Y

A\

| QES |
s SR
LN
NANCY

An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term
Evolsution [GA: 101096456]

Deliverable 6.3

NANCY Integrated System - Final Version

Programme: HORIZON-JU-SNS-2022-STREAM-A-01-06
Start Date: 01 January 2023

Duration: 36 Months

R Co-funded by
SO the European Union

NANCY project has received funding from the Smart Networks and Services Joint Undertaking
(SNS JU) under the European Union's Horizon Europe research and innovation programme under
Grant Agreement No 101096456.

-2
2y \
>y
i)

0-%

D6.3 — NANCY Integrated System — Final Version

/
0

’
NANCY

L |
Document Control Page

Deliverable Name NANCY Integrated System — Initial Version

Deliverable Number D6.3

Work Package WP6 NANCY System Integration, Validation & Demonstration

Associated Tasks Task 6.3 - Interoperability check and joint-optimization

Dissemination Level Public

Due Date 31 October 2025

Completion Date 31 October 2025

Submission Date 31 October 2025

Deliverable Lead Partner Netcompany-Intrasoft

Deliverable Author(s) Panos Matzakos, Olga Segou, Konstantinos Fragkos (INTRA), Athanasios

Tziouvaras (Bi2S), Dimitrios-Christos Asimopoulos (MINDS), Cristina Regueiro,
Marisa Escalante (TECNALIA), Stratos Vamvourellis, Ilias Theodoropoulos (8BELLS),
Georgios Tsiouris, Maria Belesioti (OTE), Wenting Li, Franciscolavier
deVicenteGutierrez (NEC), Milosheski (1JS), Gonzalo Alarcén, Rodrigo Asensio,
Ramon Sanchez (UMU), Giorgos-Nektarios Panayotidis, Theofanis Xifilidis, Dimitris
Kavallieros (CERTH), Giuseppe Celozzi, Marco Tambasco (TEI), Emanuele De Santis,
Andrea Wrona, Simone Gentile, Valentina Becchetti, Federico Baldisseri, Antonio
Di Paola, Mohab, Mahdy Helmy Atanasious (CRAT), Miguel Catalan Cid, Juan
Sebastian Camargo, Hatim Chergui (i2CAT), Georgios P. Katsikas (UBI), Alvise Rigo,
Anna Panagopoulou (VOS), Damien Bertonnier (TDIS), Alessandro Biondi (SSS),
Jorge Sasiain (EHU), Konstantinos Kyranou (SID), Georgios Michoulis (SID),
Anastasios Lytos (SID), Panagiotis Sarigiannidis (UOWM), Thomas Lagkas (UOWM),
Athanasios Liatifis (UOWM), Anna Triantafyllou (UOWM), Dimitrios Pliatsios
(UOWM), Sotirios Tegos (UOWM), Nikolaos Mitsiou (UOWM), Vasiliki Kotsiouba
(UOWM), Pigi Papanikolaou (UOWM)

Version 1.0

Document History

Version Date Change History Author(s) Organisation

Panos Matzakos,

Olga Segou,
0.1 21/07/2025 Initial version & g_ INTRA
Konstantinos
Fragkos
Panos Matzakos,
Updated version with Olga Segou
0.2 21/08/2025 placeholders for receiving o INTRA
- Konstantinos
partners contributions
Fragkos

Dimitrios-Christos
0.21 12/09/2025 MINDS Contributions . MINDS
Asimopoulos

i -4 initi ibuti Franciscolavier
0.22 17/09/2025 Section 2-4 initial contributions _ : NEC
from NEC deVicenteGutierrez

D6.3 — NANCY Integrated System — Final Version

-2
2 \
> my
R §

N-2

/
0

’
NANCY

i - ibuti Cristina Regueiro,
0.23 17/09/2025 Sections 3-5 contributions from I l guel TECN
TECN Marisa Escalante
0.24 18/09/2025 Sections 3-4 contributions from Ilias Theodoropoulos 8BELLS
8BELLS
Konstantinos
Kyranou, Georgios
0.25 20/09/2025 SID Contributions y . . & SID
Michoulis,
Anastasios Lytos
Stratos
0.3 22/09/2025 Section 3 contribution Vamvourellis, Ilias 8Bells
Theodoropoulos
0.31 23/09/2025 Sections 3-4 contributions Ljupcho Milosheski 1S
Gonzalo Alarcon,
0.32 24/09/2025 Sections 3 and 4 contributions Rodrigo Asensio, UumMu
Ramon Sanchez
Giorgos-Nektarios
Panayotidis,
0.33 24/09/2025 Sections 3 and 4 contributions Theofanis Xifilidis, CERTH
Dimitris Kavallieros
Giuseppe Celozzi,
0.34 25/09/2025 Sections 3-4 contributions Marco Tambasco TEI
Emanuele De Santis,
Andrea Wrona,
Simone Gentile,
Valentina Becchetti,
0.35 29/09/2025 Sections 3-4 contributions Federico Baldisseri, CRAT
Antonio Di Paola,
Mohab, Mahdy
Helmy Atanasious
Franciscolavier
0.4 30/09/2025 | Updates in contributions from | deVicenteGutierrez, NEC
NEC in sections 2 and 5 Wenting Li
0.41 30/09/2025 Sections 2, 4.3 and 5 Panos Matzakos INTRA
contributions
. _— Alvise Rigo, Anna
0.42 02/10/2025 | Sections 3-4 contributions from VOS
Panagopoulou
VOS
0.43 02/10/2025 Contributions in sections 3-4 Damien Bertonnier TDIS
0.44 03/10/2025 Contributions in sections 3-4 Alessandro Biondi SSS
0.45 05/10/2025 Contributions in sections 3-4 Stylianos Trevlakis INNO
Miguel Catalan Cid,
046 | 07/10/2025 Juan Sebastian 12CAT
) /10/ Contributions in sections 2-4 Camargo, Hatim
Chergui

D6.3 — NANCY Integrated System — Final Version

0.47 10/10/2025 Contributions in section 5.3 Jorge Sasiain EHU
0.48 14/10/2025 Section 5 contributions Georgios Tsiouris OTE
Panos Matzakos,
0.5 18/10/2025 | Executive summary, Introduction Olga Seg'ou, INTRA
and Conclusions Konstantinos
Fragkos
0.6 20/10/2025 Section 2, Section 3 contributions Georgios P. Katsikas UBI
Panos Matzakos,
0.8 23/10/2025 Release version for internal Olga Seg-ou, INTRA
review Konstantinos
Fragkos
Panos Matzakos,
Olga Segou,
Release version for final QA after Konstanjcmos
09 30/10/2025 addressing internal review Fragkos, Ljupcho INTRA, 1JS, 8Bells, EHU
comments Milosheski, llias
Theodoropoulos,
Jorge Sasiain
Dimitrios Pliatsios,
Anna Triantafyllou,
Panagiotis
Sarigiannidis,
1.0 31/10/2025 Final revisions and quality check Thomas Lagkas, UowMm
Athanasios Liatifis,
Sotirios Tegos,
Vasiliki Kotsiouba,
Pigi Papanikolaou
Internal Review History
Name Organisation Date
Anna Panagopoulou
. g -p VoS 28/10/2025
Alvise Rigo
Hatim Chergui i2CAT 27/10/2025
Quality Manager Revision
Name Organisation Date
Dimitrios Pliatsios, Anna UOWM 31/10/2025

Triantafyllou

U
D6.3 — NANCY Integrated System — Final Version .'.’

Legal Notice

The information in this document is subject to change without notice.

The Members of the NANCY Consortium make no warranty of any kind about this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The Members of the NANCY Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.

Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or SNS JU. Neither the European
Union nor the SNS JU can be held responsible for them.

Y]
D6.3 — NANCY Integrated System — Final Version LS
N

Table of Contents

TaDIE OF CONTEONESeetieiiie ettt sttt e e s b e saeesaeesanesb e e beenneesnees 6
Ty o T {0 TSR 9
R o) N I o] [T TP PPV 11
[o Yol o) o 1Y o TSP 13
[CTol VN ANV U 0 g - | VPP P PPPPPPRPRRt 15
O) oo [¥ ot T o PP PSP UPU PR PR PRRRPPR 16
1.1. PUrpose Of the DOCUMENTciiiiiiiii ittt s ere e e s eatee e s seabee e e snraeeesans 16
1.2. Relation to Other Tasks and Deliverablescocooveeiiiiiiiiiie e 16
1.3. Structure of the DeliVerableo.eoeoiiiee s 17

2. Deployment View of NANCY Reference Archit@Ctureccoeeeeciieeiciieee e 18
2.1. Central Management Domain and Testbeds/Demonstrators..........ccccvveevveeeceeeeveeeeveeeennen. 18
2.1.1. Maestro and OpenSlice Connection with Greek testbeds/demonstrators 18
2.1.2. SliceManager Connection with Spanish demonstrator.........cccecvevivviieeiinciiee e 21

2.2 Inter-Operator Domain and Testbeds/Demonstratorsc.ccccveeecveeeeiieeeiieeeciee e 24
3. Functional Testing of NANCY COMPONENTS......c.uueiieiiiiieeeiiieeeeiiieeeesiteeeestaeeeeeateeeeenreeessssseeesennens 26
3.1. Multi Radio Access Technologies — Nomadic Connectivity Provider (MRAT-NCP) 26
3.2 [dentity Man@agemMENT....coi e e e e st e e s s ae e e s sbee e e ssbeeeeeeraeeeeans 28
3.3. Digital Agreement Creator (DAC)iiciee e eciee ettt e st eestae e s te e e saae e s ateesbaeesaseeenns 29
3.4. BIOCKCNAIN ..ttt sttt et e b e esaee e 30
3.5. WaAHIET ettt ettt e bt e h e s ae e st st et e b e b e e be e sbe e saeeeare s 32
3.6. ALVITTUALIZEE .ttt ettt st e s e st e e st e e s b et e sabeesabeesbbeesabaeennees 34
3.7. 2 YN V1V o T =Y PSP 35
3.8. RY=10 4o o 4 OO OO TP OPPPTPI 36
3.9. Quantum Key Distribution Network Simulator (QKDSImM)........ccccccvveeeeeiieeeeeiiee e, 38
200 10 TR V2o 1 V71 1Y/ o o o N 41
20 N |V =1 o (=Y o] =T TP UPPURRNt 45
3.12. IMIBESEIO e e e e e s ar e e e s e 46

K 701 1 T 1V o To =] OO OSSPSR UUTUPUPRUPRUPONt 50
3.14. Self-Evolving Model Repository (SEMR)ccocciiieiiiiiie ettt eetee e e et e e e earae e e 51
I B TR 1 - 1 T 1 oY 2SS PR PURPRN 52
3.16. Post Quantum Cryptography Signature (PQCSIZ)......ccoceeriveerireeeiieerieeeireeereeereeesreesevne e 53
3.17. Traffic FOrecasting SErVICE (TFS)ciuiiiiieeiieeeitie e e st e erte et e e rtreeste e stee e s veesbaeesateesraeenes 55
3.18. RAN Intelligent Controller Manager (RICIMINGI).......cuuieiiiiieee ettt e eerae e 56
3.19. Artificial Intelligence Network Quality Module (AINQM)........ccueeeeeiiieeeciiee e 61

L
D6.3 — NANCY Integrated System — Final Version .'.‘Eé.l_
e |
3.20. Network Information Framework (NIF)........eeeeiiiiiiieieeeeeeeciireeee e eeeviraeee e e 62
3.21. SMaArt Pricing POlICIES (SPP) .eeeiiiieee ettt e ettt ettt e e eeata e e e seatr e e e seataee e snnsaeeeeans 64
3.22. EXPIaiNable Al (XAeeeee ettt ettt e e e tte e e eetre e e e e taeeeeebaeeesebaeeeeenbaeeeeenraeeaenns 68
3.23. Federated Learning Intrusion Detection System (FL-IDS)ccccocvevrirriereiieeeieeesiee e 71
3.24. Memory Traffic Generator - Resource Monitor (MTG-RM)ccceevvvveeeiiciveee e eeiieee s 75
3.25. Post Quantum Cryptography — Secure Communications (PQC-SC)ccccvveeericiieeeeiiiieeennns 77
3.26. Distributed Anomaly Detection and Mitigation (D-ADM)ccceeevreeriireiieescieeesreesieens 79
K S = Y 1 01 1= [Tl T PSPPSR 82
4. Updates on Integration of NANCY Components and SErviCes........cccvuivereeeeerciiniieeeeeeeecciveeeeeeenn 85
4.1. INtegration POINTS UPAates.....cccciiii ittt e e et e e e etae e e e e bt e e e senbaeeeeans 85
4.2. Integration Testing of NANCY Integration Points.........ccceecviieieciiee et 91
4.2.1. Multi Radio Access Technologies & ID Management (MRAT-NCP & ID-Mngnt) 91
4.2.2. Multi Radio Access Technologies & SemCom (MRAT-NCP —SemCom)........ccceevveernnnne 92
4.2.3. Multi Radio Access Technologies, Models & Traffic Forecasting Service (MRAT-NCP —
[V Fe Yo 1=y I I o) O RRRR 95
4.2.4. 1D Management & Wallet (ID-Mngnt — Wallet)ccccvveviireciiecie e 96
4.2.5. ID Management & VoSysMonitor (ID-Mngnt —VoSySMOoNitor)cccceeveeecieeeciieescnnenne 98
4.2.6. Digital Agreement Creator & Marketplace (DAC — Marketplace)......ccocceeeevveeeecreeeennnee. 99
4.2.7. Blockchain Component & Wallet (BC—Wallet)ccccveeeeiiiieieiiee e 99
4.2.8. Blockchain Component & Marketplace (BC — Marketplace).......ccceeeecvveeeeecieeeeccinnenns 100
4.2.9. Wallet = MarketplaCecoiu it e s e e e sbeae e 100
4.2.10. Al Virtualiser & VoSysMonitor (AlVirt— VoSYySMOoNitor)cccceceveeeceeecieeeceeecreeeenen. 103
4.2.11. Al Virtualiser & Self-Evolving Model Repository (AlIVirt =SEMR)........ccccccvvveevcnnennn. 104
4.2.12. Marketplace & Smart Pricing Policies (Marketplace —SPP)ccceeecivveeeciieeeccneen, 106
4.2.13. Models — Self Evolving Model Repository (SEMR)........ccoecvieeeeiiiieeciieeeeciiee e, 107
4.2.14. Self-Evolving Model Repository & Federated Learning Intrusion Detection System
(SEMR = FL-IDS) ettt ettt st st ettt et e bt e sbe e sae e et e et e e nbeesbeesneesmeeemeas 110
4.2.15. Post Quantum Cryptography Sign & Secure Communications (PQCSign —
o @ L0l 1o . SRS 112
4.2.16. Al Network Quality Module & Network Information Framework (AINQM — NIF) ... 113
4.2.17. Al Network Quality Module (AINQM) = XAlcccceeiiiiinieeeceeeciee e eiee e 114

4.2.18. Explainable Al & Federated Learning Intrusion Detection System (XAl — FL-IDS)117

4.3. INTEEIratioN IMONITOTING . .uviiiiiiiiieiiieee et e e e e s e e e e e s s s sbrreeeeeeessssanrenes 118
5. NANCY Platform — System-Level Validation Workflowscccccceeeiiiiiiiiiii e 121
5.1. Self Sovereign Identity (SSI) Authentication and Authorization.........cccceeveecevecieeccneenee, 121
5.2. Service Activation through BSS and Maestro Service Orchestrator.........ccccccceeeeecveeeennee. 126

L
D6.3 — NANCY Integrated System — Final Version .'.’\.l’
e |
5.2.1. Prerequisites to the WOrkfloWcceeiiiiiii i 126
5.2.2. WOrKfIOW D@SCIIPLION ..ccccuiieee ettt e e te e e e are e e e e aae e e e snaee e e anes 127
5.3. Service Activation through BSS and Slice Manager......cccccevveveeiiiiieieeriieee e 130
5.4. Service Level Agreement (SLA) Creation and Marketplace Mediation (Inter-Operator

(D ToY 00T 110} SRS 132
6. CONCIUSIONS ..ottt ettt s bt st st et e bt e bt e e bt e sae e sae e et e et e e beesbeesaeesanesareeane 141
21T o] FTe = =T o] o1V SRR 142

