integrated System – Final Version

90

NANCY
Integration

Points

NANCY
Platfor

m
Interfac

e

Objective Protoc
ol

Integration in
testbeds/demon

strators
Status

Models – TFS
(13,17) NIS8

Integration of the
Throughput
forecasting service will
assist in predicting
upcoming throughput
optimizing AI-based
network
functionalities for
different scenarios
measuring speed and
latency of model
serving.

REST
API TBD

Dropped as it
was identified
that the two
components
don’t need to

interact directly.
Both of them

separately
interact with

MRAT-NCP, in
the framework

of the Spanish in-
lab testbed.

SEMR – FL-IDS
(14,23) NIS5

SEMR will provide a
set of functionalities
that cover the full ML
pipeline through
NAOMI tool in order
to streamline the
deployment of the FL-
IDS model to the
Greek In-lab Testbed

REST
API

Greek In-lab
Testbed Completed

SEMR – AINQM
(14,19) NIS8

The SEMR will be
continuously
monitoring the
performance of the
AINQM module, thus
triggering and overall
optimizing retraining
processes in changing
network conditions.

REST
API TBD

Dropped as it
was identified
that the two
components
don’t need to

interact directly.

PQC Sign – PQC
SecCom (16,25)

Internal
UE

interfac
e

Integration of the HW
signature token into
secure
communication
infrastructure to use
PQC HW signing
capabilities

API
calls

Italian Massive
IoT testbed Completed

AINQM – NIF
(19,20) NIS8

Integration of Outage
Probability Model in
order to predict
network outages for
different scenarios

direct
code

integra
tion

None Completed

AINQM– XAI
(19,22) NIS8 AINQM will be utilised

to calculate the
REST
API

Greek In-lab
Testbed Completed

D6.3 – NANCY Integrated System – Final Version

91

NANCY
Integration

Points

NANCY
Platfor

m
Interfac

e

Objective Protoc
ol

Integration in
testbeds/demon

strators
Status

outage probability,
and XAI will provide
the rationale behind
the decisions of the
respective AI model.

XAI – FL-IDS
(22,23) NIS8

The output of the
distributed FL Training
will be the AI-enabled
Intrusion Detection
System that the Greek
in-lab testbed will
utilize to identify
different attacks

TBD Greek In-lab
Testbed Completed

4.2. Integration Testing of NANCY Integration Points

The current section provides the analytic integration test descriptions for each one of the NANCY
integration points in Sections 4.2.1 - 4.2.18.

4.2.1. Multi Radio Access Technologies & ID Management (MRAT-NCP & ID-Mngnt)

Table 31 summarizes the MRAT-NCP - ID-Mngnt integration tests.

Table 31: MRAT-NCP - ID-Mngnt integration tests summary

Integration Test ID Objective Status
MRAT-NCP_ID-
Mngnt_I001

Test Issuer to generate credentials Completed

MRAT-NCP_ID-
Mngnt_I002

Test p-abc cryptographic operations with
retrieved keys for verifier Completed

MRAT-NCP_ID-
Mngnt_I003

Test p-abc cryptographic operations with
retrieved keys for pseudonym generation Completed

Analytic Integration Test Description
Test type Integration
Identifier MRAT-NCP_ID-Mngnt_I001, MRAT-NCP_ID-Mngnt_I002, MRAT-NCP_ID-

Mngnt_I003
Testers UMU
Test Purpose The main purpose of the test is to validate that the entire verification flow allows a

Remote OBU, with no 5G network connectivity of its own, to access the services offered
by the provider or MRAT-NCP. To do this, the correct performance of each phase of the
identity management process must be verified, ensuring that the wallet properly
generates the credential and that the MRAT-NCP can verify it correctly in order to finally
establish a secure connection.

References [5], [4]
Configuration Cohda MK6, Raspberry Pi 5 and LattePanda

D6.3 – NANCY Integrated System – Final Version

92

Pre-test
conditions

There must be ethernet connectivity between each of the Cohda devices and their
respective module (Raspberry Pi or Lattepanda).
The provider module must have connectivity with at least one of the operators.
The Cohda devices must have GPS signal and PC5 coverage between them.
The remote UE and the MRAT-NCP have correctly configured their own p-abc wallet
(both of them) and blockchain wallet (only the MRAT-NCP)

Test
Sequence

Step Type Description Result

1 1 Stimulus Provider (MRAT-NCP) broadcast via PC5 the
required format of the credentials.

Pass

 2 Check The remote vOBU consults its own p-abc wallet to
obtain a credential that complies with the format
and requirements specified by the provider.

Pass

 3 The remote vOBU sends the credential and
indicated the desired service to the provider.

Pass

 4 Check The MRAT-NCP receives and validates the
credential using the p-abc wallet and collects from
the blockchain the issuer's public key needed to
validate the remote UE credential with the
blockchain wallet.

Pass

2 5 Check After validation, the consumer and provider
establish an encrypted communication, one per
each consumer authenticated.

Pass

Test
Verdict

It is confirmed that the credential authentication and validation
mechanism via MRAT-NCP works correctly and that, after verification,
an encrypted and secure communication is established between each
authenticated consumer and the provider.

Pass

4.2.2. Multi Radio Access Technologies & SemCom (MRAT-NCP – SemCom)

Table 32 summarizes the MRAT-NCP – Semcom integration tests, while Figure 30 and Figure 31
illustrate the respective results.

Table 32: MRAT-NCP – Semcom integration tests summary

Integration Test ID Objective Status (Completed, Dropped,
New and completed)

MRAT-
NCP_SemCom_I001

Test the provisioning of the data from different
video sources to the SemCom encoder. Completed

MRAT-
NCP_SemCom_I002

Test the transmission of the extracted
semantic information. Completed

MRAT-
NCP_SemCom_I003

Test the accuracy of the DT created at the edge
server Completed

Analytic Integration Test Description
Test type Integration
Identifier MRAT-NCP_SemCom_I001, MRAT-NCP_SemCom_I002, MRAT-

NCP_SemCom_I003
Testers UMU, INNO

D6.3 – NANCY Integrated System – Final Version

93

Test Purpose Validate the use of SemCom in a realistic vehicular scenario and evaluate the performance
improvement attained in comparison with regular data transmission.

References [10]
Configuration The SemCom component is comprised of two entities, namely the semantic encoder and

the semantic decoder. In the simulated setup, the former is deployed on the network
nodes (cars, RSUs, drones, etc.) capturing video of the observed location. The extracted
semantic information will be transmitted through the network to the edge server, where
the semantic decoder will be deployed in order to create a DT.

Pre-test
conditions

This vehicle has access to a DT service. It has the SemCom encoder installed but not
activated. It requests the activation of the DT service from the 1st BS that it connects. The
request is forwarded to the SemCom encoder of all nodes in proximity. The vehicle, a
drone, and a roadside camera are identified.

Test
Sequence

Step Type Description Result

 1 Stimulus The vehicle, the RSU, and the UAV receive a request
to initiate their SemCom encoders.

Pass

 2 Check The data captured by the vehicle camera are
provided to the onboard SemCom encoder.

Pass

 3 Check The data captured by the RSU camera are provided
to the onboard SemCom encoder.

Pass

 4 Check The data captured by the UAV camera are provided
to the onboard SemCom encoder.

Pass

 5 Check All SemCom encoders extract the semantic
information from the local video data that are
available at each node.

Pass

 6 Check Only the extracted semantic information is
transmitted through the network to the simulated
edge server.

Pass

 7 Check The SemCom decoder at the edge server receives
the semantic information from all nodes.

Pass

 8 Check The SemCom decoder at the edge server creates
the DT scene.

Pass

Test
Verdict

The tests confirm that SemCom is successfully validated in a realistic
vehicular scenario, enabling efficient semantic transmission and DT scene
reconstruction with improved performance over regular data
transmission.

Pass

D6.3 – NANCY Integrated System – Final Version

94

Figure 30: Execution time as a function of the number of multi-view frames (UMU dataset)

Figure 31: Required data as a function of the number of multi-view frames for conventional and SemCom systems (UMU
dataset)

D6.3 – NANCY Integrated System – Final Version

95

4.2.3. Multi Radio Access Technologies, Models & Traffic Forecasting Service (MRAT-NCP –
Models –TFS)

Table 33 summarizes the MRAT-NCP – Models -TFS integration tests, while Figure 32 and Figure 33
show the respective results.

Table 33: MRAT-NCP – Models -TFS integration tests summary

Integration Test ID Objective Status
MRAT-
NCP_Models_I001

Evaluate the decision for data path
reconfiguration depending on network
status

Completed

Analytic Integration Test Description
Test type Integration
Identifier MRAT-NCP_Models_I001
Testers UMU, IJS, CERTH, Bi2S
Test Purpose Test the accuracy of the different ML models generated from the data extracted from

the Spanish extension testbed. Decision making in terms of the optimal operator
selection will be supported, via real-time ML model inference.

References [5], [17], [20]
Configuration Data collected from UMU’s testbed. Such data included several uplink and downlink

information and were used to test the ML models. Thus, the ML model validation
process was conducted using real-world data.

Pre-test
conditions

A 5G or 6G network should be provided for wireless connectivity
UEs should be able to collect and utilise data regarding their RSSI levels and other Signal
Strength-related measurements
The model inference should execute on either the UE devices or to a centralised server
Python libraries should be supported for the model inference process.