Y]
D6.3 — NANCY Integrated System — Final Version LS
N

List of Figures

Figure 1: NANCY platform operation domains and deployment of the NANCY architecture. 18
Figure 2: OpenVPN client connected to UOWM Greek indoor testbed site.cccccoevvciiiiiieeeieeeccnnnnen. 19
Figure 3: IPSec tunnel established with OTE Greek outdoor demonstrator site........cccccceecvveeeicineenns 19
Figure 4: Maestro pods deployed in a Kubernetes cluster in the NANCY Central Management

(o Fo T 0 - Y1 o R PP 19
Figure 5: Maestro swagger APl showing a set of TMF Service Management APIs relevant for NANCY.
.. 20
Figure 6: Maestro swagger API with a service order request towards the Greek outdoor
demMONSErator @t OTE PrEmMiSES. ..uiui it eccitee et e e e et e e e s rbae e e s abt e e e e sabaeeeesabreesssaseeeeansreeesennsens 21
Figure 7: Warp CLIinterface in the IMEC SEIVETccuuii i ittt ettt e e eetee e e eeatae e e eearaeaeeans 21
FIgure 8: SliC@ IMaN@EEI APl ..ottt ettt e e et e e e st e e e e sata e e e sastaeeesntaeeeentaeessnntaeesnnns 22
Figure 9: Compute post APl from SliCE IMan@Zerc.uuiii ettt eetee e e et e e e eeate e e e eenraeaeeans 23
Figure 10: network_service_instance post endpoint from Slice Manager.........cccceeeccvveeeeciiieeeecieeeeenns 24
Figure 11: Latency Analysis for PC5 INTEIrface....cuuiiiiciiiii ettt st e s s ntae e 27
Figure 12: Comparison of bandwidth and packet loss at different data rates.........cccceeeeeiieeiicieenens 28
Figure 13: Latency comparison using Uu and PC5 interfaces.......cccveiveeiiiiieeeiciiee e cciree e ecieee s seinee e 28
Figure 14: Snapshot of the expected outcome of one of the tests (localization service) 51
Figure 15: Report on running components in k8s cluster CONSOIEccoccveeeecciieeecciiee e, 52
Figure 16: Definition of the Near-RT RIC in the Non-RT RIC frameworkcccccceevveeniieiniieiniecniieennne 58
Figure 17: Definition of the Al policy type in the NON-RT RIC.........cocciiiiiiiiiee ettt 59
Figure 18: Reception of Slice Manager requests by the rApp (create, update, delete)cc.ue...... 59
Figure 19: Reception of the Al policy by the Non-RT RIC and forwarding to the Near-RT RIC............ 60
Figure 20: Generated A1 policy instance in the NON-RT RIC.........ccccoccuiiiiiiiiiee ettt 60
Figure 21: Near-RT RIC and xApp validation and application of the AL policycccccevveeeiicveriiiciieennns 61
Figure 22: Environment test terminal OULPUL........cooooiiiii i 66
Figure 23: Average AgeNnt BENAVIONoooo ittt et e e e et e e e eate e e e senraeeeeans 66
Figure 24: Winning Prices DistribUtioNc..oii it e st e s sevae e 67
Figure 25: Training REWAIASccccuviiiieiiei ettt ettt e e ette e e eete e e e s eatae e e s eataeeeseataeeesentaeaesentaeeesansaneenans 67
Figure 26: Load test terminal QULPULcocciiiii ittt ettt e e et e e e e e eabae e e senraeaeeans 67
Figure 27: Step 2 of the FL-ADM _D01 tESt...uuiiiiiiiieiieiieee ettt ceitee ettt e ssbee e s ssabee e e ssabaeeessnraeeesans 81
Figure 28: Step 4 of the FL-ADM D01 £ESE....uiiiiiiiieeeeiiiee ettt e et eete e e eetre e e eetee e e seabae e e eeabaeeesenraneenans 81
Figure 29: Results of steps 2 and 4 of D-ADM_FOOD2ccueiiiiiiiiee e eriiee e ssieee e ssvre e e ssveee e ssavaeeesans 81
Figure 30: Execution time as a function of the number of multi-view frames (UMU dataset)............ 94
Figure 31: Required data as a function of the number of multi-view frames for conventional and
SemCom SyStEMS (UMU datasel) ...ccccueeeciiieiiieciee et ecteeerte et e e ee e te e ste e e teeesateeeneeessseesntaeesnseesnseeans 94

Figure 32: Example of localization experiment with ~2m average error. Horizontal and vertical axis
represent longitude and latitude, and y_true and y_pred are the location vectors containing x and y

oo ToT e [Ta - TSP 96
Figure 33: Graph derived from retrained TFS model for UDP protocol, tested with Nokia operator

data; Ground Truth lines stem from separate forecasting horizon steps (step=1to 10).........cceceuen.. 96
Figure 34: Concurrent requests Vs [atency iN SECONAS ...cccccuviieiiiiiiiiciiiee e e 106
Figure 35: Inference speedup vs number of replicas......cccccuviiieiiiiiicciiie e 108
Figure 36: Mean latency vs. Number of parallel ReqUESEScooecuiiiiiiiiii e, 109
Figure 37: Execution time of different Al/ML workflow systems and dataset size......cccceeeevveennnee. 110
Figure 38: High-level view of dedicated Github project for NANCY integration monitoring 119
Figure 39: Example of integration point-specific reporting VIEWccccecvieeeeciiee e, 120

OV
D6.3 — NANCY Integrated System — Final Version .'.‘Eé_l_
L |
Figure 40: SSI Architecture with NANCY wallet and NANCY blockchain.........cccccoveiiiciieiiiciieccinen, 122
Figure 41: SSI authentication and authorization procedures...........ccooeveeieieccciiieee e, 123
Figure 42: Start a UE wallet gateway service at address ‘localhost:5000 with uid="UE' and
corresponding DID="did:nancy:UE-7kb29s3uKveUdfkuGZegOl)'ccovriiriiiiiieeee e 124
Figure 43: Invoke RequestCredential call to UE wallet with a claim of ‘age:20’ to issuer wallet service
AL "195.37.154.23:888 1"eeieiieeiiee ettt et sttt e st e e s abe e s be e e ateesabaesaaeesabaeeates 124
Figure 44: Invoke RequestAuthorization call to UE wallet with the acquired VC to verifier wallet
Service at '195.37.154.23:8881ccccoeeeieeeieeeree ettt st et e e ate e ste e eraeeenreeennes 125
Figure 45: Verifier wallet received and processed the authorization request from UE. 125
Figure 46: UE application requests UE wallet to sign a request payload digest..........cccccvvvvveeeerinnnns 125
Figure 47: Verifier wallet verifies the request payload signature.cccoccvvveiviiiiiicciiee e, 125
Figure 48: Look up authorization results of the UE DID on the verifier wallet service....................... 126
Figure 49: An example of a preconfigured service inside the BSS featuring all the necessary fields for
A SEIVICE OFAEr t0 IMABSTIO...ciiueiiiiiii ettt ettt e s it e e st e e s sabe e sabe e e sabeesabeesabeesabeesanes 127
Figure 50: Service activation WOIKFIOWcoiiiiiiiiiiiee st 127
Figure 51: BSS user enrollment dedicated Web Pageccueveeiiei e 128
Figure 52: BSS logs for user Service registration.........cceeiccveieiciiies st e e e seaee s 129
Figure 53: Service orders and their status as seen in the BSS.ccciiieiiiie e e 130
Figure 54: Service activation through BSS and Slice Manager workflowcccccvvvciieeivciiee e, 131
Figure 55: Deployment of target application’s helm chart in Kubernetes cluster of EHU’s MEC based
Lo AR I Ny o 1T ol 1 Tor- 14 o] o USRS 131
Figure 56: SLA creation and Marketplace mediation Workflowcccccoeevieiiiiiiiiiciieiccee e, 134
Figure 57: Start provider wallet service at port 5000 and created DID 'did:nancy:provider-
LAQUYPNIAZWIBVWUJASBN L'eiiiiieeiiee ettt rteeetee ettt e st e estee e sate e ssbeeesateesteessnaeesabeeesaeesnseesneeesnseenns 135
Figure 58: Start consumer wallet service at port 6000 an created DID 'did:nancy:consumer-
55pHMBAtEWUWDKHNSBIMIKTZF ...ttt ettt e e e e e e e tee e e e e rte e e s erae e e s eaneeeeeennees 135
Figure 59: Call both provider and consumer wallet to subscribe to SLA eventscccccevveeeivnnenn. 136
Figure 60: Provider creates a provider profile on marketplace......cccccoveviviiieiiiiiieiiciee e, 136
Figure 61: Provider application creates a new service profile through its walletccccceeenne. 136
Figure 62: Consumer creates a search on the marketplace which returns matched services........... 137
Figure 63: Both provider and consumer received notification of new SLAInit event with SLA 1D=292
.. 138
Figure 64: Consumer signs the SLA ID=292.......cccuuiiiiiiiiieiiiieeerieeeesree e e e s sre e e s saae e e ssaaaeessnreeees 139
Figure 65: Both parties receive the SigningSLA event and SLA id=292 now has the consumer
] ={ - L U] TP PPPPOPPTPPPT 139

10

Y]
D6.3 — NANCY Integrated System — Final Version LS
N

List of Tables

Table 1: MRAT-NCP functional teStS SUMMAIYccciciiieiiiiiee e eetee e e setre e e searre e s saraeeeeans 26
Table 2: ID Management functional tests SUMMArY........ccceevi oo e 29
Table 3: DAC functional teStS SUMMAIYc.uiiiiiiiiee et et e e seatae e e s eata e e e seataeeesensaeeeenns 29
Table 4: Blockchain functional teStS SUMMAIYccocuiiiiiiiiie ettt et e e eearaee e 31
Table 5: Wallet functional teStS SUMMAIYcocciiiii ittt et e e eetee e e eeta e e e eearaeeeeearaeeaeans 32
Table 6: Al Virtualizer functional teStS SUMMAIYcccuviiiiiiiii it rree e 35
Table 7: B-RAN Model functional teStS SUMMAIYcc.eeiiiiiiiii ettt et e e e e earaee e 36
Table 8: SemCom functional tEStS SUMMAIY ...cccuiiiiiiiiiee ettt e e e etre e e seaba e e s seabaeeaeans 36
Table 9: QKDSIm functional teStS SUMMAIY......cccuviii ittt etre e s eebre e e seabaaeeeans 39
Table 10: VoSysMonitor functional teStS SUMMAIYccocciiiiieiiiiee ettt et eeetre e e e ebaee e 41
Table 11: Marketplace functional tests SUMMAIYc..eeiiiiiiiiciie e 45
Table 12: Maestro functional TeSTS SUMMAIYeeiiiiiiiie ettt e e e e e e eebe e e e eeabaeeaeans 46
Table 13: Models functional teStS SUMMAIY.......c.uviiiiiiiiie ettt e e et e e e ete e e e e ete e e e eebaeeaens 50
Table 14: SEMR functional teStS SUMMAIYcccuiiii ittt e stee e e aree e e eabee e e e 51
Table 15: Elasticity functional teStS SUMMAIYcoccuiiii ittt et e e et e e 52
Table 16: Averaged performance metrics for dynamicloadccocveeiiiiiiiiicciiec e 53
Table 17: PQCSig functional teStS SUMMAIYcuuiiiiiciiiie ettt et sre e e e e e e sbaeeeesaees 54
Table 18: TFS functional tEStS SUMMIAIYcciiiciiiee ittt e et e e e ette e e e ebte e e e ebaeeeeebaeeeesseneeeannes 56
Table 19: RICMNgr functional tests SUMMAIY.......ccocciiiiiiiiiie e e e vae e e e srae e e e 57
Table 20: AINQM functional teSTS SUMMAIYoiiiiiuiiieieciiee et cectee et e e etre e e e eerre e e e eeraeeeeeseeeeeeanes 61
Table 21: NIF functional TESTS SUMMAIYoiiiiiiiie e cciiee ettt e ettt e e e etre e e e ette e e e etteeeesbteeaesseneeeannes 62
Table 22: SPP functional tEStS SUMIMAIYuvviiiiieiiiiciiieeee e e e ecctrre e e e e e eeestrreeeeeeeeesaatraeeeeeeesensnrseaeeeas 64
Table 23: XAl functional tESTS SUMMAIYcoiiiiiiie ettt e et e e e eette e e e eate e e e eeare e e e srteeeesnseeaeennes 68
Table 24: FL-IDS functional teStS SUMMAIYccuiiiiiiiiieecciiee e cciieee s eciee et e e st e e e sate e e e sraeeessseaeeesanes 72
Table 25: MTG-RM functional teStS SUMMAIYcoicciiiiiiciie e e e e sree e e e 76
Table 26: PQC-SC functional teSTS SUMMAIYc.uiiiiiiiieeeeciiee e cciiee e e et e e e ette e e e eareeeeetteeeeebaeeeesseneesannes 78
Table 27: FL-IDS functional teStS SUMMAIYccuiiiiiiiiie ettt sttt e e e sire e e s s e e s ssrae e e s sneeeeesanes 79
Table 28: OpenSlice functional teStS SUMMAIY........ccuiiiiiiiiie et e e e erte e e e ereee e e eanes 82
Table 29: NANCY inte@gration MatriXccccieeeiiiiiee e eiiiee et ecie e e et e e e e stte e e s sateeeesntaeeesnteeeesnsaeeesanes 86
Table 30: Integration points specification SUMMArYccoceiiiiiiiiiiiie e 87
Table 31: MRAT-NCP - ID-Mngnt integration testS SUMMAIy........ccccccieeeiiiiieeeeiieeeeccreeeeeceeeeeeseeeeeeenns 91
Table 32: MRAT-NCP — Semcom integration tests SUMMaAry.......cccovcuveeiiiiieeeseieee e esieee e ssiee e ssreee e 92
Table 33: MRAT-NCP — Models -TFS integration tests SUMMAry......ccccccoecieeeeccieeeeccieeeeecieee e ecreee e 95
Table 34: ID-Mngnt - Wallet integration tests SUMMArYcccouvieeiiiiiei e e ecvrre e 96
Table 35: ID-Mngnt - VoSySMonitor integration tests SUMMArycccoecvieeiiciiee e 98
Table 36: ID-Mngnt - VoSySMonitor integration tests SUMMArycccoccveeeieciieeeccieee e 99
Table 37: BC - Wallet integration teStS SUMMAIYc.euiiiiciiieiiiiee et e e s e e e 99
Table 38: BC - Marketplace integration tests SUMMAryccoocveiiiriiiiiiniiiee e 100
Table 39 Wallet - Marketplace integration tests SUMMAryccceeecieeiiccieec e e 100
Table 40: Al Virt - VoSySMonitor integration tests SUMMary........cccvcuveeirciee i 103
Table 41: Al Virt - SEMR integration tests SUMMAIY.......ccocciiiiieiiiie et e e eare e e 105
Table 42: Marketplace - SPP integration tests SUMMAry.........ccccoueieeiiiiieeciiiee et e e 106
Table 43: Models - SEMR integration testS SUMMAIY.......ccccuveeiiiiieeeiiiiee e e esirre e esiree e esareeeesareee s 107
Table 44: SEMR — FL-IDS integration tests SUMMaAryccceeeeei e e e eecrrree e e e e e 110
Table 45: PQC Sign — PQC SecCom integration tests SUMMAIYcccciueeeiiiieeeeiiieeeeiieeeeesireeeeseveee s 112
Table 46: AINQM - NIF integration tests SUMMAIY........cooeciiieiiiiiiiie e svre e e e seaee s 113

11

D6.3 — NANCY Integrated System — Final Version

Table 47: AINQM - XAl integration tests summary
Table 48: XAl — FL-IDS integration tests summary.

12

oy
D6.3 — NANCY Integrated System — Final Version LS & &

List of Acronyms

Acronym Explanation

5G
Al
Al Virt
AINQM
API
ASL
AR/VR
BC
B5G
BSS
B-RAN
CA
Cl/cD
CNN
cow
Ccsv
CV-QKD
DAC
D-ADM
DevOps
DID
DT
ETSI
FL
FL-IDS
GRPC
HA
HTTPS
ID Mgnt
JSON
K8s
K8s-aa$S
KMS
KPI
LaaS
LLM
MARL
MEC
ML
MLOps

MRAT-NCP

MTG-RM

NAOMI
NBI
NFVO
NI

5 Generation
Artificial Intelligence
Al Virtualizer
Al Network Quality Module
Application Programming Interface
American Signh Language
Augmented Reality/ Virtual Reality
Blockchain Component
Beyond 5% Generation
Business Support System
Blockchain RAN
Certificate Authority
Continuous Integration/ Continuous Delivery
Convolutional Neural Network
Coherent-One-Way
Comma-separated values
Continuous-Variable Quantum Key Distribution
Digital Agreement Creator
Distributed Anomaly Detection and Mitigation
Development and Operations
Decentralised Identifier
Digital Twin
European Telecommunications Standards Institute
Federated Learning
Federated Learning-Intrusion Detection System
gRPC Remote Procedure Call
Highly Available
Hypertext Transfer Protocol Secure
Identity Management
JavaScript Object Notation
Kubernetes
Kubernetes-as-a-Service
Key Management System
Key Performance Indicator
Localisation-as-a-Service
Large Language Model
Multi-Agent Reinforcement Learning
Multi-Access Edge Computing
Machine Learning
Machine Learning Operations

Multi Radio Access Technologies — Nomadic Connectivity

Provider
Memory Traffic Generator-Resource Monitor
Network Al Workflow Democratisation
Northbound Interface
Network Functions Virtualisation Orchestrator
NANCY Interface

13

AL
D6.3 — NANCY Integrated System — Final Version .'.‘Eé.l_
L |
NIS NANCY Interface Set
NIF Network Information Framework
OBU Onboard Unit
OP-TEE Open Trusted Execution Environment
0SS Operations Support System
0aQs Open Quantum Safe
P2P Point-to-Point
PQC Post-Quantum Cryptography
PC5/ Uu Interfaces from 3GPP context (i.e., Device-to-Device,
Cellular UE-to-Network link)
QBER Quantum Bit Error Rate
QKDSim Quantum Key Distribution Network Simulator
RAN Radio Access Network
RIC RAN Intelligent Controller
RICMngr RAN Intelligent Controller Manager
RSU Roadside Unit
SAE Secure Application Entity
SEMR Self-Evolving Model Repository
SLA Service Level Agreement
SM Slice Manager
SO Service Orchestrator
SP Smart Pricing
SPP Smart Pricing Policies
SSI Self-Sovereign Identity
SSL Secure Sockets Layer
TEE Trusted Execution Environment
TLS Transport Layer Security
TFS Traffic Forecasting Service
TMF TeleManagement Forum
UE User Equipment
V2X Vehicle-to-Everything
VNF Virtual Network Function
vOBU Virtual Onboard Unit
VPN Virtual Private Network
XAl Explainable Al
YAML YAML Ain't Markup Language
IMSI International Mobile Subscriber Identity
SMF Session Management Function

14

Ny’
D6.3 — NANCY Integrated System — Final Version LS & &
N

Executive summary

This deliverable presents in detail the final results of T6.3 - Interoperability check and joint-
optimization related to NANCY integration activities, which aim to incorporate the outcomes of the
development tasks (WP2-WP5) into the final release of the NANCY unified platform. To this end, this
deliverable builds on the outcomes of T6.1 and T6.2 relative to the integration points specifications
and the associated functional and integration testing plans, as well as the platform’s initial deployment
view (reported in [1]and [2]). More specifically, it initially describes how the interconnection among
NANCY platform’s operation domains and the different testbeds/demonstrators was achieved. Then
it delves into the specifics of functional and bilateral integration tests (initially described in [2])
providing their detailed execution specifications. The test specifications follow a common template
including information on the test objectives, configuration and detailed description of the testing
steps. In this context, the updates with respect to [2] concerning the initially envisioned integration
points are also highlighted providing the details about newly identified or dropped integration points.

Moreover, D6.3 provides the implemented system level validation workflows, as the advanced
validation/verification of selected NANCY integrated system operations to be demonstrated within
the different testbeds/demonstrators. These workflows, often horizontal (i.e., common) across
different NANCY use cases, represent end-to-end processes which involve multiple steps among
multiple NANCY integration points towards a specific objective (e.g., get authenticated and authorized
to use a specific service, or create a Service Level Agreement (SLA) between the end-users and
different operators).

To this end, the final release of the NANCY unified platform, validated through comprehensive tests
at different levels, provides a prototype suitable for the final use-case specific tests and evaluation at
the different NANCY pilots.

15

oo
D6.3 — NANCY Integrated System — Final Version LS & &
N

1. Introduction

1.1. Purpose of the Document

This document presents the final version of the NANCY integrated system. It illustrates how NANCY
brings together secure and intelligent resource management and flexible networking using cutting-
edge research in Artificial Intelligence, Blockchain, Orchestration, etc. In terms of networking, novel
architectures, namely point-to-point (P2P) connectivity for device-to-device communication, mesh
networking, and relay-based communications, are introduced to build a secure core platform for B5G
communications.

The project realizes its ambitious approach to the provision of the necessary Beyond 5G
functionalities, bringing together a multitude of disparate and complex technologies to create its core
platform, on top of five unique experimental testbeds. The deployment view of the core platform is
presented herein, along with results from the functional, integration, and end-to-end testing that was
performed by the Consortium in order to validate the NANCY workflows “from start to finish”.

1.2. Relation to Other Tasks and Deliverables

This document concludes the integration work that was first presented in D6.2 “NANCY Integrated
System — Initial Version”. The first iteration showcased the progress up to M25 of the project, while
the current version provides the details of the final version of the NANCY Core Platform.

As also stated in [2], the Integration task received inputs from the key technical work packages,
namely:

o WP2 “Usage Scenario and B-RAN Modelling, Network Requirements and Performance
assessment” for requirements and modelling of B-RAN and Network Information Framework,

o WP3 “NANCY Architecture and Orchestration” for the core artificial intelligence and
orchestration components,

o WP4 “Dynamic Resource Management and Smart Pricing” for the components implementing
the computational off-loading, caching, resource elasticity, cell-free cooperative access, smart
pricing and beyond-Shannon performance, and

o WP5 “Security, Privacy and Trust Mechanisms” for the quantum key distribution, blockchain-
based security and privacy, self-healing/self-recovery, and explainable Al.

The remaining integration activities that took place after the initial release of the NANCY integrated
system, following the integration timeline presented in [2] and in conjunction with the guidelines
delineated in [3], were strongly related to the initial validation/testing activities carried-out at the
different testbeds and demonstrators (T6.5-T6.9), and thus they provided valuable feedback for
refinements with respect to NANCY components and integration points. These activities led to the
final release of the NANCY integrated system, described analytically in the current deliverable. This
release serves as a prototype ready to be further tested, validated and evaluated within the use cases
of the different testbeds and demonstrators (T6.5-T6.9). The results of this evaluation will be
analytically reported in D6.10: “NANCY Pilots' Documentation and Evaluations”.

16

oy
D6.3 — NANCY Integrated System — Final Version LS & &
\."/

1.3.

Structure of the Deliverable

This document is structured as follows:

Chapter 1 - Introduction defines the structure and purpose of the document.

Chapter 2 - Deployment View of NANCY Reference Architecture describes the central
management and inter-operator domains, as well as their connection to the NANCY testbeds
and demonstrators.

Chapter 3 - Functional Testing of NANCY Components details the specification and results of
the functional testing of each component of the project’s platform to ensure that they work
according to their requirements and within their specifications.

Chapter 4 - Updates on Integration of NANCY Components and Services provides an update
on the project integration points, the specifications, and results of inter-component integration
tests.

Chapter 5 — NANCY Platform — System-Level Validation Workflows provides the results of
system-level tests to verify the readiness of the NANCY platform for execution at the different
demonstrations.

Chapter 6 — Conclusions summarizes and concludes the document.

17

o
D6.3 — NANCY Integrated System — Final Version LS & &
\."/

2. Deployment View of NANCY Reference Architecture

In the current section, information is provided regarding the interconnection of NANCY’s main
operation domains: Central Management, Inter-Operator and Testbeds/Demonstrators sites (Figure
1). The objective is to provide a high-level view of the components of each domain invoked at each
testbed or demonstrator, as well as information on how the networking/interfacing among these
components is implemented (e.g., VPN setups, etc.).

Central Management Domain Inter-operator Domain
. | Smart Digital
CI/CD Platform | IMaestroI |0penSIice| | SliceManager BIOCkCha'nI Pr[;’t]:?ng IMal’kEtP|aCEI Agrr-.l‘iln?ent
L T
,J
;:’a e
2
VPN Fabric || |
r‘fu —:5
o !
ES, v IT ;I GR ’
'] |
K8s Cluster K8s Cluster | K8s Cluster BSS
A h - - 4 0
4 Spanish outdoor ‘ Italian -E Greek indoor
“ Testbed Testbeds — and outdoor
testbeds

Figure 1: NANCY platform operation domains and deployment of the NANCY architecture.

2.1. Central Management Domain and Testbeds/Demonstrators
2.1.1. Maestro and OpenSlice Connection with Greek testbeds/demonstrators

Maestro acts as the NANCY service orchestrator and OpenSlice acts as the NANCY resource
orchestrator as per the NANCY integration architecture introduced in [1]. Both orchestrators serve the
Greek indoor testbed and Greek outdoor demonstrator in applying the SLAs and corresponding service
configurations and automating the deployment of the corresponding components at the subsequent
Kubernetes clusters (indoor testbed or outdoor demonstrator). This integration is depicted in Figure
1. Maestro and OpenSlice (outlined with green color) reside in the NANCY Central Management
Domain, establishing a connection (also outlined with green color) with the Greek facilities at the
bottom right part in Figure 1. As part of this integration, Maestro interacts with the BSS components
of the two experimental sites. To do so, two private network connections are established from the
Maestro location (hosted by INTRA under Hetzner’s cloud) towards (i) the UOWM Greek indoor
testbed over OpenVPN (see Figure 2) and (ii) the OTE Greek outdoor demonstrator over an IPSec
tunnel (see Figure 3). The integration specifics are provided in Section 5.2

18

D6.3 — NANCY Integrated System — Final Version

@ openvpn-client@uowm.service - OpenVPN tunnel Tor uowm
oaded (/1ib/systemd/system/openvpn-client@.servic vendor prese
) since Mon 2025-09-15 08:04: uTg;

.openvpn.net/openvpn/wiki/0penvpn24ManPage
. openvpn . net/openvpn /wik 1/HOWTO

‘Initialization Sequence Completed"
1 (limit: 37554)
2M

/system.slice/system-openvpn\x2dclient.slice/openvpn-client@owm.service
L209136@ /usr/sbin/openvpn p time ps ind --config uowm.conf

k8s-single-node op p : WARNING: this configuration may cache passwords in memory -- use the auth-nocache option to prevent this
k8! ingle-node P : [VPNServe rtificate] Peer Connection Initiated with [AF_INET]83.2 9:1195
ingle-node openvpn Options e r: option 'route not be used in this context ([PUSH-OPTIONS])
nvpn tions e T 1 ‘route’ not be used in this context ([PUSH-OPTIONS])
nvpn tions e i ‘route’ not be used in this context ([PUSH-OPTIONS])
nvpn TUN/TAP device tun® opened
nvpn : net_iface mtu_set: mtu 1500 for tun®
nvpn : net_iface_u et tund u
g nvpn : net_addr_v4_add 40.3/24 dev tun®
8s-single-node openvpn : Initialization Sequence Completed

Figure 2: OpenVPN client connected to UOWM Greek indoor testbed site.

Status / IPsec/ Overview Co=uwEe
Overview Leases SADs SPDs
IPsec Status
D Description Local Remote Role Timers Algo Status
conl INTRA-OTE IPSec site-to-site ID: 49.13.236.13 ID: 195.167.80.39 IKEv2 Rekey: 70305s AES_CBC (256) Established
#428 VPN Host: Host: Responder (19:31:45) HMAC_SHA2_256_128 7079 seconds (0
A 49.13.236.13:500 195.167.80.39:500 Reauth: Disabled PRF_HMAC_SHA2_256
SPI: SPI: MODP_2048
eff3c2336051c6c0 ab60eb4Sfd1bed7s
D Description Local SPI(s) Remote Times Algo Stats
conl k8s-cluster 10.30.0.3/32 Local: ce3ffbcc 10.10.10.0/24 Rekey: 1714s (00:28:34) AES_CBC (256) Bytes-In: 0 (0 B) Installed
#4266 f Remote: cf8f1a9f Life: 23865 (00:39:46) HMAC_SHA2_256_128 Packets-In: 0
Install: 1214s (00:20:14) MODP_2048 Bytes-Out: 0 (0 B)
IPComp: None Packets-Out: 0

Figure 3: IPSec tunnel established with OTE Greek outdoor demonstrator site.

Figure 4 visualizes the Maestro services provisioned in INTRA’s Hetzner cloud premises. These services
are instantiated as Kubernetes pods in a Kubernetes cluster acting as a management cluster where
both Maestro and OpenSlice are deployed.

maestro maestro-grafana-7b554f4f4b-232 Running 20 (15d ago) 107d
maestro maestro-infinispan-549697d j Running 6 (15d ago) 107d
maestro maestro-kafka-controller-@ Running 0 2d5h
maestro maestro-keycloak-0 Running 675 (16d ago) 107d
maestro maestro-kube-prometheus-st-operator-67f4654d6d-gt12t Running 6 (15d ago) 107d
maestro maestro-kube-state-metrics-6b9d6f9548-mx14m Running 879 (10d ago) 107d
maestro maestro-loki- Running 6 (15d ago) 107d
maestro-loki-chunks-cache-8 ¢ Running (15d ago) 107d
maestro-loki-gateway-f6d6b45d5-17mhg Running 7 (15d ago) 107d
maestro-mongodb-0 Running 6 107d
maestro-otel-collector-76df67c7c7-1 Running 89 (16d ago) 107d
maestro-peering-ap1-6b695845dd-c8tdl Running 20 (16d ago) 107d
maestro-pgadmin-7 6 6 Running 158 (15d ago) 107d
maestro-portal-cart- p Running 6 (15d ago) 107d
maestro-postgresql-db-0 Running 16 (15d ago) 107d
maestro-prometheus-node-exporter-pdzpf Running 2453 (10d ago) 107d
maestro-promtail-rxdzd Running 6 (15d ago) 107d
maestro-registry- 6 5b j Running 6 (15d ago) 107d
maestro-registry Running 6 (15d ago) 107d
maestro-registry-ui-796c66fb69-151v9 Running 6 (15d ago) 107d
maestro-sonata-core-58c79597d9-tnxpg Running 1 (15d ago) 40d
maestro-sonata-helm-engine-599fb5db9c-vktdd Running 405 (2d5h ago) 107d
maestro-sonata-oss-client-5964fcd548-8srmm Running 6 (15d ago) 107d
maestro-telemetry-api-9666bdff9-5zcf5 Running 6 (15d ago) 107d
maestro-tempo-0 Running 6 (15d ago) 107d
maestro-tmfs-ap1-845655b694-1sq7p Running 6 (15d ago) 107d
maestro-vault-server-55948f8c88-tc6v8 Running 6 (15d ago) 107d
maestro maestro-ztc-client-574478 b-w4759 Running (2d5h ago) 107d
maestro prometheus-maestro-kube-prometheus-st-prometheus-0 2/2 Running 609 (15d ago) 107d
maestro tmf-api-hook-onboard-spec-7qf79 8 Completed 0 107d

Figure 4: Maestro pods deployed in a Kubernetes cluster in the NANCY Central Management domain.

19

\
=
7

D6.3 — NANCY Integrated System — Final Version

z ,(0—(0
'S (o)
QR

-2

>
z
(¢]
<

L |
Figure 5 depicts a snapshot of Maestro’s swagger APIl showing a set of TMF Service Management
APIs relevant to NANCY.

Service Candidate ot
o 8~
P —— a
wio & v
Tent-ag, S a v
X3 8
Service Catalog ~
av
8~
atalog/{id} n @
ot . wn av
Ui partely @
Service Category ~
o | Lo a~
v
a-
pr— a
8~
Service Inventory ~
Jrarvics e~
a v

a v

a~

a v

a v

Service Ordering Management b
GET i i Servca Ordar st a v
av
v
Bl /ov-op eorvicoonerang/va/e o
Tent-aps, 5 22 Servcecons s 10 @~
; Stz e av

Figure 5: Maestro swagger APl showing a set of TMF Service Management APIs relevant for NANCY.

Figure 6 visualizes an existing service order made by Maestro towards the Greek outdoor
demonstrator testbed of OTE. The JSON body of this service order shows a service order made in
October 2025 for the Minds AR/VR application (Viewcube) that participates in the Greek outdoor
demonstrator hosted by OTE.