Test
Sequence

Step Type Description Result

1 1 Stimulus (JSI)Pinging containerized version of the
localization model with new test data:

Pass

 2 Check (JSI)Inference with the localization model (LaaS) Pass
 3 Check (JSI)Comparing results to the ground truth and

evaluating the error between model error and
new test data error with statistical t-test

Pass

 4 Stimulus (CERTH)A value is inserted for the android walk
time-series number

Pass

 5 Stimulus (CERTH)A value is inserted for the number of steps
the forecasting has to take place and both sent
(via POSTMAN or curl tool)

Pass

 6 Check (CERTH)Receipt of results and their plausibility
to justify operator selection

Pass

2 1 Stimulus (BI2S) Feeding the model with data which are
collected from the field (UMU’s testbed)

Pass

 2 Check (BI2S) Check the model outputs, after inference is
completed

Pass

 3 Check (BI2S) Assess the model’s outputs against the
ground truth that is available from the collected
data.

Pass

Test
Verdict

Based on computed statistical significance, the test was passed. Pass

D6.3 – NANCY Integrated System – Final Version

96

Figure 32: Example of localization experiment with ~2m average error. Horizontal and vertical axis represent longitude and
latitude, and y_true and y_pred are the location vectors containing x and y coordinate.

Figure 33: Graph derived from retrained TFS model for UDP protocol, tested with Nokia operator data; Ground Truth lines
stem from separate forecasting horizon steps (step=1 to 10)

4.2.4. ID Management & Wallet (ID-Mngnt – Wallet)

Table 34 summarizes the ID-Mngnt - Wallet integration tests.

Table 34: ID-Mngnt - Wallet integration tests summary

Integration Test ID Objective Status
ID
Mngnt_Wallet_I001

Test configuration of the wallet with ID
credentials Completed

D6.3 – NANCY Integrated System – Final Version

97

ID
Mngnt_Wallet_I002

Test verification of credentials provided by
a wallet Completed

ID
Mngnt_Wallet_I003

Generation of privacy preserving
attributes Completed

ID
Mngnt_Wallet_I004

Verification of privacy preserving
attributes Completed

ID
Mngnt_Wallet_I005

PSK key derivation from 5G root key On going

ID
Mngnt_Wallet_I006

Credential generation and issuance based
on subscriber capabilities Partially completed

ID
Mngnt_Wallet_I007

Issuer's pK retrieval from blockchain On going

Analytic Integration Test Description
Test type Integration
Identifier ID Mngnt_Wallet_I001, ID Mngnt_Wallet_I002, ID Mngnt_Wallet_I003, ID

Mngnt_Wallet_I004, ID Mngnt_Wallet_I005, ID Mngnt_Wallet_I006, ID
Mngnt_Wallet_I007

Testers UMU, NEC
Test Purpose Use the wallet for ID management purposes such as Authentication and

Authorisation.
References [5], [6]
Configuration Cohda MK6, Raspberry Pi 5 and LattePanda

Pre-test
conditions

5G key user
The remote UE and the MRAT-NCP have correctly configured their own p-abc wallet
(both of them) and blockchain wallet (only the MRAT-NCP)

Test
Sequence

Step Type Description Result

1 1 Stimulus Consumer and Issuer derives key from 5G key to
establish a secure channel

On going

 2 Check Consumer request Verifiable Credential to issuer On going

 3 Check Issuer generates and sends credential to
Consumer

Pass

 4 Check Consumer stores credential on its wallet Pass

2 1 Stimulus Consumer receives proximity service notification Pass

 2 Check Consumer sends VC with required information to
Provider

Pass

 3 Check Provider retrieves Issuer’s pK from blockchain On going

 4 Check Provider verifies the VC Pass

Test
Verdict

The flow is proper and secure, as it establishes a protected channel
through 5G key derivation, enables the consumer to reliably receive and
store the credential, and ensures that the provider can verify its
authenticity and validity using the issuer’s public key recorded on the
blockchain.

Pass

D6.3 – NANCY Integrated System – Final Version

98

4.2.5. ID Management & VoSysMonitor (ID-Mngnt – VoSySMonitor)

Table 35 summarizes the ID-Mngnt - VoSySMonitor integration tests.

Table 35: ID-Mngnt - VoSySMonitor integration tests summary

Integration Test ID Objective Status
ID

Mngnt_VoSySMonitor_I001
Test read and write access of ID system on
OP-TEE-based cache. Completed

Analytic Integration Test Description
Test type Integration
Identifier ID Mngnt_VoSySMonitor_I001
Testers UMU, VOS
Test Purpose Instantiate Open Trusted Execution Environment (OPTEE) solution for caching

mechanisms on ARM-based far-edge device included in the MRAT-NCP.
References [12]
Configuration For this scenario we need an ARMv8 board with Trustzone capabilities (eg. AM69SK)

with VOSySmonitor firmware installed. This board will act as the “relay node” in the V2X
scenario and will be deployed at the network edge. The board will feature a fully-fledged
Linux OS in the main non-secure partition, while in the Secure partition the OP-TEE OS
will be installed.

Pre-test
conditions

Regarding the workflow, a Client Application on the Non-Secure OS is the starting point
to invoke Secure Storage Operations towards the Trusted Application on the Secure OS.
Each operation always passes through the secure firmware (VOSySmonitor), ensuring
the security of the operations.
For this test, the Client Application will request secure storage operations from the TEE
related to user pseudonyms and their capabilities in the system.

Test
Sequence

Step Type Description Result

 1 Stimulus V2X relay node request to securely store a
user with pseudonym “abc” that associates
with NANCY services “A,B,C” to the OP-TEE
REE_FS secure storage

Pass

 2 Check Client application opens a trusted session and
offloads the “store” request to the Trusted
Application through VOSySmonitor

Pass

 3 Check Information successfully stored into the
secure data store in an encrypted format

Pass

 4 Stimulus V2X relay node request to quickly retrieve
the capabilities of the user with pseudonym
“abc” from the relay node

Pass

 5 Check Client application opens a trusted session and
offloads the “load” request to the Trusted
Application through VOSySmonitor

Pass

 6 Check Response is ready at the V2X relay node that
associates the user with pseudonym “abc”
with the NANCY services “A,B,C”

Pass

Test
Verdict

The REE_FS Secure Storage service of OP-TEE is validated to
successfully handle operations in the V2X relay node that quickly
associates users based on their pseudonyms with associated NANCY
services, acting as a secure data cache at the network edge.

Pass

D6.3 – NANCY Integrated System – Final Version

99

4.2.6. Digital Agreement Creator & Marketplace (DAC – Marketplace)

Table 36 summarizes the ID-Mngnt - VoSySMonitor integration tests.

Table 36: ID-Mngnt - VoSySMonitor integration tests summary

Integration Test ID Objective Status
DAC_ Marketplace_I001 Test the correct generation and

reception of a digital agreement
based on the information from the
marketplace.

Completed

Analytic Integration Test Description
Test type Integration
Identifier DAC_ Marketplace_I001
Testers TECNALIA, DRAXIS
Test Purpose Test the correct generation and reception of a digital agreement based on the

information from the marketplace.
References [4]
Configuration Not needed

Pre-test
conditions

Test
Sequence

Step Type Description Result

 1 Stimulus
The marketplace makes a request to the DAC for
the suitable agreement creation:
http://188.245.61.44:8090/DAC/createSLA.

Pass

 2 Check The DAC creates and returns the agreement to
the marketplace

Pass

Test
Verdict

 Pass

4.2.7. Blockchain Component & Wallet (BC – Wallet)

Table 37 summarizes the Blockchain and Wallet integration tests.

Table 37: BC - Wallet integration tests summary

Integration Test ID Objective Status

BC_Wallet_I001
Test correct user connection to the
Fabric network using a connection
profile (YAML or JSON file).

Completed

BC_Wallet_I002
Test correct submission of transactions
or queries to the ledger through the
smart contract API.

Completed

Analytic Integration Test Description
Test type Integration
Identifier BC_Wallet_I001, BC_Wallet_I002
Testers NEC
Test Purpose Test if the wallet can communicate with the blockchain.
References Architecture and components description can be found in [4].
Configuration Blockchain is up and running, connection profile of the blockchain is available to the

wallet.

D6.3 – NANCY Integrated System – Final Version

100

Pre-test
conditions

Blockchain is up and running.

Test
Sequence

Step Type Description Result

 1 Stimulus Start the wallet service providing the connection
profile.

 2 Check Wallet returns no error and listening on the
designated port.

Pass

Test
Verdict

 Pass

4.2.8. Blockchain Component & Marketplace (BC – Marketplace)

Table 38 summarizes the Blockchain and Marketplace integration tests.

Table 38: BC - Marketplace integration tests summary

Integration Test ID Objective Status

BC_ Marketplace_I001
Test the correct deployment of the
smart contracts on the Blockchain
network.

Completed

Analytic Integration Test Description
Test type Integration
Identifier BC_ Marketplace_I001
Testers TECNALIA, NEC
Test Purpose Test the correct deployment of the smart contracts on the Blockchain network.
References [4]
Configuration The Hyperledger Fabric Blockchain network configuration is described in [4].

Pre-test
conditions

 Not applicable

Test
Sequence

Step Type Description Result

 1 Stimulus Deployment of the marketplace smart contracts in
the Blockchain network

Pass

 2 Check The marketplace API is accessible Pass

Test
Verdict

 Pass

4.2.9. Wallet – Marketplace

Table 39 summarizes the Wallet - Marketplace integration tests.

Table 39 Wallet - Marketplace integration tests summary

Integration Test ID Objective Status

Wallet_Marketplace_I001 Test the correct execution of functions
in the marketplace from the wallet. Completed

Wallet_Marketplace _I002

Integration with the smart contract
marketplace:
(Provided Wallet_F001) Test all wallet
interfaces related to marketplace

Completed

D6.3 – NANCY Integrated System – Final Version

101

operations to manage providers,
services and searches.

Wallet_Marketplace_I003

Integration with PQC signing:
(Provided Wallet_F001) Unit test for the
correctness of the wallet PQC signing
function and the verification function on
SLARegistry chaincode.

Completed

Wallet _Marketplace _I004

Integration with the smart contract SLA:
(Provided Wallet_F001 and
Wallet_F005) Test wallet signSLA
interface to see if the SLA is correctly
signed and updated (also with PQC
signature) and if the subscribers for
SLASigning events get notified. Test
wallet getSLA and getSLAByConsumerId
to look up SLAs in the blockchain.

Completed

Wallet _Marketplace _I005

Integration with the oracle:
(Provided Wallet_F001, Wallet_F004
and Wallet_F006) Test wallet
createSearch interface to see if the
oracle triggers SLA creation correctly and
if the subscriber for SLASigning events
get notified.

Completed

Analytic Integration Test Description
Test type Integration
Identifier Wallet_Marketplace_I001, Wallet_Marketplace_I002

Wallet_Marketplace_I003, Wallet_Marketplace_I004,
Wallet_Marketplace_I005

Testers TECNALIA, NEC
Test Purpose Test the correct execution of functions in the marketplace from the wallet.
References The marketplace workflow and corresponding wallet API calls are described in [4]
Configuration The marketplace and the SLARegistry smart contracts are deployed. The smart pricing

service and the DAC service are up and running. The oracle services are up and running
with the correct configuration to communicate with the blockchain network as well as the
smart pricing and DAC services.

Pre-test
conditions

Unit tests for the deployed smart contracts are passed successfully. Oracle services are all
registered and enrolled successfully in the blockchain. Start the wallet gateway service on
a given port.

1 1 Stimulus Invoke wallet API call to create a sample

provider.

 2 Check If provided malformed call parameters, call fails,
and wallet returns corresponding error message.

Pass

 3 Check If the ‘id’ attribute in the call parameters is
present and there is no DID in the called wallet
that matches this value, call fails, and wallet
returns corresponding error message.

Pass

 4 Check If call parameter are well formatted, further
checks refer to the test of createProvider call on
the marketplace smart contract. If successful, the
wallet returns the newly created provider
information. If failed, the wallet returns the
corresponding error message from the blockchain.

Pass

D6.3 – NANCY Integrated System – Final Version

102

 5 Check When the creation in step 1.4 is successful, call
listProviders from the wallet and returns the just
created provider.

Pass

2 1 Stimulus Test to update and delete a provider similar to test
1.

3 1 Stimulus Invoke wallet API call to create a sample service.
 2 Check If provided malformed call parameters, call fails,

and wallet returns corresponding error message.
Pass

 2 Check If the ‘provider_id’ attribute in the call parameters
is present and there is no DID in the called wallet
that matches this value, call fails, and wallet
returns corresponding error message.

Pass

 3 Check If call parameter are well formatted, further
checks refer to the test of createService call on the
marketplace smart contract. If successful, the
wallet returns the newly created service
information. If failed, the wallet returns the
corresponding error message from the blockchain.

Pass

4 1 Stimulus Test to update and delete a service similar to test
3.

5 1 Stimulus Invoke wallet API call to create a sample search.

 2 Check If provided malformed call parameters, call fails,
and wallet returns corresponding error message.

Pass

 3 Check If the ‘consumer_id’ attribute in the call
parameters is present and there is no DID in the
called wallet that matches this value, call fails, and
wallet returns corresponding error message.

Pass

 4 Check If call parameter are well formatted, further
checks refer to the test of createSearch call on the
marketplace smart contract. If successful, the
wallet returns the search result. If failed, the
wallet returns the corresponding error message
from the blockchain.

Pass

6 1 Stimulus Call the wallet service to subscribe the SLAInit
event.

 2 Check Invoke the createSearch call with valid
parameters. The wallet returns an SLAInit event
with the matched consumer_id as in the
createSearch call

Pass

7 1 Stimulus Call the wallet service to subscribe the SLASigning
event. Invoke the signSLA call to the wallet.

 2 Check If provided malformed call parameters, call fails,
and wallet returns corresponding error message.

Pass

 3 Check If the ‘slaId’ in the signSLA call parameters does
not exist in the SLARegistry, call fails and wallet
returns error message.

Pass

 4 Check If the ‘uid’ in the signSLA call parameters cannot
be found in the wallet, call fails and wallet returns
error message.

Pass

 5 Check If the corresponding DID of the ‘uid’ call parameter
does not match either the ‘provider_id’ or the
‘consumer_id’ in the SLA of the provided “slaId”,
call fails and wallet returns corresponding error
message.

Pass

 6 Check When ‘uid’ matches either provider_id or
consumer_id of the corresponding SLA, if the DID

Pass

D6.3 – NANCY Integrated System – Final Version

103

corresponds to the ‘uid’ parameter uses PQC
signature scheme as the verification method,
when the PQC signature produced by the wallet is
successfully verified and stored by the blockchain,
the wallet returns empty. Meanwhile, wallet that
subscribed to the SLASigning event receives a
notification of the signed SLA, in which either the
producer signature or consumer signature field is
now a PQC signature.

 7 Check When ‘uid’ matches either provider_id or
consumer_id of the corresponding SLA, if the DID
corresponds to the ‘uid’ parameter uses non-PQC
signature scheme as the verification method,
when the signSLA call from the wallet is
successfully validated and stored by the
blockchain, the wallet returns empty. Meanwhile,
wallet that subscribed to the SLASigning event
receives a notification of the signed SLA, in which
either the producer signature or consumer
signature field is the transaction ID of the
corresponding successful signSLA transaction.

 8 Check If check 7.6 and 7.7 fails, the wallet returns the
error message from the blockchain and receives
no corresponding notification.

Pass

Test
Verdict

 Pass

4.2.10. AI Virtualiser & VoSysMonitor (AIVirt– VoSySMonitor)

Table 40 summarizes the AIVirt– VoSySMonitor integration tests.

Table 40: AI Virt - VoSySMonitor integration tests summary

Integration Test ID Objective Status

AIVirt_VoSySMonitor_I001

Test response of VoSySMonitor to Libvirt
commands (virsh define, virsh start, virsh
create, virsh shutdown, virsh destroy, virsh
reboot, virsh suspend, virsh resume)
triggered from AIVirt through OpenStack

Completed

Analytic Integration Test Description
Test type Integration
Identifier AIVirt_VoSySMonitor_I001
Testers I2CAT, VOS
Test Purpose The purpose of this test is to validate the operations on vManager’s partitions initiated

from the Libvirt tool, as integration point with the AI Virtualiser.
References [8]
Configuration For this scenario we need an ARMv8 board with VOSySmonitor firmware deployed and

one management partition (a Linux OS) booted.

Pre-test
conditions

To start the testing, we load the vManager driver on the management partition (making
/dev/vmanager available).

Also, the Libvirt “virtvmand“ service must be ready and accessible through the
“vman:///system” URI. The vManager user-space daemon “vmand” should be also
available in the system

D6.3 – NANCY Integrated System – Final Version

104

Test
Sequence

Step Type Description Result

 1 Stimulus ./vmand

Spawning the vManager daemon as the first step

Pass

 2 Stimulus virsh –c vman:///system define <xml_file>

Libvirt xml_file points to <kernel> image, <disk>
image and <device tree> file

Pass

 3 Check Domain <domain> defined from <xml_file>

(Libvirt output)

Pass

 4 Check Partition #X created

(vManager daemon output)

Pass

 5 Check ls /dev/vmanX

Partition device is available at Linux management
partition

Pass

 6 Stimulus virsh –c vman:///system list –all

Check available partitions through Libvirt

Pass

 7 Check List shows partition with ID #X, Name <domain>
and State “shut off”

Pass

 8 Stimulus virsh –c vman:///system start <domain>

Libvirt command to start the partition execution

Pass

 9 Check Domain <domain> started

(Libvirt output)

Pass

 10 Check vManager daemon shown messages that DTB and
Kernel images were loaded successfully

Pass

 11 Check Partition boot-up messages appear on the
partition’s serial console

Pass

Test
Verdict

The successful creation and startup of a vManager partition is tested
through Libvirt commands, simulated as being instructed by the AI
Virtualiser

Pass

4.2.11. AI Virtualiser & Self-Evolving Model Repository (AIVirt –SEMR)

The autoscaling benchmark was designed to evaluate the performance and responsiveness of the
inference service under varying concurrency levels. The test sequentially launched batches of HTTP
POST requests to the QoE endpoint deployed through Ray Serve, sending a fixed inference payload
while progressively increasing the number of concurrent requests from 1 up to 1024. Each batch was
executed in parallel using a thread pool, measuring the round-trip time (RTT) of each individual
request. The resulting latencies were stored for statistical analysis and aggregated into mean,
percentile, and standard deviation metrics. Between experiments, a cooldown period of 160 seconds
was introduced to allow the underlying autoscaler to adjust the number of replicas and stabilize. The
collected data, exported to inference_all.csv, was later processed using a custom plotting script that
visualizes the mean latency and percentile bands across concurrency levels, along with boxplots and
jittered scatter distributions. This methodology enables a clear assessment of how the inference

D6.3 – NANCY Integrated System – Final Version

105

system scales under load and how effectively autoscaling mechanisms maintain latency within
acceptable bounds. Table 41 summarizes the AI Virt - SEMR integration tests.