20

\
=
7

D6.3 — NANCY Integrated System — Final Version
L |

Details

¢

5 -0
A
A RS
b

N-2

>
z
(¢]
<

Response body

ada33-ccdd-43a6-ad88-62dadb4a5c99”,
ServiceOrder",
on": "Minds App with Blockchain",
"state": "COMPLETED"
"orderDate”: "2025-10-15T11:07:54Z",
"requestedStartDate”: "2024-07-15T10:00:00Z"
"requestedCompletionDate”: "2026-08-17T16: o
"expectedCompletionDate”: "2026-88-16T10:00:00Z",
"href": "http://126.140.105.0:30088/tmf-api/service0rdering/v4/serviceOrder/aa7ada33-ccdd-43a6-ad88-62dadb4asc99”,
"relatedParty": [],
"note": [],
"orderRelationship”: [],
"externalReferences": [],
"errorMessage”: [1,
"jeopardyAlert”: [],
"serviceOrderItem": [

": "B22767ae-60ch-4d19-b3b9-b60b32fcacce”,
ion": "add",

081f8-7ebd-4d12-9¢13-1fed49ba3428",
nds App with Blockchain”, E Download
FEASIBILITY_ CHECKED",

Response headers

content-type: application/json;charset=UTF-8
transfer-encoding: chunked

Figure 6: Maestro swagger AP| with a service order request towards the Greek outdoor demonstrator at OTE premises.

2.1.2. SliceManager Connection with Spanish demonstrator

In the Spanish demonstrator, the SliceManager orchestrator is responsible for enforcing the SLA of
requested services by deploying the corresponding applications in the MEC and applying relevant
radio network configurations, involving reconfiguring their allocated resources (e.g., CPU, memory,
PRB). The demonstrator’s testbed in EHU and the SliceManager in i2CAT premises reach each other
via a VPN established in a MEC server in EHU towards the corporate Cloudflare VPN server in i2CAT
(outlined in red color in Figure 1), allowing the Kubernetes cluster in the MEC and the srsRAN-based
5G to be registered in SliceManager. The connection is established using the Warp CLI, which sets up
a CloudflareWARP interface in the MEC server (Figure 7).

ubuntu@sm-131:~% warp-cl1 status

Status update:

ubuntu@sm-131:~$ warp-cli debug network
IPv4: [eno4; 1. ; Ethernet; Gateway: Some(1€

WARP Tunnel Interface:

Interface Index: 37893

Interface Name: CloudflareWARP

Interface Addresses: IPv4: 100.9€ IPv6: 2606:4700:cf1:1000::1a

Figure 7: Warp CLl interface in the MEC server

SliceManager provides a REST APl in an instance listening at 192.168.123.67:8989 as shown in the
following figure:

21

D6.3 — NANCY Integrated System — Final Version

2 -5
&y
HEE(

Slice Manager API® &=

Istaticlopenapi.yaml

This API provides interaction between the N-Naas platform and the Slice Manager.

Servers

User

‘E /user Get users information

‘ m /user Register a new user

‘ m /user/{user_id} Getindividual user information
’ /user/{user_id} Delete an user
Edge/Cloud Compute Resource

‘ ﬂ /compute Get computes information

‘ m /compute Register a new compute resource

‘ m /compute/{compute_id} Getindividual compute information

’ /compute/{compute_id} Delete a compute

Figure 8: Slice Manager API

This APl is reachable from EHU using the VPN tunnel. As part of the initial setup, the Kubernetes cluster
is first registered using the /compute/post endpoint, which accepts the cluster’s kubeconfig file.

22

D6.3 — NANCY Integrated System — Final Version

POST /compute Register a new compute resource

Compute registration method

Parameters

No parameters

Request body ="

The body of the request

Example Value | Schema

va",
3 : "5b63089158f568073093F70d",
"location": {
"latitude": .
"longitude":

"compute_type": "openstack]|fos|k8s",
"trusted": false,
"compute_data": {
"openstack": {
"project_name": "admi
"availability zone": "
"password admi

},

"kés": {
"kubeconfig_path" fusr/app/src/conf/kubeconfig/",
"kubeconfig_name": "pledger-k8s-config"

Responses

Figure 9: Compute post API from Slice Manager

The helm charts used by EHU’s services are uploaded using the /network_service/post endpoint. Then,
upon a user request, the corresponding service is instantiated using the
/network_service_instance/post endpoint.

23

2 -2
i \
-2

D6.3 — NANCY Integrated System — Final Version

o0 | /network_service_instance Create a new network service instance

Network service instance registration method

Parameters

No parameters

Request body "7V

The body of the request
Example Value | Schema

"user_id": "5b63089158f568073093f70d",
"slic3_id": "5b63889158f568073093f70d",
"network_service_id": "5b63089158f568073093f70d",
"description": "Instance example",

i "61724abe0f49700913f4853a",

]
“;:rusted“: false,
"input_node_id": "ce5ccb78-2722-4693-a1f9-1793a3bb1c7a",
"ns_placement_data": {
"wnf": [
{
"member-vnf-index": "1",
"vimAccountId": "0e008f85-800e-49c5-9de7-15c3e530bb71"
}
1

e
"enf_requirements": {
"request_cpu": "

"limit_cpu™: "

"limit_memory": "

“édditional_instantia‘tion_pa rams": {
"nodeName": "nodel"
}
}

Figure 10: network_service_instance post endpoint from Slice Manager

2.2. Inter-Operator Domain and Testbeds/Demonstrators

The Inter-operator Domain typically includes the NANCY Blockchain together with its smart contracts
(deployed on-chain), its oracles (deployed off-chain), and the Smart Pricing and DAC components. The
set of these components is utilized for the use cases of the Greek in-lab testbed. Specifically, the
NANCY Blockchain is a NEC-hosted, Hyperledger Fabric v2.2.0-based blockchain, with some security
and privacy improvements. Both the Marketplace and the SLARegistry smart contracts are deployed
on the NANCY Blockchain (thus, hosted by NEC in its Heidelberg laboratory), together with the
Blockchain oracles; while the Smart Pricing and DAC components are deployed at 8Bells and DRAXIS
premises respectively, in Greece. Oracles and off-chain components communicate using HTTPS
requests.

As indicated in [4], the NANCY wallet is a Kotlin gRPC server that exposes calls for working with the
NANCY blockchain, the PQC component, and the SSl infrastructure. This means that the Greek in-Lab
testbed, which is the one that demonstrates operations in the Inter-operator Domain, must be —and
is — equipped with NANCY wallets, specifically for the service orchestrator and business support
system (BSS) of the operators working inside the in-Lab testbed.

24

> -2
B2
N-2

Pl

D6.3 — NANCY Integrated System — Final Version
\."/

L |
By adding resources in the Marketplace, the BSS of a given operator can make them available to other
domains. Consequently, any local operator, by means of the wallet of its service orchestrator, can
search for available resources in other domains that are able to fulfill an SLA that the local operator’s
capabilities cannot fulfill. More information can be found again in [4] and later in this deliverable
(Section 5.4).

There is no VPN fabric between the Greek in-Lab testbed and the Inter-operator Domain. The NANCY
wallet stores user identities, which typically include “(1) X.509 certificates as issued by the Fabric's
Certificate Authority (CA) to authenticate a user or organization's identity, (2) the user’s self-generated
DIDs, and (3) private keys used to sign transactions on behalf of the user”. Therefore, communication
between the wallet and the blockchain is secured under TLS and said certificates/keys. Requests are
visible in the transaction history in the ledger.

25

]
D6.3 — NANCY Integrated System — Final Version e e

3. Functional Testing of NANCY Components

This section presents the functional testing activities performed on all NANCY components integrated
within the NANCY reference architecture. Each subsection corresponds to a distinct component and
provides its objectives, testing configuration, preconditions, test sequence, and final verdict. The
testing activities aim to verify that each module operates according to its technical specifications and
achieves functional readiness for system-level integration.

3.1. Multi Radio Access Technologies — Nomadic Connectivity Provider
(MRAT-NCP)

The MRAT-NCP component, as described in [5], is responsible for extending coverage and optimizing
connectivity in 5G networks, particularly in rural or densely populated urban areas where traditional
infrastructure is limited or costly. It leverages PC5 links for direct device-to-device (D2D) and multi-
hop communications, allowing data to be relayed through nearby nodes until it reaches the 5G
infrastructure or the MRAT-NCP itself, enhancing network coverage, resilience, and reliability. In
addition, it integrates Identity Management and secure data storage mechanisms using encrypted
caching to ensure authentication, data integrity, and low latency in dynamic multi-hop scenarios.
Furthermore, MRAT-NCP works in conjunction with machine learning models to continuously select
the optimal network operator for each UE and to infer the location of remote UEs based on network
metrics, enabling more efficient resource allocation and improved service quality. Table 1 summarizes
the functional tests, while Figure 11, Figure 12, and Figure 13 illustrate the test results.

Table 1: MRAT-NCP functional tests summary

Status (Completed, Dropped,

Functional Test ID jecti
unctional Test Objective New and completed)

MRAT-NCP_F001 Test PC5 link reliability and requirements. Completed
Test the tandem connection for PC5 and 5G

MRAT-NCP_F002 . Completed
connectivity.

MRAT-NCP_F003 Test intra-network connectivity to compute e
nodes.

Test type Functional

Identifier MRAT-NCP_F001, MRAT-NCP_F002, MRAT-NCP_F003

Tester uMu

Test Purpose Allow access to 5G network for a remote non-5G subscriber, but NANCY subscriber.

References [5], Section 3.2 "Multi-hop Coverage Extension"

[5], Section 3.6 Trustworthy Grant/Cell-free Cooperative Access Workflow"
Configuration Cohda MK®6, Raspberry Pi 5 and LattePanda

Pre-test There must be Ethernet connectivity between each of the Cohda devices and their
conditions respective module (Raspberry Pi or Lattepanda).
The provider module must have connectivity with at least one of the 5G operators.
The Cohda devices must have GPS signal and PC5 coverage between them.

Test Step Type Description Result
Sequence
1 1 Stimulus Measure and verify latency, bandwidth, and packet Pass

loss over the PC5 link.

26

transmission, and the integration of machine learning models to optimise
UE performance and location.

24

22

20

18

16

Latency {ms)

14

12

101

20

40 &0 a0 100
Packet Index

Figure 11: Latency Analysis for PC5 Interface

120

L
D6.3 — NANCY Integrated System — Final Version .'.‘\.l’
NANCY
L |
2 Check Test connection stability and reliability. Pass
2 3 Check Validate that the connectivity between the MRAT- Pass
NCP and both operators is properly established and
functioning.
4 Check Confirm that the tandem configuration can switch Pass
between provider operators correctly, according to
the selected interface.
5 Check Ensure that this tandem connection functions Pass
correctly, without service interruptions and with a
smooth user experience (Figure 11 - Figure 13).
6 Check Verify that data transmission through the selected Pass
operator occurs without errors or interruptions.
7 Check Verify that there is end-to-end connectivity from Pass
the PC5 link to each of the operators.
8 Check Integrate the ML models to select the optimal On going
operator, the throughput forecast estimation and
the models to infer the UE ubication.
Test The PC5 connection and tandem configuration operate stably and Pass
Verdict continuously, with correct switching between operators, error-free

27

D6.3 — NANCY Integrated System — Final Version

—a— Sender at 1000 (Kbits/sec)
er at 2000 (Kbits/sec)

/\

2000 A

A

1800 4

1600

1400 4

Operative Bandwidth (Kbits/sec)

1200 4

1000 4

\/

AN A

Packet Loss (%) at 1000 Kbps |

—— Packet Loss (%) at 2000 Kbps

% U A W

\ Vo

e N N T e e

T T T
0 5 10
Interval Index

T
15

T
20

Figure 12: Comparison of bandwidth and packet loss at different data rates

70 A

60

50

Latency (ms)

30 4

204

0 5 10
ICMP Sequence (s)

15

20

Figure 13: Latency comparison using Uu and PC5 interfaces

3.2. Identity Management

T
25

®

Packet Loss (%)

\
e ad
TN

/
o
\

. D%
&

>
z
(¢]
<

The Identity Management, as described in [5] and [4], is responsible for ensuring secure device
authentication. It integrates with MRAT-NCP so that a remote user can reliably and privately access
the services offered by the provider. In this context, the remote UE generates a credential using its p-
ABC wallet, ensuring it complies with the format and requirements specified by the provider. The
MRAT-NCP then verifies this credential by checking its authenticity against the issuer’s public key
stored on the blockchain. Only after successful verification is the UE granted access to the requested
services, maintaining both security and privacy throughout the process. Table 2 summarizes the

functional tests.

28

]
D6.3 — NANCY Integrated System — Final Version e e
\."/

L.
Table 2: ID Management functional tests summary

Status (Completed, Dropped,

Functional Test ID Objective NG E)

ID_Mgnt_F001 Test keY derivation and generation of el
credentials.

ID_Mgnt _F002 Test Configuration of the wallet. Completed
ID_Mgnt _F003 Test verification of credentials. Completed
Test type Functional
Identifier ID_Mgnt _F001, ID_Mgnt _F002, ID_Mgnt _F003
Tester UMu
Test Purpose The main purpose of the test is to validate the entire verification flow.
References [5] Section 3.6 "Trustworthy Grant/Cell-free Cooperative Access Workflow"

[6] Section 3.3 “Further Mechanisms for Ensuring the Security and Privacy of the Users”
Configuration Cohda MK®6, Raspberry Pi 5 and LattePanda

Pre-test The remote UE and the MRAT-NCP have correctly configured their own p-ABC wallet
conditions (both of them) and blockchain wallet (only the MRAT-NCP)
There is connectivity between the MRAT-NCP and the remote UE.

Test Step Type Description Result

Sequence

1 1 Check Correct configuration of the wallet. Pass
2 Check Credential generation. Pass
3 Check Credential validation Pass

Test It is confirmed that the wallet configuration, credential generation, and Pass

Verdict verification are performed correctly.

3.3. Digital Agreement Creator (DAC)

The DAC component is responsible for generating and managing smart contracts within the NANCY
framework. It exposes a RESTful interface built in Spring Boot, allowing the creation of SLA-based
smart contracts for the Hyperledger Fabric Ledger. Specifically, it:

e Accepts structured JSON input describing service-level agreements.

e Dynamically generates chain code files.

e Stores them locally using a hash of the contract as a unique filename.

e Supports downloading these smart contract files via a REST endpoint.

e Interacts with the NANCY marketplace and NANCY Blockchain.
Table 3 summarizes the functional tests of the Digital Agreement Creator.

Table 3: DAC functional tests summary

Status (Completed, Dropped,

F i | Test ID jecti
unctional Test Objective T o

DAC_F001 Tgst API.er.ldpoint for creating smart contracts oz
with valid input.

DAC_F002 Test APl endpoint with invalid or missing input Completed
data.
Test API i i

DAC_F003 est response time and ensure it meets ol

performance criteria.
Analytic Functional Test Description

29

-2
2y \
>y
i)

0-%

D6.3 — NANCY Integrated System — Final Version

/
0

'
NANCY
L __|

Test type Functional

Identifier DAC_F001, DAC_F002, DAC_F003

Tester DRAXIS

Test Purpose To verify the correctness, robustness, and performance of the APl endpoints for smart
contract generation and retrieval.

References [7], paragraph 4.3.1
[4], paragraph 2.3.2.1

Configuration - DAC service deployed as Spring Boot REST API (Docker containerized)

- Preconfigured Swagger/OpenAPI interface
-JVM 17, Maven build

Pre-test - DAC REST service is deployed and reachable
conditions - Java runtime and Docker environment running
- Valid SLARequest JSON available for testing

Test Step | Type Description Result
Sequence
1 Stimulus Call POST /DAC/createSLA with a valid SLARequest | Chaincode
payload generated
2 Stimulus Call GET /DAC/getSmartContract/{hash} using File is
returned hash downloaded
3 Check Call POST /DAC/createSLA with malformed JSON Error 400 or 500
or missing fields
4 Check Response times consistently < 500ms, all contracts | Pass
created
5 Check Downloaded file content matches the generated Pass
smart contract
6 Check Error message returned, no file is created Pass
Stimulus Repeat POST /DAC/createSLA for 100 valid inputs Monitor API
(performance test) timing
Test Pass
Verdict

3.4. Blockchain

Blockchain provides a shared platform for different users and partners to publish, verify, and look up
information. Its decentralized nature avoids a single point of failure and allows any partner to validate
a request and reach consensus on the updated data state. More specifically, validation is conducted
by smart contracts as small applet copies deployed on each user/partner’s blockchain client, and the
consensus protocol run by all blockchain clients helps them to reach an agreement on the latest
system state.