Table 41: AI Virt - SEMR integration tests summary

Integration Test ID Objective Status
AIVirt_SEMR_I001 Test connectivity between the AI Virt

and JSI SEMR cluster
Completed

AIVirt_SEMR_I002 Test triggering the AI Virt (through the
Slice Manager API end point) after
provisioning it with the JSI SEMR
kubeconfig file

Completed

AIVirt_SEMR_I003 Test capacity threshold for latency New and Completed
Analytic Integration Test Description

Test type Integration
Identifier AIVirt_SEMR_I003
Testers i2CAT, IJS
Test Purpose Test how the capacity increments affect the latency and how this could help us reach a

threshold value depending on the final use case.
References
Configuration The benchmark was conducted on a NAOMI-deployed Ray Serve cluster running on

Kubernetes, with the QoE inference endpoint exposed at http://<cluster-ip>/ray-
api/qoe/. The client used Python 3.10 in a virtual environment with requests, pandas,
and matplotlib, sending concurrent POST requests to measure latency. Prometheus and
Grafana were configured for observability, and autoscaling was enabled with a 160-
second cooldown between tests to allow the system to stabilize before the next
concurrency level.

Pre-test
conditions The NAOMI Ray Serve cluster was fully deployed and operational, with the QoE

endpoint accessible via the API gateway.

• All Ray head and worker pods were in a Running state and the autoscaler was
active.

• The client machine had network connectivity to the cluster and sufficient system
limits (ulimit -n ≥ 65535) for concurrent HTTP connections.

• Required Python dependencies (requests, pandas, numpy, matplotlib) were
installed and the benchmark_autoscaling.py script was executable.

• Monitoring services (Prometheus, Grafana, and MLflow) were running to observe
resource usage, scaling activity, and log experiment metrics.

• The inference payload was validated through a single manual request to confirm
model readiness before starting the load test.

Test
Sequence

Step Type Description Result

 1 Stimulus Environment checking Pass
 2 Check Client setup and initial warmup Pass
 3 Check Benchmark execution Pass
 4 Check Latency recording and results aggregation Pass

 5 Check Confirm the threshold to increase the CPU
capacity and minimize the latency

Pass

Test
Verdict

We managed to run the plotting script to generate summary figures showing
latency trends and variability across loads.

Pass

D6.3 – NANCY Integrated System – Final Version

106

Figure 34 illustrates the individual response times observed when sending increasing numbers of
concurrent requests to the QoE inference endpoint. Each dot represents the latency of a single
request. As the level of concurrency grows, the dispersion of latency values also increases, indicating
higher variability and occasional performance degradation at higher loads. The trend highlights the
system’s scaling behavior and the impact of concurrent demand on end-to-end response times. With
this test we obtain the threshold in which to activate more processing in order to reduce the CPU,
depending on the final use case needs.

Figure 34: Concurrent requests vs latency in seconds

4.2.12. Marketplace & Smart Pricing Policies (Marketplace – SPP)

Table 42 summarizes the Marketplace – SSP integration tests.

Table 42: Marketplace - SPP integration tests summary

Integration Test ID Objective Status

Marketplace_SPP_I001
Test the correct reception of the most
suitable price of the most suitable service
from those available in the marketplace

Completed

Analytic Integration Test Description
Test type Integration
Identifier Marketplace_SPP_I001
Testers TECNALIA, 8BELLS
Test Purpose Test the correct reception of the most suitable price of the most suitable service

from those available in the marketplace

References [13], [4]
Configuration Not applicable

Pre-test
conditions

A service request should have been received in the marketplace which should have
selected suitable services in terms of request definition.

D6.3 – NANCY Integrated System – Final Version

107

Test
Sequence

Step Type Description Result

 1 Stimulus The marketplace makes a request to the SP for the
most suitable service in terms of price:
https://nancy-smart-
pricing.8bellsresearch.com/price_calculation

Pass

 2 Check The smart pricing provides the most suitable
service and the most suitable price.

Pass

 n Check

Test
Verdict

 Pass

4.2.13. Models – Self Evolving Model Repository (SEMR)

Self-Evolving Model Repository (SEMR) is a modular platform that manages the full lifecycle of AI/ML
models—from training and storage to serving and monitoring. This test validates its integration
capabilities and performance under realistic workflow orchestration scenarios. Table 43 summarizes
the Models – SEMR integration tests.

Table 43: Models - SEMR integration tests summary

Integration Test ID Objective Status

Models_SEMR_I001 Testing the speed and latency of model
serving Completed

Analytic Integration Test Description
Test type Integration
Identifier Models_SEMR_I001
Testers IJS
Test Purpose The integration will evaluate the performance of the orchestration of the lifecycle of AI-

based models and their serving.
References Detailed description in [18]
Configuration All configurations are set as helm values. Documentation and all configurations can be

found in SEMR/helm_charts/values.yaml
Project is modular with 5 main components:

• AI/ML model store with MLflow
• Distributed computing and AI/ML training with Ray
• Workflow orchestration with Flyte
• Data storage with MinIO
• System monitoring with Prometheus & Grafana

Pre-test
conditions

Minimal requirements
• 12 CPU cores
• 32GB RAM
• 100GB Available disk space

Test
Sequence

Step Type Description Result

 1 Stimulus Register, Trigger workflows

 2 Check Monitor, collect metrics Pass
 3 Check Run training jobs Pass
 4 Check Deploy models Pass

D6.3 – NANCY Integrated System – Final Version

108

 5 Check Store, fetch models Pass
 6 Check Save, load data Pass

Test
Verdict

Check inference latency, mean latency and execution length Manual
inspection/monitoring

Figure 35: Inference speedup vs number of replicas

Figure 35 depicts mean inference latency speedup compared to the increasing number of model
replicas when running 500 concurrent requests on a deployed QoE model. By increasing the number
of replicas a linear latency reduction is expected. The ideal linear speedup is plotted on the graph for
comparison.

D6.3 – NANCY Integrated System – Final Version

109

.

Figure 36: Mean latency vs. Number of parallel Requests

Figure 36 presents mean end-to-end latencies for concurrent inference requests on the deployed QoE
prediction model. By increasing the number of concurrent requests ((x) axis) sent to the API endpoint,
the mean latency increases (measured in seconds on (y) axis). The mean latencies for the O-RAN
solution as well as both NAOMI solutions, centralised and when deployed on a distributed
infrastructure, are plotted on the graph.

D6.3 – NANCY Integrated System – Final Version

110

Figure 37: Execution time of different AI/ML workflow systems and dataset size

Figure 37 presents the execution times of the QoE prediction workflow on both solutions for a
reference dataset (1 x), a dataset with 10 times the size of the reference dataset (10 x) and a dataset
100 times the size of the reference one (100 x). Different dataset sizes and solutions are plotted on
the (x) axis and execution time in seconds on the (y) axis for each of the experiments.

4.2.14. Self-Evolving Model Repository & Federated Learning Intrusion Detection System
(SEMR – FL-IDS)

Table 44 summarizes the SEMR – FL-IDS integration tests.

Table 44: SEMR – FL-IDS integration tests summary

Integration Test ID Objective
Status (Completed,
Dropped, New and

completed)

SEMR_FL-IDS_I001

Validation of NAOMI full integration
(MLflow model storage, Ray Serve, endpoint
prediction functionality using mocked
services).

Completed

SEMR_FL-IDS_I002
Validation of MLflow model storage
integration (run directories, artifacts,
MLmodel).

Completed

SEMR_FL-IDS_I003
Validation of Ray Serve deployment
functionality (mock predictor, async
predictions).

Completed

Analytic Integration Test Description
Test type Integration
Identifier SEMR_FL-IDS_I001
Testers MINDS
Test Purpose Verify that the system integrates correctly with NAOMI by validating MLflow model

storage, Ray Serve deployment, and REST API endpoint response with mock predictions.
References • The module deploy_model and test_endpoint test.

• NAOMI documentation.

D6.3 – NANCY Integrated System – Final Version

111

Configuration • Test environment with unittest framework.
• Installed packages: mlflow, ray[serve], requests, numpy.
• Mocked dependencies: mlflow.set_tracking_uri, mlflow.pyfunc.load_model,

ray.init, ray.serve.run, requests.post.

Pre-test
conditions

• mlruns directory exists (MLflow default storage)
• deploy_model.py script present in workspace
• test_endpoint.py script present in workspace
• Mock MLflow model object prepared with predict method
• Mock REST API response set to status_code=200 with JSON prediction output

Test
Sequence

Step Type Description Result

 1 Check Verify mlruns directory exists.
 2 Check Verify deploy_model.py script exists.
 3 Check Verify test_endpoint.py script exists.
 4 Stimulus Send POST request to

“http://localhost/ray-api/nancy/” with
sample test data.

Mocked API endpoint
returned sample
predictions successfully.

 5 Check Verify response status code = 200. Pass
 6 Check Verify response JSON contains

"predictions" key.
Pass

 7 Check Verify returned predictions match
expected shape (3x7).

Pass

Test Verdict Pass
Analytic Integration Test Description

Test type Integration
Identifier SEMR_FL-IDS_I002
Testers MINDS
Test Purpose Verify that a trained model has been correctly saved to MLflow by checking the

existence of the mlruns directory, run subdirectories, and model artifacts (model/ or
MLmodel file).

References • mlruns/ directory (default MLflow tracking storage).
• Training pipeline output.
• MLflow documentation.

Configuration • Test environment with unittest framework.
• Required packages: mlflow, glob, os.
• MLflow local tracking backend (file-based in mlruns/).

Pre-test
conditions

• At least one MLflow run has been executed before this test.
• “mlruns” directory exists and contains a subdirectory “mlruns/0”.
• Run directory should contain either “artifacts/model/” with saved model files,

or “MLmodel” file with run metadata.