NANCY Blockchain is a permissioned blockchain maintained by the consortium of NANCY partners,
where a user can only access the blockchain by providing the certificates acquired from the CA of the
blockchain. This provides the first level of access control to the blockchain. On the NANCY blockchain,
we deployed several smart contracts used for our different use cases as follows:

- Marketplace: allows posts of 5G services and automates the process of service search and
proposes initial SLA contracts for matched services with smart pricing.

- SLARegistry: manages SLA creation and SLA signature verification process.

- DIDRegistry: manages DID document registration.

30

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR

0-%

>
z
(¢]
<

L |
- VCRegistry: manages VC (verifiable credentials) revocation registration.

Table 4 summarizes the functional tests of the Blockchain.

Table 4: Blockchain functional tests summary

Functional Test ID Objective

Status (Completed, Dropped,
New and completed)

Adding new user:
The network administrator uses their admin

BC_F001 identity to register a new user with the CA. This Completed
step associates the new user with a specific role
and organisation.

Smart contract unit tests:

BC _F002 - .

-Foo Test the functionalities in each smart contract

Analytic Functional Test Description

Completed

Test type Functional
Identifier BC_F001
Tester NEC

Test Purpose Verify the access to the blockchain network.

References Architecture and component interaction described in [4].

Configuration = Permissioned blockchain network has been set up and the CA service is up and running. The
allowed organization list is configured in the CA service in the affiliation attribute. CA (and
TLSCA) certificates as well as admin credentials are deployed to the tester for server
authentication.

Pre-test Not applicable
conditions
Test Step Type Description Result
Sequence
1 1 Stimulus | Send a request to the CA service to register a new
user using the admin credentials
2 Check If the enrollment ID of the new user is new, Pass
registration is successful the enrollment ID is
returned.
3 Check If the enrollment ID of the new user is already seen, Pass
registration fails, and the corresponding error
message is returned.
4 Check If the enrollment ID is malformed, registration fails Pass
and corresponding error message is returned.
2 1 Stimulus | Send a request to the CA service to enroll an Pass
unregistered user.
2 Check Registration fails and an error message is returned. Pass
3 1 Stimulus | Send a request to the CA service to enroll the newly Pass
registered user providing a random password.
2 Check User receives the enrollment certificate referring to Pass
the corresponding enrollment ID.
4 1 Stimulus | Send a request to the CA service to enroll the newly Pass
registered user without providing password.
2 Check User receives the enrollment certificate referring to Pass
the corresponding enrollment ID and returns a
random password supplied by the CA service.
Test Verdict Pass

Z =’_(\‘
o §
-2

D6.3 — NANCY Integrated System — Final Version

3.5. Wallet

NANCY wallet provides SSI capabilities to users and devices of NANCY partners, and at the same time,
simplifies the interaction between the partner applications and the blockchain. Table 5 summarizes
the functional tests of the Wallet component.

Firstly, the wallet creates and manages the DIDs and their credentials for the partner applications and
takes care of the DID registration to the NANCY blockchain, which serves as the public data registry to
look up DID authentication methods. It further implements the VC issuance and verification procedure
so that the authorization process for application services follows the VC data model defined by W3C
standards.

Secondly, the wallet also wraps the blockchain queries with gRPC APIs that simplify communication
with the Blockchain. The wallet serves as a registrar for NANCY partners to register and enroll each of
their users and devices to access the blockchain. All access credentials are bound to their DID, so that
smart contracts will apply access control checks on DID-related operations such as DID records update
or SLA signature verification.

Table 5: Wallet functional tests summary

FuT:t;ttch)Bal Objective Status
SSI capabilities: User DID creation and registration:

Start the wallet gateway provided with a specified uid. A
unique and anonymous DID is created for this uid and a
certificate corresponding to the created DID is acquired from
the CA of this organisation. The public DID document is
registered to the DIDRegistry smart contract in the blockchain,
so that other users are able to look up for the verification
methods of this DID.

SSI capabilities II: acquire and verify verifiable credentials
(Provided Wallet_F001) Start a wallet gateway on an ID holder,
a credential issuer, and a service verifier. respectively. The
holder acquires a verifiable credential from the issuer by
means of their wallets, then the holder wallet generates a
verifiable presentation from the acquired verifiable credential
and delivers it to the verifier’s wallet service for verification.
The verification returns successfully.

SSI capabilities Ill: revoke the verifiable credential

Same setup as in Wallet_F002, but the issuer revokes the
previous verifiable credential issued to the holder. The last
verification step then fails.

Analytic Functional Test Description

Wallet_F001 Completed

Wallet _F002 Completed

Wallet _F003 Completed

Test type Functional

Identifier Wallet_F001, Wallet_F002, Wallet_F003

Tester NEC

Test Purpose Test the SSI capabilities of the wallet

References The wallet functions and interfaces are described in D5.2.

Configuration The blockchain network, which is used as the public data registry in the VC data model, is

set up and the access credentials are available for the wallet service. Additionally, the
required smart contracts, i.e., DIDRegistry and VCRegistry, are deployed in the
blockchain.

32

D6.3 — NANCY Integrated System — Final Version

Pre-test Unit tests for the deployed smart contracts are passed successfully.
conditions
Test Step Type Description Result
Sequence
1 1 Stimulus Start the wallet gateway service on a given port
with a specified new uid in non-UE (PQC) mode.
2 Check The wallet has created a new DID derived from the Pass

provided ui and a corresponding ECDSA keypair is
generated for the DID.
3 Check The wallet has successfully enrolled the DID in the Pass
blockchain and acquired and saved the enrolment
certificate locally.

4 Check The wallet has registered the corresponding DID Pass
document in the DIDRegistry smart contract.

5 Check The wallet has saved the generated keypairs of the Pass
new DID locally.

6 Check Invoke listDIDs API calls to the wallet service Pass
returns all saved DID ids in the wallet.

7 Check Invoke lookDID API calls with the new DID id to any Pass
wallet service returns the DID document
information.

8 Check The wallet gateway service started listening on the Pass
given port.

2 1 Stimulus Start the wallet gateway service with an existing

uid on a given port.

2 Check The corresponding DID of the existing uid is loaded Pass
as the default DID of the wallet.

3 Check The wallet gateway service started listening on the Pass
given port.

3 1 Stimulus Start the wallet gateway service with a specified

new uid in EU (PQC) mode in simulation mode on
a given port.

2 Check The wallet has created a new DID derived from the Pass

provided ui and a corresponding PQC keypair is
generated from the simulation library.
3 Check Same check as in 1.3-1.8 Pass
4 1 Stimulus Start a holder wallet service and an issuer wallet
service, invoke the requestCredential API call to
the holder wallet service by providing the holder
DID information and the issuer wallet service
address.

2 Check If referred holder DID information does not exist in Pass
the holder wallet, holder wallet returns error with
a corresponding error message.

3 Check If the issuer wallet service is not accessible at the Pass
referred address, holder wallet returns error with
corresponding error message.

4 Check If provided information in the request is all correct Pass
and valid, holder wallet returns a VC (verifiable
credential) acquired from the issuer wallet service.

5 Check The returned VC contains the correct information, Pass
e.g., issuer DID, holder DID, holder claims, issuer
signature, etc.

33

-2
2y \
>y
i)

0-%

D6.3 — NANCY Integrated System — Final Version

’
NANCY

/
0

6 Check Invoke listVCs API call to the holder wallet and the Pass
issuer wallet service returns the newly created VC
overview.
5 1 Stimulus Keep the holder wallet service in test 5 running and

start a verifier wallet service, invoke the
requestAuthorization API call to the holder wallet
service by providing the holder DID information,
the VC used for authorization and the verifier wallet

address.
2 Check Check 4.2 and 4.3 (with verifier address) Pass
3 Check If referred VC does not exist in the holder’s wallet, Pass

holder wallet returns error with a corresponding
error message.

4 Check If provided information in the request is all correct Pass
and valid, holder wallet returns the VC verification
result acquired from the verifier wallet service.

5 Check Invoke listAuthorizationResults APl call to the Pass
verifier wallet service, the returned authorization
results show a successful authorization record
regarding this test with a correct timestamp.

6 1 Stimulus Invoke the revokeVC API call to the issuer wallet

service referring to the VC used in test 5. Repeat
test 5 to invoke the requestAuthorization API call to
the holder wallet service with the same input.

2 Check The holder wallet returns error with an error Pass
message that the authorization failed because of
revoked VC.

3 Check Invoke listAuthorizationResults APl call to the Pass

verifier wallet service, the returned authorization

results show a failed authorization record regarding

this test with a correct timestamp.
Test Pass
Verdict

3.6. Al Virtualizer

The developed Al-Virtualizer is a Multi-Agent Reinforcement Learning (MARL) model that enables
adaptive and conflict-free orchestration of shared computing resources across multiple network slices.
Each slice is represented by an autonomous agent that observes local traffic conditions and resource
states and jointly learns optimal CPU allocation policies through interaction with the environment.
The agents operate under a cooperative reward scheme that penalizes resource conflicts and latency,
thereby promoting balanced performance across services. To improve learning efficiency and
coordination, the model integrates two key mechanisms: an Information Bottleneck (IB) encoder that
compresses observations into task-relevant latent representations, and an emergent communication
layer through which agents exchange discrete coordination messages. Together, these mechanisms
allow agents to develop lightweight communication protocols and context-aware decisions, achieving
faster convergence and higher stability. The Al-Virtualizer model has been fully integrated with the
Slice Manager via REST APIs, enabling real-time enforcement of learned policies over Kubernetes
namespaces in a cloud-native testbed. Table 6 summarizes the functional tests of the Al Virtualizer.

34

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR

0-%

>
z
(¢]
<

L.
Table 6: Al Virtualizer functional tests summary

Status (Completed, Dropped,

Functional Test ID Objective NameT EeE
Al-virtualizer F0O1 Test the Kafka bus communication between Gl
- agents.
Al-virtualizer F002 Test the Slice Manager API response to 1JS Completed
remote calls.
Al-virtualizer _F003 Test Grafana visualisation. Completed
Test type Functional
Identifier Al-Virtualizer_F001 - Al-Virtualizer_F003
Tester i2CAT
Test Purpose Test the minimization of conflicts during the training of the Al-Virtualizer using a cloud-
native environment.
References [8]
Configuration The experiment involved three slice-agents deployed as independent Kubernetes Pods,

each representing a network slice with default CPU shares of th =15,15,10 Gcycles/s. The
agents were trained for 500 episodes, exchanging discrete messages via a Kafka message
bus at every reinforcement-learning cycle. The shared infrastructure capacity was fixed
at 40 Gcycles/s, ensuring that contention could occur when cumulative allocations
exceeded this limit. Conflicts were automatically logged whenever the aggregated CPU
demand surpassed the total available capacity. All metrics, including the conflict rate per
episode, were collected through Prometheus and visualized in Grafana dashboards,
enabling real-time monitoring of convergence behavior and the effectiveness of inter-
agent communication in reducing contention across slices.

Pre-test Before executing the conflict-rate evaluation, the cloud-native testbed must be fully

conditions operational, with all components correctly deployed and interconnected. The Kubernetes
cluster should be running with at least three active namespaces, each corresponding to
an instantiated slice-agent Pod. The Slice Manager must be reachable through its REST
APl and properly configured to modify the CPU quotas of each namespace via the
ResourceQuota mechanism.

Test Step Type Description Result
Sequence
1 Stimulus Use Simulated traffic to train the models Pass
2 Check Obtain training results after the final episode Pass
3 Check Visualize the conflicts for both models after the Pass
training is done
Test We successfully trained the model with the simulated traffic and gathered Pass
Verdict the models conflicts through time.

3.7. B-RAN Model

The NANCY’s B-RAN analytical model described in [9], evaluates both single-chain and Hierarchical
(with a nested secondary) blockchain. The model allows configuration of multiple key parameters,
including the number of requests in a block, incoming request traffic rate, mining rate, and service
rate across multiple scenarios. The model finally provides the average latency metrics for performance
analysis of the system. Table 7 summarizes the functional tests of the B-RAN Model.

]
D6.3 — NANCY Integrated System — Final Version e e
\."/

L.
Table 7: B-RAN Model functional tests summary

Functional Test ID Objective S (UL), R ETEC)

New and completed)
Test the B-RAN model estimated performance
for various system configurations.

BRAN-model F002 Tes-t the functionality of the B-RAN model for
- various extreme cases.

Analytic Functional Test Description

BRAN-model _F001 Completed

Completed

Test type Functional

Identifier BRAN-model _FO01 & BRAN-model _F002

Tester INNO

Test Purpose Evaluation of the B-RAN architecture's performance and robustness across dynamic
network loads and resource capacities

References [9]

Configuration This test focuses on the single-chain B-RAN architecture (BRAN-model_F001) and the
Hierarchical B-RAN (HB-RAN) model (BRAN-model_F002), which uses nested blockchains
for coverage expansion scenarios..

Pre-test Analytic prerequisites require establishing network stability (arrival rate must be less than
conditions service capacity), defining the initial request processing states, and configuring all
network rates, including the necessary number of confirmations

Test Step Type Description Result
Sequence
1 Stimulus Define transition rate matrix Q from B-RAN Pass
configuration and solve for steady-state probability
distribution P.

2 Check Calculate expected number of waiting requests Pass
using steady-state probabilities.
3 Stimulus Vary key parameters (traffic intensity, block Pass

capacity, service links, confirmations) across
multiple scenarios.
4 Check Compute average latency using queuing models Pass
with confirmation delays.
Test Pass
Verdict

3.8. SemCom

The SemCom model, which is described in [10], consists of two main architectures. The first model
demonstrates the enhanced performance and data efficiency in a DT model for V2X communications,
where semantic encoders on the devices (car, RSU, drone) extract only the essential information from
the videos and transfer them to a semantic decoder on an edge server for the DT reconstruction. The
second model evaluates the SemCom efficiency for ASL transmission, using a CNN semantic encoder,
to extract and modulate meaningful symbols from source images with a custom modulation scheme
(24QAM). Both configurations support resource utilization measurement in order to compare
performance against conventional methods. Table 8 summarizes the SemCom functional tests.

Table 8: SemCom functional tests summary

Status (Completed, Dropped,
New and completed)

Functional Test ID Objective

Test SemCom performance for V2x and DT

SemCom_F001 .
creation.

Completed

36

(e
D6.3 — NANCY Integrated System — Final Version .'.‘ &

SemCom _F002

Test SemCom energy and data efficiency

. - Completed
improvement for ASL transmission. P

Analytic Functional Test Description

Test type
Identifier
Tester

Test Purpose

References
Configuration

Functional

SemCom_F001

INNO

Demonstrate the enhanced performance and data efficiency of SemCom in successful
Digital Twin (DT) creation for Vehicle-to-Everything (V2x) communications.

[10]

Goal-oriented SemCom architecture deployed for V2x DT creation. Semantic encoders on
network nodes (car, RSU, drone cameras) extract only essential object coordinates from
video frames, transferring this minimal data to an edge server equipped with the
semantic decoder for DT reconstruction. The configuration supports resource utilization
measurement.

Semantic encoders must be trained and deployed on V2x source devices for effective
object detection and semantic information extraction. A precise quantitative baseline for
data volume must be established using conventional systems transmitting full video
frames to enable the measurement of SemCom data efficiency gains.

Type Description Result

Stimulus Network devices capturing video of the observed Pass
location (e.g., car, RSU, drone cameras) activate the
SemCom encoder module via a request (e.g.,
through task offloading to the base station)
Stimulus The semantic encoder processes the video frames Pass
and extracts only the essential semantic
information, such as the coordinates of detected
objects, for transmission
Check Verify that this minimal semantic information is Pass
successfully transferred through the network to the
semantic decoder deployed on the edge server
Check Confirm the data efficiency increases by comparing Pass
the volume of transferred semantic against the
established baseline of full frames.
Check Confirm that the semantic decoder successfully Pass
reconstructs the Digital Twin scene (a top view map
showing the cameras and identified objects)
Pass

Analytic Functional Test Description

Pre-test

conditions

Test Step

Sequence
1
2
3
4
5

Test

Verdict

Test type

Identifier

Tester

Test Purpose

References
Configuration

Functional

SemCom _F002

INNO

Evaluate the Semantic Communications (SemCom) system's efficiency by confirming
improved data and energy performance for American Sign Language (ASL) transmission
[10]

Goal-oriented SemCom architecture deployed for ASL transmission. This configuration
uses a CNN semantic encoder to extract and modulate meaningful symbols (e.g., one of
24 letters) from source images, utilizing a specialized modulation scheme (e.g., 24QAM).
The setup is ready to measure resource usage for comparison with conventional
methods.

AL

N
&
&
\.’/
NANCY

-2
0-%

D6.3 — NANCY Integrated System — Final Version

Pre-test The CNN semantic encoder must be trained and deployed for ASL image processing. A
conditions precise quantitative baseline for data volume and power consumption must be
established using conventional systems that transmit the full, unprocessed source image
data.
Test Step Type Description Result
Sequence
1 Stimulus Input ASL image data into the Semantic Pass

Communications (SemCom) system; the CNN-
based semantic encoder processes the image data
and extracts the essential semantic information,
which corresponds to one of the 24 distinct letters
in the ASL alphabet

2 Stimulus The extracted semantic information (e.g., requiring Pass
5 bits) is converted into symbols and modulated
using the proposed 24QAM scheme for
transmission over the physical channel

3 Check Measure the required data volume and power Pass
consumption for transmitting the semantic
information and compare it against the established
quantitative baseline of conventional full-image
transmission.

4 Check The received signal is decoded and demodulated at Pass
the destination using the 24-QAM decision regions,
identifying the corresponding symbol and bit
representation

5 Check The semantic decoder interprets the extracted Pass
message (the identified letter) based on its
knowledge base and converts it into its ASL image
representation, verifying that the system achieved
semantic equivalence

Test Pass
Verdict

3.9. Quantum Key Distribution Network Simulator (QKDSim)

The QKDSim model described in [11] verifies the successful deployment and operability of a
containerized QKD simulator that exposes the classical KMS layer via the ETSI-014 REST API, enabling
Secure Application Entities (SAEs) to authenticate and retrieve cryptographic keys. The simulation
deploys QKDSim and SAEs (such as Base Station demonstrators BS1/BS2) using Docker containers,
configured to run protocols like COW, with SAEs initiating key requests via the ETSI-014 KMS interface.
Additionally, the model evaluates QKDSim performance under extreme conditions infeasible in
laboratory settings by simulating maximum physical degradation through extreme fiber distances and
high loss, measuring impacts on QBER and key generation rates, while stressing security mechanisms
through maximum eavesdropping interference using the CV-QKD simulation environment. The model
supports comprehensive resource utilization and performance analysis under both operational and
extreme degradation scenarios. Table 9 summarizes the QKDSim functional tests.

38

\
=
7

]
D6.3 — NANCY Integrated System — Final Version e e
\."/

L.
Table 9: QKDSim functional tests summary

Status (Completed, Dropped,

Functional Test ID Objective NG E)
. Test the deployment and communication with

QKDSim _F001 the dockerispedyQKDSim. Comaisty

QKDSim _F002 Test the functionality of QKDSim for various Completed

extreme cases

Test type Functional

Identifier QKDSim _F001

Tester INNO

Test Purpose Verify the successful deployment and operability of the QKDSim running in a container
technology. Confirm that the QKDSim exposes the classical Key Management System
(KMS) layer via the ETSI-014 REST API. Validate that Secure Application Entities can
authenticate and retrieve cryptographic material keys.

References [11]

Configuration Deploy the QKDSim and a SAE, such as one of the Base Station demonstrator applications
(BS1/BS2), using Docker containers. The QKDSim should be configured to run a specific
protocol, such as Coherent-One-Way (COW). The SAE will initiate a key request via the
ETSI-014 KMS interface.

Pre-test The QKDSim must be operational, mocking the KMS functionality and classical

conditions communication stack. The SAE Docker container must have a pre-deployed client
certificate used for mutual TLS authentication with the QKD device. Both QKD simulation
and SAE must have the same IP.

Test Step Type Description Result

Sequence

1 Stimulus Start the QKDSim and a Secure Application Entity Pass
(SAE), such as BS1 or BS2, as Docker containers.

2 Stimulus The SAE (e.g., BS1) initiates a key request to the Pass
QKDSim via the ETSI-014 REST API

3 Check The QKDSim/KMS must successfully authenticate Pass
the SAE using the pre-deployed client certificate via
mutual TLS.

4 Check The SAE must receive the requested cryptographic Pass

material key and key identifier (KeylD) from the
QKDSim, confirming the KMS layer is operational.

5 Check The SAE (BS1) uses the received key to encrypt a Pass
payload via AES256, and subsequently, a second
SAE (BS2) requests the same key from the
QKDSim/KMS to successfully decrypt the payload,
storing the clear text.

6 Check Deployment and communication are successful if Pass
the key request, authentication, and subsequent
encryption/decryption process are completed
without errors.

Test Pass
Verdict

Test type Functional

Identifier QKDSim _F002

Tester INNO

Test Purpose Evaluate the QKDSim's performance under conditions that are challenging or unfeasible

to replicate in a laboratory setting. Simulate maximum physical degradation by setting
e |

39

D6.3 — NANCY Integrated System — Final Version

extreme fiber distance and high loss. Measure the resulting impact on QBER (Quantum
Bit Error Rate) and key generation rate. Additionally, Stress the protocol's security
mechanisms by simulating maximum eavesdropping interference.

References D5.1

Configuration Utilize the Continuous-Variable QKD (CV-QKD) simulation environment. Configure the
following parameters for maximum degradation: Distance set to an extreme length, Loss
set to maximum value, and Eve Presence set to exclude.

Pre-test The QKDSim must be initialized for CV-QKD simulation. A clear baseline measurement

conditions (e.g., low distance/loss) must be established for comparison. The simulation output
should display an anticipated high average QBER, reflecting that high fiber loss causes a
significant rise in QBER regardless of eavesdropping.

Test Step Type Description Result
Sequence
1 Stimulus Configure the QKDSim to run the Continuous- Pass
Variable QKD (CV-QKD) simulation. Set the Distance
parameter to an extreme length (longest possible)
and the Loss parameter to its maximum value.

2 Stimulus Run the simulation for a defined Number of Pass
Transmissions
3 Check Observe the output chart for QBER (Quantum Bit Pass

Error Rate). The QBER value must be unacceptably
high, reflecting that high fiber loss causes a
significant rise in QBER regardless of eavesdropping
4 Check Observe the output chart for Key Generation Rate. Pass
The rate must be severely degraded or approach
zero, consistent with the high QBER
5 Check Simulation is successful if the measured QBER is Pass
near the maximum possible value and the Key
Generation Rate is minimal due to the extreme
physical channel degradation

6 Stimulus Configure the QKDSim for Discrete-Variable QKD Pass
(DV-QKD), selecting a protocol like BB84 or B92.

7 Stimulus Enable Eve Presence and set the Eve Scale Pass
parameter to its maximum interference level

8 Stimulus Run the simulation for a defined Number of Pass
Transmissions

9 Check Observe the output chart for Key Generation Rate. Pass

The rate, particularly for the 32-bit key length, must
plummet to practically nil (values around O0),
confirming substantial interruption due to
eavesdropping combined with large key size
10 Check Observe the output chart for QBER. The QBER value Pass
must register a significant increase, generally
higher than in the non-eavesdropping scenario,
indicating the intruder successfully intercepted the
quantum states.
11 Check Simulation is successful if the combination of Pass
maximum eavesdropping and the large key size
results in the lowest possible Key Generation Rate
(near 0), highlighting the sensitivity of performance
to large key lengths under attack
Test Pass
Verdict

40

Z =’_(\‘
R
-2

D6.3 — NANCY Integrated System — Final Version

3.10. VoSysMonitor

The VOSySmonitor is a low-level firmware that accommodates the consolidation of multiple, isolated
bare-metal Operating Systems or Compartments in a single ARMv8 board. VOSySmonitor serves as
core component of NANCY and is detailed in [8], in [12] and in [5]. VOSySmonitor is part of two
concrete NANCY solutions:

1. A novel, bare-metal virtualization solution for VNFs execution at the network edge

Extensions to VOSySmonitor have been provided to NANCY to realize this solution, namely
the vManager (result reported in [8]) and the Cross-compartment Virtio-loopbak (result
reported in [12]). The first two functional tests will address the vManager and the Cross-
compartment Virtio-loopback testing, respectively. The solution is validated at the Italian In-
lab testbed [T6.7].

2. A secure data store solution with OPTEE and VOSySmonitor
This result has been reported in [5]. The third functional test will address the Secure data
storage with VOSySmonitor. The solution is validated at the Spanish Extension In-lab testbed.

Table 10 summarizes the functional tests of VoSysMonitor.

Table 10: VoSysMonitor functional tests summary

Functional Test ID Objective Status
Test vManager partitions operations (create,
deploy, destroy etc.).

Test availability of virtio devices inside the
VOSySmonitor _F002 | partitions for deploying VNFs (Cross- Completed
compartment Virtio-loopback solution testing)

Test OPTEE Secure Storage service functions

VOSySmonitor _F001 Completed

VOSySmonitor _FO03 = with VOSySmonitor (store, load sensitive Completed
content).
Test type Functional
Identifier VOSySmonitor _F001
Tester VOS
Test Purpose The purpose of the test is to validate the behaviour of the vManager when it comes to
operations carried out on the partitions.
References [8], Section 3: “Al Virtualiser and Edge-level Resource Exploitation”
Configuration For this scenario we need an ARMv8 board with VOSySmonitor firmware deployed and

one management partition (a Linux OS) booted.

Pre-test To start the testing, we load the vManager driver on the management partition (making
conditions /dev/vmanager available) and we verify the availability of the vmanctl vManager
controller binary.

Test Step Type Description Result
Sequence
1 Stimulus vmactl create-partition —cores
<number of cores> —memsize
<partition memory GB> —secure
<true/false>

41

-2
2y \
>y
i)

0-%

D6.3 — NANCY Integrated System — Final Version

/
0

’
NANCY

2 Check New device /dev/vmanX appears (X: new partition Pass
ID)

3 Check vManager marks partition as READY Pass

4 Stimulus vmactl deploy —kernel

path/to/kernel image —dtb
path/to/device tree blob
<partition ID>

5 Check vManager marks partition as DEPLOYED Pass
6 Stimulus vmactl reboot <partition_ ID>
7 Check vManager stops CPUs execution, reloads the Pass

partition’s assets and executes again. Partition is
marked as DEPLOYED in the end.

8 Stimulus vmactl suspend <partition ID>
9 Check vManager marks partition as SUSPENDED. Pass
10 Stimulus vmactl restore <partition ID>
11 Check vManager marks a previously SUSPENDED Pass

partition as DEPLOYED.

12 Stimulus vmactl shutdown <partition ID>

13 Check vManager marks a previously DEPLOYED partition Pass
as READY. Partition can be re-deployed afterwards
on the same resources.

14 Stimulus vmactl destroy-partition
<partition ID>

15 Check vManager releases the resources of a previously Pass
READY partition. Note that a DEPLOYED partition
cannot be destroyed.

Test All the available operations on vManager’s partitions are tested through Pass
Verdict the vmanctl tool and provided the expected outcomes.

Test type Functional

Identifier VOSySmonitor _F002

Tester VOS

Test Purpose The purpose of the test is to validate the availability of virtio devices inside an ARMv8

bare-metal partition/compartment, when the Cross-compartment Virtio-loopback
technology (solution that extends VOSySmonitor) is employed. This test will focus in
particular on a virtio block device, to test operations on this device.

References [12], Section 2.5: “Resource handling at the edge” and Section 3.2.8: “Edge-resource
management”
Configuration For this scenario, we need an ARMv8 board with VOSySmonitor firmware deployed and

two partitions/compartments up and running. One of the two partitions will be the main
one (or “server side”) and the other one will be a secondary one (or “client side”). The
“server side” has access to all peripherals of the board.

Pre-test To start the testing, on the server side, we need to have available the
conditions “loopback_driver_server” module and the “crossworld” driver module.
On the client side, we need to have available the “loopback_driver_client” module and
the “crossworld” driver module.

42

N
AL

&>y

0-%

D6.3 — NANCY Integrated System — Final Version
\."/

e
Also, on the server side, the "vhost-user-blk" executable should be available, as well as
the “adapter” executable. Last but not least, on the server side, a demo.img” disk image
should be ready to use.

z w3

Test Step Type Description Result
Sequence
1 Stimulus insmod loopback driver client.ko Pass
(client side)
2 Stimulus insmod crossworld.ko Pass
(client side)
3 Stimulus insmod loopback driver server.ko Pass
(server side)
4 Stimulus insmod crossworld.ko Pass

(server side)

5 Stimulus vhost-user-blk -s <socket path> -b Pass
demo . img -
(server side). The <socket path> is to connect with
the adapter through the following command.

6 Stimulus adapter —-s <socket path> -d vhublk Pass
(server side)

7 Check New device /dev/vdX is now available on the client Pass
side.
8 Stimulus mount /dev/vdX <mount path> && ls Pass

<mount path>

(client side)

9 Check Able to see the contents of the demo.img on the Pass
client side (secondary partition)

10 Check Able to create new files, write data into files, Pass

delete files or data of the demo.img from the
client side. Verified that the status persists when
unmounting the device and mounting it again,
either in the client or in the server side.

Test All the available operations on vManager’s partitions are tested through Pass
Verdict the vmanctl tool and produced the expected outcomes.
VOSySmonitor and OPTEE Secure Storage Testing
Test type Functional
Identifier VOSySmonitor _F003
Tester VoS
Test Purpose The purpose of the test is to validate the Secure Storage solution with OPTEE and
VOSySmonitor for secure data caching at the edge.
References D4.3
Configuration For this scenario we need a Trustzone-capable ARMv8 board with VOSySmonitor

firmware deployed with one main, non-Secure partition with Linux OS booted and an
OPTEE OS deployed at the Secure world.

Pre-test To start the testing, the REE_FS Secure Storage Service should be available. Parts of it
conditions are established in the main, Non-Secure OS (e.g., TEE Supplicant module to be available)
and parts of it are established in the Secure OS (e.g., the Trusted Application).

43

PN
\."/
NANCY
L |
Regarding the workflow, a Client Application on the Non-Secure OS is the starting point
to invoke Secure Storage Operations towards the Trusted Application on the Secure OS.
Each operation always passes through the secure firmware (VOSySmonitor), ensuring

the security of the operations.

-
)

-2
N-2

D6.3 — NANCY Integrated System — Final Version

For this test, we employ two Client Applications on the Non-Secure OS: a "store"
application and a "load” application, that respectively store and load a secure asset
to/from the data store. The storage happens on a key-value fashion.

Test Step Type Description Result

Sequence
1 Stimulus store “userA” “serviceA, serviceB, Pass
serviceC"

(Invoke the client application to store a user in the
data store with specific capabilities on NANCY

services)
Check Prepare session with the TA..Session ready! Pass
3 Check Store object in the TA secure storage..Object Pass
stored!
4 Check Session closed Pass
5 Stimulus load “userA” Pass

(Invoke the client application to load the
capabilities of a specific user from the data store)

Check Prepare session with the TA..Session ready! Pass
Check Find and load object "userA".. Pass
Check Object Found. Id=userA, Value=serviceA, serviceB, Pass
serviceC
9 Check Session closed Pass
10 Stimulus load “userB” Pass

(Invoke the client application to load the
capabilities of a specific user that is not part of the
data store)

11 Check Prepare session with the TA..Session ready! Pass

12 Check Find and load object "userB".. Pass

13 Check load: Failed to read an object from the secure Pass
storage

14 Check Session closed Pass

15 Stimulus ls /var/lib/tee Pass

(Check the persistent data)

16 Check 0 Pass
1
2
dirf.db

(Expected amount of items, in encrypted format)

44

o
D6.3 — NANCY Integrated System — Final Version e e
NA.N’CY
L |
Test The REE_FS Secure Storage service of OPTEE is validated to work fine Pass
Verdict with the new Client Applications “load” and “store”, to store data assets

in a key-value format.