Test
Sequence

Step Type Description Result

 1 Check Verify mlruns directory exists. Pass
 2 Check Verify mlruns/0 directory exists. Pass
 3 Check Collect run directories under mlruns/0 and ensure

there is at least one (so the latest run exists).
Pass

 4 Check If artifacts/model/ exists, verify it contains model
files.

Pass (files found)

D6.3 – NANCY Integrated System – Final Version

112

 5 Check If artifacts/model/ does not exist, then, if
MLmodel file exists in run directory, verify its
presence.

Pass (if files exists)

 6 Check Else, if “artifacts/model/” and “MLmodel” do not
exist, verify run directory contains metadata files.

Pass

Test
Verdict

 Pass

Analytic Integration Test Description
Test type Integration
Identifier SEMR_FL-IDS_I003
Testers MINDS
Test Purpose Verify that the model can be loaded from MLflow, a Ray Serve predictor can be

instantiated, and predictions can be returned in the expected format.
References • The deploy_model module.

• MLflow and Ray Serve API documentation.
Configuration • Test environment with unittest framework.

• Required packages: mlflow, ray, numpy, fastapi, asyncio.

Pre-test
conditions

• mlflow.pyfunc.load_model is patched to return a mock model.
• ray.init and ray.serve.run are patched to avoid starting real Ray processes.
• deploy_model.py exists in the project root.

Test
Sequence

Step Type Description Result

 1 Check Verify that deploy_model.py exists in the project
root.

Pass

 2 Stimulus Initialize mocked predictor object (MockPredictor). Creates and
returns predictor

object.
 3 Stimulus Generate predictions with test data through

predictor’s predict method (async).
Returns

predictions JSON.

 4 Check Verify predictions include "predictions" key. Pass
 5 Check Verify predictions item of JSON has length 1 (list). Pass
 6 Check Verify predictions list contains 7 items (length=7). Pass

Test
Verdict

 Pass

4.2.15. Post Quantum Cryptography Sign & Secure Communications (PQCSign –
PQCSecCom)

Table 45 summarizes the PQC Sign – PQC SecCom integration tests.

Table 45: PQC Sign – PQC SecCom integration tests summary

Integration Test ID Objective Status

PQCSign_PQCSecCom _I001

Test the integration of the PQC Signature
Token and the PQC secure communication
component for Dilithium algorithm sign in
hardware

Completed

Analytic Integration Test Description
Test type Integration
Identifier PQCSign_PQCSecCom _I001
Testers TEI

D6.3 – NANCY Integrated System – Final Version

113

Test Purpose Evaluate the integration of the PQC Signature Token with the PQC secure
communication component, with the Dilithium algorithm using hardware-based digital
signing.

References [11]
Configuration Raspberry PI 4 with Raspberry Pi OS (Bookworm version) with installed

libclassicclient_8.1.0-b01.00_raspberrypi.aarch64.deb library for interact with TDIS HW
token.

Pre-test
conditions

Physical smart card reader with TDIS token insert.

Test
Sequence

Step Type Description Result

 1 Stimulus Run NancyTest app provided by TDIS with pkcs11
option and a proper string content to be signed in
hardware

Pass

 2 Check The app successfully signs the content checking
the results and the logs.

Pass

 3 Stimulus Run the PQC Secure Communication (PQC-SC)
component with pkcs11 HW configuration to
enable the signing in hardware.

Pass

 4 Check The PQC-SC successfully sign the content, using
TDIS token, checking the results and the logs.

Pass

Test
Verdict

 Pass

4.2.16. AI Network Quality Module & Network Information Framework (AINQM – NIF)

Table 46 summarizes the AINQM – NIF integration tests.

Table 46: AINQM - NIF integration tests summary

Integration Test ID Objective Status
AINQM_NIF_I001 Test the correct format for the input and

output of the AI model
Completed

Analytic Integration Test Description
Test type Integration
Identifier AINQM_NIF_I001
Testers 8BELLS
Test Purpose Test the correct format for the input and output of the Outage Probabilty Prediction AI

model.
References [20], Chapter 4
Configuration Test input files prepared in JSON format

Output expected in structured JSON with defined schema

Pre-test
conditions

 -

Test
Sequence

Step Type Description Result

 1 Stimulus Provide valid input JSON to AI model’s input. Completed

D6.3 – NANCY Integrated System – Final Version

114

 2 Check
 Model returns output JSON in correct schema
(fields present and typed).

Pass

 3 Stimulus
Send malformed input JSON (e.g., missing field).

Completed

 4 Check
Model returns error message with proper format.

Pass

 5 Stimulus
Send input with extra/unexpected fields.

Completed

 6 Check
Model ignores extra fields or returns warning
without failure.

Pass

Test
Verdict

 Pass

4.2.17. AI Network Quality Module (AINQM) – XAI

Table 47 summarizes the AINQM - ΧΑΙ integration tests.

Table 47: AINQM - ΧΑΙ integration tests summary

Integration Test ID Objective Status

AINQM_XAI_I001 Validation of connection to AINQM
prediction component. Completed

AINQM_XAI_I002

Validation of outage prediction
workflow by ensuring
PredictionClient returns correct
outage probability and time index.

Completed

AINQM_XAI_I003

Validation of XAI integration by
checking IntegratedExplainer uses
PredictionClient for predictions
and enriches results.

Completed

AINQM_XAI_I004

Validation of SHAP global
explanations, ensuring proper
output directory and success
status.

Completed

AINQM_XAI_I005

Validation of LIME local
explanations, confirming access
status and correct handling of
output directory.

Completed

Analytic Integration Test Description
Test type Integration
Identifier AINIQM_XAI_I001
Testers MINDS
Test Purpose Verify that the system can successfully establish a connection to the AINQM prediction

component and detect its availability.
References From prediction_client module the PredictionClient class.
Configuration • Test environment with unittest and requests package installed.

• The requests.get method patched to return 200 OK.

D6.3 – NANCY Integrated System – Final Version

115

Pre-test
conditions

• Mocked requests.get simulates service availability at http://localhost:5000.
• No real service required.

Test
Sequence

Step Type Description Result

 1 Stimulus Call PredictionClient.is_available() to check service
avalilability.

Returns True

 2 Check Verify is_available() result equals True. Pass
Test
Verdict

 Pass

Analytic Integration Test Description
Test type Integration
Identifier AINIQM_XAI_I002
Testers MINDS
Test Purpose Validate that outage predictions can be retrieved correctly from AINQM and contain

expected fields.
References From prediction_client module the PredictionClient class.
Configuration • Test environment with unittest and requests, pandas packages installed.

• The requests.post method patched to return mock outage prediction.

Pre-test
conditions

• Sample DataFrame (test_df) with required network features written to
temporary CSV.

• Mock requests.post configured to return outage probability 0.75,
Binary_Outage=1 and Classification="Outage_Risk".

Test
Sequence

Step Type Description Result

 1 Stimulus Call PredictionClient.predict with test_df and
time_index=2.

Returns mock
prediction dict

 2 Check Verify time_index matches input (2). Pass
 3 Check Verify "Outage Probability" is equal to 0.75. Pass
Test
Verdict

 Pass

Analytic Integration Test Description
Test type Integration
Identifier AINIQM_XAI_I003
Testers MINDS
Test Purpose Ensures that the IntegratedExplainer component correctly calls the PredictionClient to

obtain outage predictions (via the mocked HTTP response) and then applies its own
post-processing logic to enrich the raw prediction with additional fields.

References From integrated_explainer module the IntegratedExplainer class.
Configuration • Test environment with unittest and requests, pandas packages installed.

• Patched requests.post for prediction.

Pre-test
conditions

• Mock PredictionClient service returns outage probability and classification
fields.

• IntegratedExplainer initialized with prediction URL http://localhost:5000.

Test
Sequence

Step Type Description Result

 1 Stimulus Call IntegratedExplainer.predict with test_df and
time_index=2.

Returns enriched
prediction dict

 2 Check Verify "Outage Probability" present in result. Pass
 3 Check Verify "Binary_Outage" present in result. Pass

D6.3 – NANCY Integrated System – Final Version

116

 4 Check Verify "Classification" present in result. Pass
Test
Verdict

 Pass

Analytic Integration Test Description
Test type Integration
Identifier AINIQM_XAI_I004
Testers MINDS
Test Purpose Validate that SHAP-based global feature importance explanations can be generated for

outage prediction.
References From integrated_explainer module the IntegratedExplainer class.
Configuration • Test environment with unittest and pandas, scikit-learn, xgboost packages

installed.
• Patched preprocess_data_robust, outage_prediction_explainer.global_explain

and IntegratedExplainer.model.

Pre-test
conditions

• Synthetic dataset generated via sklearn.make_classification.
• XGBoost model trained on sample data.
• Patches simulate data preprocessing and SHAP explanation generation.

Test
Sequence

Step Type Description Result

 1 Stimulus Call IntegratedExplainer.explain_global with
mock_df and output_dir arguments.

Returns
explanation result

dict
 2 Check Verify status in explanation results equals to

"success".
Pass

 3 Check Verify output_directory in explanation results
matches the input path.

Pass

Test
Verdict

 Pass

Analytic Integration Test Description
Test type Integration
Identifier AINIQM_XAI_I005
Testers MINDS
Test Purpose Validate that LIME-based local explanations are generated correctly for a specific

prediction instance.
References From integrated_explainer module the IntegratedExplainer class.
Configuration • Test environment with unittest and pandas, scikit-learn, xgboost packages

installed.
• Patched preprocess_data_robust, outage_prediction_explainer.local_explain

and IntegratedExplainer.model.

Pre-test
conditions

• Synthetic dataset generated via sklearn.make_classification.
• XGBoost model trained on sample data.
• Patches simulate preprocessing and LIME explanation function.