3.11. Marketplace

The marketplace is the NANCY component where all the details about available operators and services
are gathered for allowing offloading processes. It is based on smart contracts having been deployed
in the NANCY Blockchain network and, consequently, all the interactions happen through the NANCY
Blockchain wallets. The operation of the marketplace for an offloading process requires internal
interactions with the Smart Pricing and Digital Agreement Creator. The marketplace and its operation
have been deeply described in [4]. Table 11 summarizes the Marketplace functional tests.

Table 11: Marketplace functional tests summary

Functional Test ID Objective Status \
Marketplace _F001 Test connection with SP. Completed
Marketplace _F002 Test connection with DAC. Completed

Test connection with Blockchain wallet

Marketplace _F003 . Completed
(receive requests).
Marketplace _F004 Test connection with other smart contracts. Completed
Test type Functional
Identifier Marketplace _F001, Marketplace _F002, Marketplace _F003, Marketplace _F004
Tester TECNALIA, NEC
Test Purpose The marketplace complete operation is validated for an offloading process following
the inter-operator flow described in [4].
References [4] describes the complete inter-operator flow as well as wallet, marketplace and DAC
interactions.
[13] describes the smart pricing operation.
Configuration Not needed
Pre-test Different operators and services have already been registered in the marketplace.
conditions
Test Step Type Description Result
Sequence
1 Stimulus A suitable service request is received from the Pass
wallet in the marketplace
2 Check The marketplace automatically selects suitable Pass
services according to the search definition
3 Check The marketplace makes a request to the SP for the Pass
most suitable service and price: https://nancy-
smart-
pricing.8bellsresearch.com/price_calculation
4 Check The marketplace sends the selected service details Pass
to the DAC for the agreement creation:
http://188.245.61.44:8090/DAC/createSLA.
5 Check The marketplace automatically sends the created Pass
agreement to the signature management smart
contract

45

Z =’_(\‘
o §
-2

D6.3 — NANCY Integrated System — Final Version

Test Pass
Verdict

3.12. Maestro

Maestro [14] is a service orchestration platform for managing the lifecycle of end-to-end services atop
geo-distributed heterogeneous infrastructures. At the northbound, Maestro exposes a set of open,
standardized service and resource management APIs based on TMForum, to facilitate interaction with
stakeholders (e.g., end-users, service providers, etc.), while at the southbound Maestro peers with
one or more Operations Support Systems (OSS), such as ETSI OpenSlice [15], i.e., the NANCY Resource
Orchestrator, to consume resource-as-a-service APls for accommodating end-to-end services atop
compute and network (e.g., 5G) resources. A detailed description of Maestro can be found in [16].

A summary of functional tests conducted for Maestro’s integration into the NANCY platform is
provided in Table 12. All these integration activities are now concluded as Maestro demonstrates
readiness for the final NANCY use case demonstration and validation activities.

Table 12: Maestro functional tests summary

Status (Completed, Dropped,

Functional Test ID Objective Naee e

Test connection with Resource

Maestro _F001 . Completed
= Orchestrator via NIS2 P
Test connection with Compute Controller
Maestro _F002 | . P Completed
via NIS6.
Test connection with service Telemetry via
Maestro _F003 y Completed
NIS5.
Test compute enforcement APIls via
Maestro _F004 P Completed
Compute Controller and NIS1.
Test connection with Service
Maestro _F005 . . . Completed
Repository/Registry via NIS3.
Maestro _F006 Test Connection with BSS via NIS1. Completed
Analytic Functional Test Description
Test type Functional
Identifier Maestro_F001
Tester UBITECH
Test Purpose Test connection with the NANCY Resource Orchestrator (OpenSlice) via interface NIS2
References [16], [1], and [2]
Configuration -
Pre-test Maestro and OpenSlice instances deployed. IP connectivity between Maestro and
conditions OpenSlice already established. OpenSlice has available services in its service catalogue.
Test Step Type Description Result
Sequence
1 Stimulus User login to Maestro portal or swagger API Pass
2 Check POST command to Maestro TMF Party Pass

Management APl to create an OpenSlice
organization
3 Check POST command to Maestro peering API to initiate Pass
peering with the OpenSlice organization added in
Step 2

46

L
D6.3 — NANCY Integrated System — Final Version .'.‘\.l’
NANCY
-
4 Check POST command to OpenSlice TMF Party Pass
Management API to initiate peering with Maestro
5 Check GET command to OpenSlice TMF Service Catalog Pass
API to fetch all available service specifications
6 Check User selects the desired specifications to import Pass
from the OpenSlice catalog
7 Check GET command to Maestro TMF Service Catalog API Pass

to verify that the selected service specifications
from the OpenSlice service catalog are now
onboarded into the Maestro service catalog

Test Maestro successfully peers with OpenSlice and fetches services from the Pass
Verdict OpenSlice service catalog

Test type Functional

Identifier Maestro_F002

Tester UBITECH

Test Purpose Test connection with the NANCY Compute Controller (Kubernetes) via interface NIS6
References [16], [1], and [2]

Configuration -

Pre-test Test Maestro_F001 already conducted, thus Maestro is already peered with OpenSlice
conditions and relevant OpenSlice services are already in Maestro’s service catalogue. The
Kubernetes cluster exposed by OpenSlice (to Maestro) is reachable from the Maestro
instance.
Test Step Type Description Result
Sequence
1 Stimulus POST command to Maestro TMF service order API Pass
to order a K8saaS$ service from OpenSlice
2 Check POST command to OpenSlice TMF service order Pass
API to order this service
3 Check GET command to OpenSlice TMF service order API Pass

to periodically check the status of this order (until
state=COMPLETED)

4 Check GET command to OpenSlice TMF Service Inventory Pass
API to fetch the kubeconfig service characteristic

5 Check GET command to Maestro TMF service order API Pass
to verify that the service order is now completed

6 Check Get command to Maestro TMF Service Inventory Pass

API to verify that the kubeconfig file is also
reflected in Maestro

7 Check POST command to Maestro TMF service order API Pass
to order a K8saaS service from OpenSlice
8 Check Maestro establishes a connection with the Pass
Kubernetes cluster via the terminal window on its
portal
9 Check Maestro issues a test ‘kubectl’ command to verify Pass
that the exposed cluster offers the right
permissions
Test Maestro successfully orders a K8saa$S and connects to the Kubernetes Pass
Verdict cluster
Test type Functional
Identifier Maestro_F003
Tester UBITECH

a7

N
AL
¥
&
\.’/
NANCY

L |
Test Purpose Test connection with the NANCY Telemetry service via interface NIS5
References [16], [1], and [2]
Configuration -

-2
N-2

D6.3 — NANCY Integrated System — Final Version

Pre-test Test Maestro_F002 already conducted, thus Maestro has already onboarded a compute
conditions cluster (with a telemetry service already there). An end user service specification is
already available on Maestro’s service catalogue.

Test Step Type Description Result
Sequence
1 Stimulus POST command to Maestro TMF service order API Pass
to order an end user service on top of an existing
Kubernetes cluster
2 Check Maestro ensures that the Kubernetes cluster to Pass
host the end user’s service is accessible and offers
enough resources for this service

3 Check Maestro Package Manager validates that the end Pass
user service is a valid (deployable) service package

4 Check Maestro Package Manager connects to the Pass
underlying Kubernetes cluster

5 Check Maestro Package Manager performs end user Pass

service deployment (e.g., helm install) on the
Kubernetes cluster
6 Check Maestro pulls the necessary container images Pass
from the service repository/registry
(Maestro_F0005 via NIS3)

7 Check Maestro Package Manager activates the deployed Pass
service

8 Check Maestro dispatches a request to the Maestro Pass
telemetry service to create a telemetry dashboard

9 Check Maestro telemetry service instructs the Telemetry Pass

service of the cluster to federate specific service-
level metrics to the Maestro Telemetry engine

10 Check Validate that the service metrics are correctly Pass
federated to Maestro Telemetry service
11 Check Maestro creates telemetry dashboards and Pass

exposes the dashboard endpoints to the user via a
Portal view and the TMF Service Inventory API
(customer facing service exposed to the user)

Test Maestro successfully creates service-level telemetry dashboards using Pass
Verdict interface NIS5

Test type Functional

Identifier Maestro_F004

Tester UBITECH

Test Purpose Test compute enforcement APIs via Compute Controller and NIS1

References [16], [1], and [2]

Configuration -

Pre-test Test Maestro_F002 already conducted, thus Maestro has already onboarded a
conditions compute cluster.

Test Step Type Description Result
Sequence

48

D6.3 — NANCY Integrated System — Final Version

> -2
)
0-%

1 Stimulus PATCH command to Maestro TMF service Pass
inventory APl using the K8saas$ service ID as a
service identifier. The PATCH command requires
to update certain service characteristics of the
K8saaS service, such as the number of worker
nodes of the cluster.

2 Check Maestro translates this TMF APl request to an Pass
action towards the Compute Controller, which
requests a new worker node to join the compute
cluster

3 Check Compute controller verifies the new state of the Pass
cluster by checking that the number of worker
nodes is indeed increased

4 Check Maestro reflects the cluster’s new state on its API Pass
by showing an increased number of working nodes
at the TMF API level

Test Maestro successfully enforces a compute cluster decision (e.g., cluster Pass
Verdict scale out) through the compute controller

Test type Functional

Identifier Maestro_F005

Tester UBITECH

Test Purpose Test connection with Service Repository/Registry via NIS3

References [16], [1], and [2]

Configuration -

Pre-test Test Maestro_F002 already conducted, thus Maestro has already onboarded a compute
conditions cluster (with a telemetry service already there). An end user service specification is
already available on Maestro’s service catalog.

Test Step Type Description Result
Sequence

1 Stimulus Repeat test Maestro_F003 up until step 6 Pass
Test Maestro successfully pulls service artefacts from a service Pass
Verdict repository/registry
Test type Functional
Identifier Maestro_F006
Tester UBITECH
Test Purpose Test connection with the NANCY BSS via interface NIS1
References [16], [1], and [2]

Configuration -

Pre-test Repeats Maestro_F003 but now the request comes from an upper layer system (i.e.,
conditions BSS) which translates a product order to the order of one or more services related to
this product.

Test Step Type Description Result
Sequence
1 Stimulus Execute a service order from BSS towards Maestro Pass
as per Maestro_F003
2 Check BSS periodically performs a GET command Pass

towards Maestro TMF Service Order API to get the
status of the service order (until state =
COMPLETED)

49

z =’_(\‘
%o 5
-2

D6.3 — NANCY Integrated System — Final Version

Test BSS verifies the outcome of the service order Pass
Verdict

3.13. Models

The tested component consists of three machine learning models offering inference capabilities as API
endpoints. These include:

e Localization model
¢ Anomaly detection model
e Spectrum sensing model

Each model is packaged as a containerized service for flexible deployment across cloud or edge
infrastructures. The APIs provide access to infecrence routines, returning predictions for supplied
input features. The models rely on pre-trained weights stored in serialized Python pickle files. This test
verifies the basic functionality, availability, and inference capability of these APIs. The functional tests
are summarized in Table 13, while Figure 14 illustrates a snapshot of the test.

Table 13: Models functional tests summary

Status (Completed, Dropped,

Functional Test ID Objective

New and completed)
Testing ML algorithms to make prediction on

Models _F001 the location of the users, providing Localisation Completed
as a Service (LaaS).
Testing ML algorithms to detect anomaly in the

Models_F002 signals with key network performance Completed
indicators.
Models_F003 To assess the spectrum occupancy with ML- ol

based Radio spectrum sensing techniques.

Analytic Functional Test Description

Test type Functional

Identifier Models _F001, Models_F002, Models_F003

Tester s

Test Purpose Test FastAPI Endpoint for localization (e.g., Figure 14), anomaly detection and spectrum
sensing services.

References Detailed model description in [17] and [18]
Integration point description in [2]

Configuration Requirement: API for model inference has to be containerized so that we are able to

deploy it on different operating infrastructure.

Pre-test A valid pickle file containing a trained model exists at the given path.
conditions
Test Step Type Description Result
Sequence
1 Stimulus User runs push or pull request command
2 Check Checkout code for test-localization-api Finished
3 Check Spawn docker container Pass
Test Step-by-step report of the executed steps and elapse time in github. Pass
Verdict

50

W\
D6.3 — NANCY Integrated System — Final Version e e
~ e
NA.N’CY
€ Test FastAP| Endpoint for localization services
o Running the test #11
G—D Summary
test-localization-api Q_ Search logs)
succeeded 1 minute ago in Tm 54s
Jobs
test-localization-api
I © . > @ Setupjob 1s
Run details > @ Checkout code as
U
© Usage > @ Setup Python 8s
&Y Workflow file
> @ Install test tools 9s
> @ Setup Docker network]
> @ Build and Run api_tcp_aw2s Docker container 29s
> @ Build and Run api_tcp_nokia Docker container 24s
> @ Build and Run api_udp_aw2s Docker container 235
> @ Build and Run api_udp_nokia Docker container 23s
> @ Run APl tests 1s
> @ Cleanup containers 1s
> @& PostSetup Python :H]
> @ Post Checkout code 8s
> @ Complete job -]

Figure 14: Snapshot of the expected outcome of one of the tests (localization service)

3.14. Self-Evolving Model Repository (SEMR)

The Self-Evolving Model Repository (SEMR) is a key component in the NANCY system, enabling the
lifecycle management of deployed Al/ML models. SEMR automates model evolution, tracks
performance metrics, and supports retraining workflows. It is deployed on the NAOMI orchestration
framework [19] using Kubernetes (K8s) and Helm. Table 14 summarizes the functional tests, while
Figure 15 illustrates an instance of the k8s cluster.

Table 14: SEMR functional tests summary

Functional Test ID Objective Status \
SEMR_F0O01 Testing on.NAOMI [19] for Al workflow el
orchestration.
Analytic Functional Test Description
Test type Functional
Identifier SEMR_F001
Tester s
Test Purpose Verify deployment and scalability of the SEMR (Figure 15)
References Detailed description in [18]

51

D6.3 — NANCY Integrated System — Final Version

Configuration Scenario assumption: Deployment of SEMR on k8s cluster.
Pre-test HELM chart description file.
conditions
Test Step Type Description Result
Sequence

1 Stimulus Run HELM chart

2 Check Status of all SEMR components Running
Test Manual inspection of running components in k8s cluster console. Pass
Verdict

CHART APP VERSION

Ru
Runr
Runni

(4d22h ago)

Runn
Runn

1
1
1
1
1/
1/
W,
1/
1
1
1
1

Runndir

Runnin
Runnin
Runn

Figure 15: Report on running components in k8s cluster console

3.15. Elasticity

Table 15 summarizes the functional tests. Specifically, the Elasticity FOO1 test verifies the ability of
the Localization-as-a-Service (LaaS) deployment to dynamically adapt compute resources based on
fluctuating inference demand. The resource scaling is managed by a reinforcement learning-based
elasticity model. This test checks whether the system can elastically scale CPU usage up and down in
response to real-time changes in inference load (from 10 to 1000 concurrent requests and back). This
test confirms the core functionality and stability of dynamic resource allocation.

Table 15: Elasticity functional tests summary

Functional Test ID Objective Status
Testing the developed computing resource
elasticity techniques.

Analytic Functional Test Description

Elasticity _F001 Completed

Test type Functional
Identifier Elasticity _F001

\
=
7

D6.3 — NANCY Integrated System — Final Version

2 S
-y
Q@R

0-%

>
z
(¢]
<

Tester s
Test Purpose Verifying elasticity of resource allocation using Localization-as-a-service (LaaS) model
concurrent requests.

References Model described in detail in [16]
Configuration Deployed Localization-as-a-service model as a docker container in k8s cluster,
dynamically changing number of localization inference requests.

Pre-test K8s cluster
conditions Reinforcement learning elasticity model.
C-adviser in the localization service to monitor CPU consumption.

Test Step Type Description Result
Sequence

1 Stimulus API request to the localization service

2 Check Increase the number of inferences from 10 to Pass

1000 concurrent requests and check if it is
dynamically increasing the CPU resources.