Test
Sequence

Step Type Description Result

 1 Stimulus Call IntegratedExplainer.explain_local with
mock_df, sample_id=2 and output_dir arguments.

Returns
explanation result

dict
 2 Check Verify status in explanations dict equalt to

"success".
Pass

 3 Check Verify output_directory in explanations dict
matches input path.

Pass

D6.3 – NANCY Integrated System – Final Version

117

Test
Verdict

 Pass

4.2.18. Explainable AI & Federated Learning Intrusion Detection System (XAI – FL-IDS)

Table 48 summarizes the ΧΑΙ – FL-IDS integration tests.

Table 48: ΧΑΙ – FL-IDS integration tests summary

Integration Test ID Objective Status

XAI_FL-IDS_I001 Validation of model transfer and loading
into the XAI component. Completed

XAI_FL-IDS_I002 Validation of expected explanations
generation and storage. Completed

Analytic Integration Test Description
Test type Integration
Identifier XAI_FL-IDS_I001
Testers MINDS
Test Purpose Validate that a federated learning model (mock trained) is correctly transferred from the FL

component to the XAI component and can be loaded successfully.
References From anomaly_detection_explainer.py module the load_model method.
Configuration • Test environment with unittest and sklearn, pandas, pickle, shutil packages

installed.
• Trained RandomForestClassifier on sample random data.
• Mocked filesystem operations (os.makedirs, shutil.copy) and pickle.load.

Pre-test
conditions

• Mock trained FL model serialized as .pkl.
• Mock destination directories in XAI component.

Test
Sequence

Step Type Description Result

 1 Stimulus Call function to transfer FL model to XAI
directory.

Mocked copy invoked

 2 Check Verify XAI model path exists. Pass
 3 Stimulus Load model using mocked pickle.load. Model loaded
 4 Check Verify loaded object has the expected

methods.
Pass

Test Verdict Pass
Analytic Integration Test Description

Test type Integration
Identifier XAI_FL-IDS_I002
Testers MINDS
Test Purpose Validate that the XAI component can generate global and local explanations using the

transferred FL model.
References From anomaly_detection_explainer.py module the load_model, global_explain and

local_explain methods.
Configuration • Test environment with unittest and sklearn, pandas, shap, LIME packages

installed.
• Mocked FL model (RandomForestClassifier).
• Mocked file I/O (os.makedirs, plt.savefig, json.dump).

Pre-test
conditions

• Synthetic random dataset for test purposes created.
• XAI model directory contains mock FL model.

D6.3 – NANCY Integrated System – Final Version

118

Test
Sequence

Step Type Description Result

 1 Stimulus Load the mock model from file using load_model. Returns the
trained model

object
 2 Stimulus Call global_explain with sample dataset. Generates PNG

plots and JSON
files in the output

directory
 3 Check Verify the global explanation results are the

expected.
Pass

 4 Stimulus Call local_explain with a sample flow ID. Generates PNG
plots and JSON

files in the output
directory

 5 Check Verify the local explanation results are the
expected.

Pass

Test
Verdict

 Pass

4.3. Integration Monitoring

In the context of the integration activities, regular monitoring of the progress updates, issues reporting
and planning for their resolution was performed. Specifically, as described in D6.2, the integration
aspects were discussed during the weekly WP6 meetings and ad-hoc meetings were organized among
the involved partners to deal with specific technical issues. To streamline the integration monitoring
process and facilitate communication among the technical teams, a central management project
based on GitHub was used for issue tracking and reporting on the progress of the integration activities.
Through this tool, regular feedback was provided from the technical teams for all functional and
integration testing activities (Figure 38 and Figure 39).

D6.3 – NANCY Integrated System – Final Version

119

Figure 38: High-level view of dedicated Github project for NANCY integration monitoring

D6.3 – NANCY Integrated System – Final Version

120

Figure 39: Example of integration point-specific reporting view

D6.3 – NANCY Integrated System – Final Version

121

5. NANCY Platform – System-Level Validation Workflows
This section provides a detailed description of the end-to-end verification workflows designed to
validate various aspects of the NANCY platform at a system level from an integration perspective.
These workflows encompass operations across the central management, inter-operator, and
testbed/demonstrator domains.

The selected workflows are largely horizontal, spanning multiple testbed and demonstrator use cases,
and aim to assess the readiness of the corresponding procedures before their execution at the
different demonstrations (T6.5–T6.9), following the integration plan presented in [2]. Accordingly,
these system-level testing activities serve as a preliminary step to the more detailed test activities
being conducted at the individual testbeds and demonstrators as per the approach outlined in [3] for
evaluating and validating the expected results of the NANCY project. The analytical evaluation results
of these test activities will be reported in D6.10.

5.1. Self Sovereign Identity (SSI) Authentication and Authorization

SSI (Self-Sovereign Identity) is a standardized distributed identity management approach to allow
users to have full control of their own identities and credentials while authentication and
authorization are processed in an anonymous way.

The objective of the SSI Authentication and Authorization workflow, horizontal to various NANCY test
beds, is to provide the platform and its users with a distributed infrastructure for privacy
management4 in service provisioning. This infrastructure allows users to authenticate themselves and
be authorized to certain NANCY services using decentralized identities and verifiable credentials.

In other words, we provide a means for:

• A user to build and manage its own decentralized identity; what we call Decentralized
Identifiers (DIDs).

• A user to provide a valid signature based on its decentralized identity (authentication)
• An issuer – not necessarily the service provider – to issue a credential to a given user, stating

that such user should have access to service X. The user keeps the credential for itself (no
centralized credentials) and when needed provides a verifiable presentation of said credential
to a verifier entity in order to be authorised to service X (authorisation).

• Equip the system with a decentralized ledger on top of which the former procedures can be
realised.

Prerequisites for the workflow:

To understand the prerequisites for this workflow to function, it is important to revisit what is
indicated in [4]: “W3C has proposed corresponding standards for SSI systems 5 , namely, the
Decentralized Identifiers (DIDs) and the Verifiable Credentials (VCs). DID provides a standardized
approach to uniquely identifying users or subjects in decentralized systems, and VC describes a way
to manage credentials, i.e., digitally signed attestations regarding a subject's attributes or affiliations,
by leveraging DIDs for trust and interoperability. The standards propose an architecture where a user

4 See NANCY D5.2 and ETSI GR PDL 019
(https://www.etsi.org/deliver/etsi_gr/PDL/001_099/019/01.01.01_60/gr_PDL019v010101p.pdf)
5 https://www.w3.org/TR/did-1.0/

https://www.etsi.org/deliver/etsi_gr/PDL/001_099/019/01.01.01_60/gr_PDL019v010101p.pdf
https://www.w3.org/TR/did-1.0/

D6.3 – NANCY Integrated System – Final Version

122

holds DIDs and VCs in their own digital wallet, requests issuers to acquire VCs, and interacts with
verifiers to get authenticated by presenting Verifiable Presentations (VPs) derived from his VCs
without disclosing his credentials. Meanwhile, all parties upload the public part of their identifiers and
schemas in a verifiable data registry for other parties to look up information.

Thus, the key prerequisites are:

• To deploy the NANCY blockchain as the verifiable data registry. This includes registering the
DIDs and associated public keys of all parties in the blockchain. Also, revoked verifiable
credentials – if any – should be listed in the blockchain too.

o From [4]: “As a verifiable data registry, the NANCY blockchain manages DID
registration and VC revocation through two smart contracts. In NANCY, the DID
registration is handled by smart contract DIDRegistry, which records DIDs and public
keys associated with the DIDs. Meanwhile, another smart contract, VCRegistry, keeps
a list of all revoked VCs for verifiers to look up during authentication.”

• To equip all parties with the NANCY wallet: issuer/s, user/s, verifier/s and application service.
The NANCY Wallet WALLETGATEWAY creates and holds the DIDs and credentials for said parties.
In addition, the wallet runs a gRPC service to communicate with the blockchain. As explained
in [4], the NANCY wallet gateway has defined specific gRPC methods to interact with the
marketplace and the DID registry smart contracts. Also, as a gateway to the blockchain, the
wallet serves as a registrar of the NANCY Certification Authority, and it registers as well as
enrolls each user to the blockchain.

Figure 40: SSI Architecture with NANCY wallet and NANCY blockchain

The sequence diagram of the authentication & service authorization procedures is provided in Figure
41 and described analytically in the following.

D6.3 – NANCY Integrated System – Final Version

123

Figure 41: SSI authentication and authorization procedures

Setup: All entities, i.e., issuer, UE, service provider verifier, and the application service, start a wallet
gateway service (Figure 42) that is connected to the NANCY blockchain, alongside their applications.

Note that upon the start of a wallet gateway service, at least one DID is created/retrieved for the
wallet derived from the provided “uid”. This DID is registered in the NANCY blockchain and its
verification method (i.e., public key) can be looked up by all entities in the blockchain.

D6.3 – NANCY Integrated System – Final Version

124

Figure 42: Start a UE wallet gateway service at address ‘localhost:5000’ with uid='UE' and corresponding
DID='did:nancy:UE-7kb29s3uKveUdfkuGZeg9J'

Note that all wallet calls are defined as gRPC calls, which are described in [4]. The examples in the
snapshots below use grpcurl as the grpc client to invoke the wallet calls.

Step 1.0: The UE acquires a verifiable credential (VC) from the issuer.

As preparation for the authorization process, the UE must first acquire a Verifiable Certificate (VC)
from an issuer, who is known to/trusted by the (service provider) verifier. And here we describe how
an UE acquire a VC from an issuer.

First the UE application invokes the RequestCredential gRPC call of the UE wallet service, providing its
holder DID DIDu, the list of claims of the holder (e.g., attributes that the UE wants the issuer to
acknowledge in the VC), and the address of the issuer wallet service (Figure 43). And then the UE
wallet acquires the VC from the issuer wallet if the request is approved.

Figure 43: Invoke RequestCredential call to UE wallet with a claim of ‘age:20’ to
issuer wallet service at '195.37.154.23:8881'.

Step 1.1: The UE triggers the authorization process to the verifier.

The UE application invokes the gRPC call RequestAuthorization to the UE wallet service., providing its
holder DID DIDu, the credential VC ID used to acquire authorization, and the address of the verifier
wallet service (Figure 44), and receives the authorization result from the verifier. In the authorization
process, the UE wallet actually first asks the verifier wallet for a challenge nonce, then generates a

D6.3 – NANCY Integrated System – Final Version

125

verifiable proof (VP) based on the challenge nonce and the VC, and the verifier wallet finally verifies
the VP (Figure 45). After that, the verifier saves upon each authorization request, the validation results
for later reference in its local database.

Figure 44: Invoke RequestAuthorization call to UE wallet with the acquired VC to verifier wallet service at
'195.37.154.23:8881'

Figure 45: Verifier wallet received and processed the authorization request from UE.

Step 1.2: The UE signs its service request messages and attaches its signature to all its future service
requests (the service requests is UC specific outside of SSI scope).

Once the authorization is successful, meaning that the UE has proved to the verifier of the service
provider that it possesses a valid credential, the UE can further request access to services from the
service provider.

More specifically, if the UE wants to access an application service, the UE application first calls the UE
wallet to sign its service request via gRPC call SignMessage using the credential of the DIDu (Figure
46), and the signature is sent along the service request to the application service.

Figure 46: UE application requests UE wallet to sign a request payload digest.

Step 1.3: The application service processes the request and verifies the signature sent from the UE.

The application service first authenticates the UE if the request sender is really DIDu as claimed in the
request. To achieve this, the application invokes the gRPC call VerifyMessage on his wallet service,
which looks up in the blockchain to retrieve the public key of the DIDu and verify the signature (Figure
47).

Figure 47: Verifier wallet verifies the request payload signature.

Step 1.4: The service provider queries the verifier about the authorization result of the UE.

When the signature validation is successful, the application service further queries the verifier
application who authorizes all UEs in Step 1.2 for the authorization results. This call from the
application service to the verifier application is use-case specific and out of scope. Then the verifier

D6.3 – NANCY Integrated System – Final Version

126

application requests the verifier wallet to look up the authorization results of DIDu with call
ListAuthorizationRequests or FindLatestAuthorizationResult and finally informs the result to the
application service (Figure 48).

Figure 48: Look up authorization results of the UE DID on the verifier wallet service.

5.2. Service Activation through BSS and Maestro Service Orchestrator

5.2.1. Prerequisites to the Workflow

• UE Connectivity: The User Equipment (UE) is registered and connected to the 5G network,
with the capability to initiate data sessions through the operator’s access domain. This
ensures that the UE can communicate with the BSS and subsequently access the instantiated
AR/VR service.

• SLA Definition and Mapping: The Service Level Agreement (SLA) template for the AR/VR
service is predefined, deployed within Maestro, and linked to the corresponding configuration
file in the BSS that describes the AR/VR service parameters. The BSS utilizes this configuration
to generate and issue service orders for the requested AR/VR service. An example of a
preconfigured service order within the BSS with the predefined service specification is shown
in Figure 49.

D6.3 – NANCY Integrated System – Final Version

127

Figure 49: An example of a preconfigured service inside the BSS featuring all the necessary fields for a service order to
Maestro.

5.2.2. Workflow Description

Figure 50: Service activation workflow

The workflow, that is shown in Figure 50, begins when the UE initiates a request to enroll in the AR/VR
service through the Operator’s BSS, by visiting a dedicated web page and selecting the desired service,
as illustrated in Figure 51. This page displays the available preconfigured AR/VR services and includes
information about the user’s IP address and IMSI, which the BSS obtains through its interaction with
the 5G SMF API of the 5G Core.

D6.3 – NANCY Integrated System – Final Version

128

Figure 51: BSS user enrollment dedicated web page

Once the user selects a service, the BSS creates and stores a persistent association between the user’s
IMSI and the selected service, which will later be used as part of the authentication process of the
AR/VR application server.

Subsequently, the BSS forwards the corresponding service order to Maestro via its northbound
interface. Maestro receives and processes the order, instantiates the required AR/VR service
components, and deploys them within the Kubernetes (K8s) cluster operated by OTE. Figure 52 shows
the logs during a user service registration, including IMSI lookup and Mastro service deployment.

D6.3 – NANCY Integrated System – Final Version

129

Figure 52: BSS logs for user service registration

Through this automated orchestration, the AR/VR service is fully provisioned and made available for
the end user, ensuring that the end-to-end activation is aligned with the predefined SLA parameters.
Figure 53 shows the status of the Maestro service order as it appears in the web interface of the BSS
after a user service registration.

D6.3 – NANCY Integrated System – Final Version

130

Figure 53: Service orders and their status as seen in the BSS.

5.3. Service Activation through BSS and Slice Manager

The goal of this workflow (Figure 54) is to enable the instantiation of services provided by the EHU
operator using the Slice Manager orchestrator. Upon a service request, EHU’s service manager is
responsible for building an SLA that captures the service requirements and sends it to the Slice
Manager to enforce it. According to this SLA, the Slice Manager configures compute and RAN
resources through k8s and RIC Manager, respectively. Through this workflow, the EHU operator is able
to provide services to requesting users, meeting the requested requirements and KPIs.

Prerequisites/Assumptions for the workflow: This workflow assumes that all the components
necessary for the EHU operator to provide its services are operational, including the O-RAN 5G
network and the MEC. In addition, the multi-hop network of vehicles is also deployed, with one of
them being able to request a service. Lastly, SSI components are also running in order to carry out the
authentication and authorization workflow.

D6.3 – NANCY Integrated System – Final Version

131

Figure 54: Service activation through BSS and Slice Manager workflow

Workflow description:

EHU's service provider uses Slice Manager’s REST API for the lifecycle management of application
services in the MEC. When the service provider receives a valid request, first it constructs the SLA to
determine how that request will be relayed to the Slice Manager. Based on the SLA, the service
provider determines the compute resources (CPU, RAM), slice priority in the RAN, and the functional
characteristics of the application to deploy (i.e. whether the application processes a video stream or
a summary of the video in text format).

In regards to compute, the artifacts of the application are uploaded using the /network_service/post/
endpoint, whereas the /network_service_instance/post/ request is used to instantiate an onboarded
application. The content of this POST request depends on the SLA, as it impacts the kind of application
to deploy and the compute resources to allocate to it. This results in the deployment of the
corresponding helm chart in the Kubernetes cluster of EHU’s MEC.

Figure 55: Deployment of target application’s helm chart in Kubernetes cluster of EHU’s MEC based on SLA specification

The dynamic modification of RAN resources is triggered by the reception of a slicing policy update
from the Slicing rApp running in the RIC Manager. This update is received through a REST API request
(PUT or POST), which identifies the target slice, either by a friendly name or by specifying its SST, SD,

D6.3 – NANCY Integrated System – Final Version

132

MCC, MNC parameters (i.e., S-NSSAI and PLMNiD), and a slice priority. The slice priority is an integer
between 1 (highest) and 100 (lowest), representing the relative share of Physical Resource Blocks
(PRBs) among active slices. For instance, with two slices, priorities of 10–10 result in an even 50%-50%
PRB split, while 1–2 leads to a 66%-33% distribution. Examples of REST API calls are shown below:

curl -X PUT http://ric-manager-service:8104/policyupdate -H "Content-
Type: application/json" -d
'{"sst":"1","sd":"000001","mcc":"001","mnc":"02","slice_prio":"2"}'

curl -X PUT http://ric-manager-service:8104/policyupdate -H "Content-
Type: application/json" -d
'{"sst":"1","sd":"000002","mcc":"001","mnc":"02","slice_prio":"1"}'

curl -X DELETE http://ric-manager-service:8104/policyupdate -H
"Content-Type: application/json" -d
'{"sst":"1","sd":"000002","mcc":"001","mnc":"02”}'

Policies can be updated or deleted (resetting the priority to its default value of 10) via the PUT/POST
and DELETE methods, respectively. Once a request is received, the rApp generates a valid A1 SLA
Slicing policy and forwards it to the Near-RT RIC. The Near-RT RIC validates the policy instance against
the corresponding policy type schema (see Section 3.18) and then delivers it to the relevant xApp. The
SLA Slicing xApp continuously monitors the number of slices and the UEs associated with each one,
applying the received configuration by sending appropriate E2-RC messages to the srsRAN DU. These
messages dynamically control PRB allocation per UE for each slice. The correct enforcement of PRB
distribution can be verified through available Key Performance Metrics (KPMs) in srsRAN, such as
DRB.UEThpDl. Once both the compute and networking resources are ready and configured, the user
is notified and can begin using the service by interacting with the indicated IP address and port.

5.4. Service Level Agreement (SLA) Creation and Marketplace Mediation
(Inter-Operator Domain)

The objective of the SLA creation and Marketplace mediation workflow, potentially horizontal to
various NANCY test beds but currently being used in the Greek In-lab scenario, is to provide the
platform with a business-layer chaincode where operators can engage in the secure exchange of
resources to keep their quality of service for their customers. Here, we deliver to NANCY’s interdomain
a tool for operators to register (through their BSS) their available resources as well as to consume and
offload available resources from other operators when needed. The reader should note that the initial
assets to exchange (as described in [4]) were services, but after further discussions, it was decided
that resources were more flexible and closer to the reality of service provisioning in a B5G system.

In other words, we provide a means for:

• Operators to provide information about themselves (as Provider Endpoints) and their
resources (Resource Endpoints), and to make requests for searching for other available
resources (Search Endpoints) from other operators.

• Oracles to allow automatic interaction with the Smart Pricing for the most suitable service
selection in terms of price, as well as with the Digital Agreement Creator for the generation of
the SLA between operators.

• Creating, signing, and registering SLAs between operators and end-users.

D6.3 – NANCY Integrated System – Final Version

133

• Equip the system with a decentralized ledger containing the necessary chaincode so that the
former procedures can be realised securely, accountably and with privacy guarantees.

Prerequisites for the workflow:

The key prerequisites are:

• To have at least two providers listed in the marketplace, including their available resources.
• To equip all relevant parties with the NANCY wallet: operators and end-users. As mentioned

in Section 5.1, the NANCY Wallet WALLETGATEWAY creates and holds the DIDs and credentials
for said parties. In addition, the wallet runs a gRPC service to communicate with the
blockchain. As explained in [4], the NANCY wallet gateway has defined specific gRPC methods
to interact with the marketplace (e.g., for listing or searching for resources) and the SLA
Registry (e.g. for signing an SLA).

• To equip the oracles with a wallet so that they can interact with the NANCY blockchain and
subscribe to events.

• For all parties to be subscribed - through their wallets - to the relevant events. See [4] for more
details:

o Oracles:
 initPricing event
 initSLACreation event
 initSLASignature event

o Others:
 SLAInit event
 SLASigning event

The sequence diagram of the workflow is shown in Figure 56 and will be described analytically in the
following.

D6.3 – NANCY Integrated System – Final Version

134

Figure 56: SLA creation and Marketplace mediation workflow

Step 0 (preparation): Both providers and consumers run their wallet service that connects them to
the blockchain which hosts the marketplace smart contract (Figure 57, Figure 58).

D6.3 – NANCY Integrated System – Final Version

135

Figure 57: Start provider wallet service at port 5000 and created DID 'did:nancy:provider-LAqUYpNi4zwj8VwUjA36N1'

Figure 58: Start consumer wallet service at port 6000 an created DID 'did:nancy:consumer-55pHm6at6WuwDKHN5BMK7F'

D6.3 – NANCY Integrated System – Final Version

136

Step 1: Both provider application and consumer application call the wallet APIs to subscribe to all
SLA events relevant to the user.

The wallet gateway provides subscription to two SLA events: SLAInit and SLASigning. A user can invoke
his wallet gateway with gRPC method SubscribeToSLAInit and SubscribeToSLASigning to subscribe
these two events respectively (Figure 59).

Figure 59: Call both provider and consumer wallet to subscribe to SLA events

Step 2: Provider application calls its wallet to create a new provider profile (CreateProvider) on the
marketplace in blockchain (Figure 60). The provider ID must be an existing DID in the wallet.

Figure 60: Provider creates a provider profile on marketplace

Step 3: Provider application calls its wallet to create a new service profile under the previous created
provider profile in the blockchain (Figure 61). The provider ID of the new service must match an
existing provider ID.

Figure 61: Provider application creates a new service profile through its wallet

Step 4: Consumer application calls its wallet to create a new search in the marketplace given the search
criteria (Figure 62).

When the marketplace finds multiple services that match the search criteria, the smart pricing service
is triggered to find the winner service with a suggested price, then the DAC service is triggered to

D6.3 – NANCY Integrated System – Final Version

137

create an initial SLA with the corresponding service for the consumer. The created SLA triggers an
SLAInit event that will be received by all subscribers, and in this case, both the provider and consumer
wallet service (Figure 63).

Figure 62: Consumer creates a search on the marketplace which returns matched services

D6.3 – NANCY Integrated System – Final Version

138

Figure 63: Both provider and consumer received notification of new SLAInit event with SLA_ID=292

Step 5: After the reception of the SLAInit event, the provider or consumer application checks the SLA
content, and if they agree on the contents of the SLA, it calls the wallet service to sign the SLA (slaSign)
providing the slaId and their DIDs (Figure 64).

The wallet signs the SLA and provides the signature to the SLARegistry smart contract. If the signature
validation is successful, an SLASigning event is emitted to subscribers who can review the signed SLA
(Figure 65).

D6.3 – NANCY Integrated System – Final Version

139

Figure 64: Consumer signs the SLA ID=292

Figure 65: Both parties receive the SigningSLA event and SLA id=292 now has the consumer signature.

Inside the marketplace, two different kinds of operations take place:

• The first one is related to the registration of operators and services, which should be done as
a starting point for the interdomain flow. The marketplace receives the CreateProvider or
CreateService requests from the operators’ wallets to register the details of the available
operators and services.

• The second one is related to the new service search in an offloading process. The marketplace
receives the CreateSearch request from the operator wallet to search for a suitable available
service to offload its current service to. Internally, there are the following different steps:

o The NANCY marketplace first searches among the registered services and operators
to find those whose features fullfill the requirements defined in the request.

o Once the suitable services are identified, the marketplace makes a price request to
the Smart Pricing. The Smart Pricing calculates the most suitable service in terms of

D6.3 – NANCY Integrated System – Final Version

140

price as well as the suitable price. More details are gathered in [13]. This information
is sent as response to the marketplace.

o The service identified by the Smart Pricing is the one to be considered for the
offloading process. At this point, the marketplace obtains all the details about the
selected service and sends them to the Digital Agreement Creator in an SLA creation
request. Besides, the requester operator details are also sent in the request.

o The Digital Agreement Creator generates the SLA and sends it back to the
marketplace.

o The marketplace receives the SLA and sends it to the SLA Signature smart contract for
the signature management by the two involved operators: the requester and the one
operating the identified service.

D6.3 – NANCY Integrated System – Final Version

141

6. Conclusions
NANCY develops a secure and cutting-edge framework for Beyond 5G (B5G) wireless networks by
integrating advanced technologies such as Artificial Intelligence, Blockchain, Quantum-safe
technologies, MEC, and Orchestration. Its goal is to enable intelligent and secure resource
management, adaptive networking, and enhanced orchestration performance.

This deliverable builds upon the results reported in [1] and [2] to provide the final version of the
NANCY integrated system. It presents the specifics of the interconnection among NANCY operational
domains and the testbeds/demonstrators, emphasizing the flexible instantiation of relevant NANCY
components for different demonstration use cases. Detailed descriptions of the functional and
integration test execution specifications and results for the final set of NANCY bilateral integration
points are also provided. Finally, selected end-to-end validation workflows are described, including
their specifications and corresponding results. These workflows serve to validate the readiness of the
corresponding operations taking place among the different NANCY operational domains: Central
Management, Inter-operator and testbeds/demonstrators. As described in section 5, these workflows
are largely horizontal (i.e., replicated) across the different testbeds/demonstrators. D6.10 will extend
this work by providing a comprehensive description of the NANCY final Pilots, namely the Italian
Massive IoT, Spain Outdoor, and Greek Outdoor, together with the final validation and evaluation
results. The latter will also build upon the defined evaluation methodology and the detailed planning
of the final demonstrations, as outlined in [3].

D6.3 – NANCY Integrated System – Final Version

142

Bibliography

[1] NANCY Consortium, "D6.1: Β-RAN and 5G End-to-end Facilities Setup," 2024.

[2] NANCY Consortium, "D6.2: NANCY Integrated System – Initial Version".

[3] NANCY Consortium, "D6.9: Outdoor Demonstration Planning, Evaluation Methodology and
KPIs," 2025.

[4] NANCY Consortium, "D5.2: NANCY Security and Privacy Distributed," 2024.

[5] NANCY Consortium, "D4.3: Trustworthy Grant/Cell-free Cooperative Access Mechanisms,"
2025.

[6] NANCY Consortium, "D5.3: Self-healing and Self-recovery Mechanisms".

[7] NANCY Consortium, "D3.1: NANCY Architecture Design," 2024.

[8] NANCY Consortium, "D3.4: NANCY AI virtualiser," 2025.

[9] NANCY Consortium, "D2.2: NANCY Experimental-Driven Modelling," 2025.

[10] NANCY Consortium, "D4.4: Semantic & goal-oriented communication schemes for beyond
Shannon performance," 2025.

[11] NANCY Consortium, "D5.1: Quantum Safety Mechanisms," 2024.

[12] NANCY Consortium, "D4.1: Computational Offloading and User-centric Caching," 2024.

[13] NANCY Consortium, "D4.5: Smart Pricing Policies," 2024.

[14] "MAESTRO Service Orchestrator," [Online]. Available: https://maestro-
mkdocs.readthedocs.io/en/latest/ . [Accessed 17 10 2025].

[15] "OpenSlice," [Online]. Available: https://osl.etsi.org/. [Accessed 17 10 2025].

[16] NANCY Consortium, "D4.2: Resource Elasticity Techniques," 2024.

[17] NANCY Consortium, "D3.2: NANCY Network Functionalities," 2024.

[18] NANCY Consortium, "D3.3: NANCY AI-based B-RAN Orchestration," 2024.

[19] "NAOMI," [Online]. Available: https://github.com/sensorlab/NAOMI. [Accessed 24 01 2025].

[20] NANCY Consortium, "D2.3: NANCY Network Information Framework," 2025.

[21] "Colosseum O-RAN COMMAG Dataset," [Online]. Available:
https://openrangym.com/datasets/colosseum-o-ran-commag-dataset. [Accessed 30 10 2025].

[22] NANCY Consortium, "D5.4: NANCY Explainable AI Toolbox," 2025.