3 Check Lower the concurrent tests from 1000 to 10 and Pass
check if it is dynamically decreasing CPU
resources.
Test Verify adapting resources and stability of the process. Pass

Verdict

A detailed performance evaluation of this test is presented in Table 16, summarizing averaged results
over 20 runs. The comparison includes three algorithms: MARLISE-Continuous, a multi-agent
reinforcement learning algorithm based on the Proximal Policy Optimization (PPO) approach;
MARLISE-Discrete, which follows the Deep Q-Network (DQN) paradigm; and a heuristic policy-driven
method that adjusts resource allocation using CPU and memory usage trends with predefined scaling
thresholds. The Continuous approach achieves the best performance, with the lowest violations
(12.05%) and fastest response time (0.14 s) for microservice 3, compared to Discrete (24.53%, 0.31 s)
and the heuristic (25.99%, 0.28 s). However, the heuristic allocates the fewest resources (578 mc),
while Discrete and Continuous allocate 648 mc and 667 mc, respectively. This demonstrates a trade-
off: MARLISE-Discrete and especially MARLISE-Continuous achieve faster responses at the cost of
higher resource usage, while the heuristic remains more conservative but less responsive.

Table 16: Averaged performance metrics for dynamic load

Metrics/Algorithm Heuristic MARLISE-Discrete MARLISE-Continuous

Microservices
Violations (%) 10.43 | 19.60 | 25.99 | 7.14 | 21.12 @ 2453 8.67 @ 19.26 | 12.05
Mean Response
time (s)
Mean resource
delta (mc)

0.09 0.22 0.28 0.08 0.24 0.31 0.08 0.22 0.14

415 488 578 645 615 648 532 709 667

3.16. Post Quantum Cryptography Signature (PQCSig)
L |

53

z =’_(\‘
%o 5
-2

D6.3 — NANCY Integrated System — Final Version

PQCSig is a middleware and smartcard provided by TDIS that will generate and verify signatures with
ML_DSA key. This package will bring the possibility to guarantee the authenticity of data. Table 17
summarizes the PQCSig functional tests.

Table 17: PQCSig functional tests summary

Status (Completed,

Functional Test ID Objective Dropped, New and
completed)

Initialisation of Signature

TC_NE_C_Signlinit::testCKM_ML_DSA Completed
sequence.
Signature single-part
TC_NE_C_Sign::testCKM_ML_DSA creation using ML_DSA keys. Completed
Signature update of multiple-
TC_NE_C_SignUpdate::testCKM_ML_DSA part signature operation using Completed
ML_DSA keys .
Signature finalisation of a
TC_NE_C_SignFinal::testCKM_ML_DSA multiple-part signature Completed
operation using ML_DSA keys.
TC_NE_C_Verifylnit::testCKM_ML_DSA Initialisation of Verification Completed
sequence.
Signature single-part data
TC_NE_C_Verify::testCKM_ML_DSA KE;‘:‘C“'O" using ML_DSA Completed
Signature multiple-part update
TC_NE_C_VerifyUpdate::testCKM_ML_DSA verification using ML_DSA Completed
keys.
Signature multiple -part data
TC_NE_C_VerifyFinal::testCKM_ML_DSA verification using ML_DSA Completed
keys.
Analytic Functional Test Description
Test type Functional
Identifier TC_NE_C_Signinit::testCKM_ML_DSA, TC_NE_C_Sign::testCKM_ML_DSA,
TC_NE_C_Verifylnit::testCKM_ML_DSA, TC_NE_C_Verify::testCKM_ML_DSA
Tester TDIS
Test Purpose Signature single-part creation and verification using ML_DSA keys using the
PKCS#11 functions
Returns CKR_MECHANISM_INVALID if mechanism is not supported.
References
Configuration Smartcard personalized
Pre-test Smartcard inserted into the reader and personalized
conditions
Test Step Type Description Result
Sequence
1 Stimulus | C_Signlnit Pass
2 Check Check the API answer Pass
3 Stimulus C_Sign Pass
4 Check Check the API answer Pass
5 Stimulus | C_Verifylnit Pass
6 Check Check the API answer Pass

54

o V. o
D6.3 — NANCY Integrated System — Final Version :'.:\:l:
NANCY
-
7 Stimulus C_Verify Pass
8 Check Check the API answer Pass
Test Pass
Verdict
Test type Functional
Identifier TC_NE_C_Signinit::testCKM_ML_DSA,
TC_NE_C_SignUpdate::testCKM_ML_DSA,
TC_NE_C_SignFinal::testCKM_ML_DSA,
TC_NE_C_Verifylnit::testCKM_ML_DSA,
TC_NE_C_VerifyUpdate::testCKM_ML_DSA
TC_NE_C_VerifyFinal::testCKM_ML_DSA
Tester TDIS
Test Purpose Signature multi-part creation and verification using ML_DSA keys using the
PKCS#11 functions
Returns CKR_MECHANISM_INVALID if mechanism is not supported.
References
Configuration Smartcard personalized
Pre-test Smartcard inserted into the reader and personalized
conditions
Test Step Type Description Result
Sequence
1 Stimulus | C_Signlnit Pass
2 Check Check the API answer Pass
3 Stimulus C_SignUpdate Pass
4 Check Check the API answer Pass
5 Stimulus | C_SignFinal Pass
6 Check Check the APl answer Pass
7 Stimulus | C_Verifylnit Pass
8 Check Check the API answer Pass
9 Stimulus C_VerifyUpdate Pass
10 Check Check the APl answer Pass
11 Stimulus | C_VerifyFinal Pass
12 Check Check the APl answer Pass
Test Pass
Verdict

3.17. Traffic Forecasting Service (TFS)

TFS is an Al-driven tool provided by CERTH, which aims to provide a real-time prediction of near near-
future actual bitrate, that is, throughput values. The Throughput Forecasting Service has not only been
delineated but also analyzed in depth and breadth in [17]. It is actually a tool tightly connected to two
distinct functionalities, namely analytics and decision-making. There is a connection between TFS and

L __|
55

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR

0-%

>
z
(¢]
<

L |
the software MRAT-NCP component. Also, TFS is a part of the Telemetry and Al/Analytics NANCY
architectural element. Table 18 summarizes the functional tests of the Traffic Forecasting Service.

Table 18: TFS functional tests summary

Status (Completed, Dropped,

Functional Test ID Objective

New and completed)

Throughput forecasting intended for network

analytics purposes.

Throughput forecasting for assessment of

TFS_F002 upcoming network performance and mitigation Completed
of anticipated performance degradation

TFS_F001 Completed

Analytic Functional Test Description

Test type Functional

Identifier TFS_F001, TFS_F002

Tester CERTH

Test Purpose Verify the receipt and plausibility of forecasts for an immediate future time horizon
References [17]

Configuration High-end commercial workstation or Docker Container APl Environment
Pre-processed Dataset available, comprising of 118 separate time-series
Al model complete with fine-tuning and testing via validation and testing data

Pre-test The Docker Container RESTful API has already been built, alongside with its multitude of
conditions dependencies, in the workstation, which has been prepared for execution.
Test Step Type Description Result
Sequence

1 Stimulus Docker Component/service is executed/run within Completed

the testing environment

2 Stimulus A value is inserted for the android walk time-series Completed
number
3 Stimulus A value is inserted for the number of steps the Completed

forecasting has to take place and both sent (via
POSTMAN or curl tool)
n Check Pass
Test Pass
Verdict

3.18. RAN Intelligent Controller Manager (RICMngr)

The RIC Manager in NANCY acts a Non-RT RIC which exposes Al policies to external entities, such as
the Slice Manager. Particularly, once receiving a request of the Slicer Manager (via REST API) to modify
the priority of a given RAN slice, it generates O-RAN-compliant slice SLA policy which is sent to the O-
RAN Near-RT RIC from O-RAN Software Community (version adapted for srsRAN deployments?). Once
receiving the policy, the Near-RT RIC follows it to the Slicing xApp, which applies slicing prioritization
by modifying the PRB allocation of the UEs available in the slice (E2 RAN Control Service Model). The

L https://docs.srsran.com/projects/project/en/latest/tutorials/source/near-rt-ric/source/index.html
I

56

D6.3 — NANCY Integrated System — Final Version

2 S
-y
QR

0-%

>
z
(¢]
<

L |
RICMngr functional tests are summarized in Table 19, while Figure 16 to Figure 21 showcase athe the
steps of deploying a near-RT RIC.

Table 19: RICMngr functional tests summary

Functional Test ID Objective Status
Successful communication with the Slice

RICM FO01 C |
CMngr_F00 Manager via the defined interface. Ry
Successful communication with the near-RT
RICMngr_F002 RIC via Al interface. Completed
RICMngr_F003 Successful implementation of the required Ong0|ng, to be completed in
- control-loop workflow. Spanish demonstrator
Analytic Functional Test Description
Test type Functional
Identifier RICMngr_F001, RICMngr_F002
Tester 12CAT
Test Purpose The purpose of this test if to validate the workflow required to apply an Al policy in a

specific xApp, once generated by the Slice Manager: i.e., Slice Manager sends request to
RIC Manager/rApp, the rApp creates an Al policy and sends it to the Near-RT RIC, and
the Near-RT RIC forwards it to the xApp.

References

Configuration We have two RAN slices pre-deployed, with equal priority. We have the Slicing SLA A1
policy type defined in both the Non-RT and Near-RT RIC

Pre-test srRAN with two slices, Slice Manager reaches RIC Manager, which reaches the OSC
conditions Near-RT RIC.
Test Step Type Description Result
Sequence
1 Stimulus The Slice Manager requests a modification of the Pass
slice priority (update or delete)
2 Check The rApp receives the request, decodes it and Pass
generates an Al policy.
3 Check The A1l policy is received by the Non-RT RIC, Pass
evaluated and forwarded to the Near-RT RIC.
4 Check The A1l policy is received by the Near-RT RIC, Pass
evaluated and forwarded to the xApp.
5 Check The xApp executes the policy according to the Pass
number of UEs in the slice.
Test Pass
Verdict

D6.3 — NANCY Integrated System — Final Version

0-%

Curl

curl -X 'GET" \
"http://192.168.48.50: 30000/ nearRT-RICnearrt_ric_name=srsRAN" \

-H "accept: application/json®

Request URL

http://192.168.40.58: 30808/ nearRT-RIC *nearrt_ric_name=srsRAN
Server response

Code Details

=Ll Response body

“id": 2,

"al_topics"
"ol_topics
"nonrt_ric_id
iendly name™:
92.168.40.188",

>
"xapps™: [1,
"ric_type™: "srsRAN"

Figure 16: Definition of the Near-RT RIC in the Non-RT RIC framework

58

D6.3 — NANCY Integrated System — Final Version

Curl

curl -X "POST® \
*hitp://192.168.40.50:30000/policy_type/srsRAN" \
-H 'accept: applis onfjson’ \
-H "Content-Type: application/json® \
-d '
=id": 3,
"policytype_id": 3,
"name”: "NANCY slicing”,
"description”: "Policy based on O-RAN 5licing SLA policy for NANCY™,
"create_schema": {
"$schema™: "htips://json-schema.org/draft/2020-12/schema”,
"$id": "https://schemas.o-ran.org/jsonschemas/altd/oran_sliceslatarget_4.8.8-nancy”,
"description”: "0-RAN slice SLA policy - adapted for MANCY project”,
"type”: "object",
"properties™: {

"scope”:

: {"$ref": "#/$defs/Sliceld"}

»additional Properties”: false,
"required”: ["sliceId"]

"properties
"d1SlicePriority”: {

Request URL

http://192.168.40.50: 30000/ policy_type/srsRAN

Server response

Code Details

&t Response body

s
": "NANCY_slicing”,
Policy based on O-RAN Slicing SLA policy for MANCY™,
:

"https://json-schema.org/draft/2020-12/schema”™,
: "https://schemas.o-ran.org/jsonschemas/altd/oran_sliceslatarget 4.8.8-nancy™,
"description™: "0-RAN slice SLA policy - adapted for MANCY project”,

Figure 17: Definition of the Al policy type in the Non-RT RIC

received policy with sliceid 1-860801-001-82

[CREATE]
[ACTION]
INFO:

Creating new policy instance<main.SlicePolicy object at 8x7235Ue6lUle58>
Sending policy instance
127.0.0.1:42228 - "PUT /policyupdate HTTP/1.1" 200 OK

received policy with sliceid 1-000801-001-82

[UPDATE]

[ACTION]
INFO:
[UPDATE]
[ACTION]
[ACTION]
INFO:

Updating new policy instance<main.SlicePolicy object at 0x7235Ue6lUle50>
Sending policy instance

127.0.0.1:32768 - "PUT /policyupdate HTTP/1.1" 200 OK

Updating new policy instance<main.SlicePolicy object at 8x7235Ue6lUle58>
Sending policy instance

Deleting policy instance

127.0.0.1:36728 - "DELETE /policyupdate HTTP/1.1" 208 OK

Figure 18: Reception of Slice Manager requests by the rApp (create, update, delete)

59

D6.3 — NANCY Integrated System — Final Version

172.30.0.5:57140 - "DELETE /nearRT-RIC/srsRAN HTTP/1.1"
AL)nterhce ready
i

one friendly_ name="srsRAN' ip="192. 168,49, 100" port=8600 al_protocol='REST' ol_protocol="REST' al_topics=
ric=NonRTRIC(id=l, port=9999, ip='127.0.0.1', ric_type='srsRAN', friendly_name='srsran-nonrt', config=None, nearrt_ric: one, friendly_name='srsRAN', ip='192.168.48.100', port=8

REST', ol_protocol='REST', al_topics='policytypes', ol_topics='ol', xapps=[], nonrt_ric_id=None, ric_type='srsRAN', policy_instances=[], nonrt_ric=NonRTRIC(id=4, port=9999, ip='127.8.8.1', ric_type
riendly_name='srsran-nonrt', config=None, nearrt_ric: .1)), NearRTRIC(id=None, friendly_name='srsRAN', ip='192.168.40.100', port=8000, al_protocol='REST', ol_protocol='REST', al_topics='policytypes', ol_top
fics="01", xapps=[], nonrt_ric_id=None, ric_type='srsRAN', policy_instances=[], nonrt_ric=NonRTRIC(id=, port=9999, ip='127.6.8.1', ric_type='srsRAN', friendly_name='srsran-nonrt', config=None, nearrt_rics=
1)1

policytypes' ol_topics='ol' xapps=[] nonrt_ric_id=None ric_type='srsRAN' policy_instances=[] nonrt_

[dRAX(id=1, al_protocol='KAFKA', ol_protocol='KAFKA', al_topics='accelleran.drax.acc.al.policy', ol_topics='accelleran.drax.acc.kpm_stats', nonrt_ric_id=1, friendly_name='drax', ip='10.0.112.60
apps=[1, ric_type='dRAX', policy_types=[PolicyType(id=1, name='esl', description='Energy Saving Policy', create_schema={'$schema': 'http://json-schema.org/draft-07/schemat', 'title’
ription': 'Begreen Policy Type for Energy Saving', 'type': 'object', 'properties': {'policyPrio': {'type': 'integer', 'minimum’': ©, 'maximum': 100}, 'scope': {'anyOf':
ld': {'$ref': '#/$defs/Cellld'}}, 'additionalProperties': False, 'required': ['cellld'l}, {'type': 'object', 'properties': {'cellldList': {'$ref'
d': ['cellldList']1}]}, 'esObjectives': {'oneOf': [{'type': 'object', 'properties': {'targetPeeEnergy': {'type': 'integer'}},
'properties': {'esPercentage': {'type': 'integer', 'minimum': O, 'maximum': 100}}, 'additionalProperties': False, ‘requ)red‘: ['esPercentage']}, {'type': 'object', 'properties': {'targetEnergyScore': {'type'
‘integer'}}, 'additionalProperties': False, 'required': ['targetEnergyScore'l}1}}, 'additionalProperties’ ‘anyOf': [{'required': ['scope', 'esObjectives', 'policyPrio']}], '$defs': {'CellldList': {'typ
e': 'array', 'items': {'$ref': '#/$defs/Cellld'}}, 'Cellld': {'type': 'object', 'properties': {'plmnId’ : '#/$defs/Planld'}, 'cld': {'Sref': '#/Sdefs/CId'}}, 'additionalProperties': False, 'required':
‘planId', 'cId']}, 'CId': {'type': 'object', 'properties': {'ncI': {'$ref': '#/$defs/NcI'}}, 'additionalProperties': False, 'required': ['ncI'l}, 'NcI': {'type': ‘integer', 'minimum': 0, 'maximum': 6871947673
'PlmnId': {'type': 'object', 'properties': {'mcc': {'type': 'string', 'pattern': '*[0-91{3}$'}, 'mnc': {'type': 'string', 'pattern': '"[0-91{2,3}$'}}, 'additionalProperties': False, 'required': ['mcc’, 'mn
'1333, nearrt_rics=[dRAX(id=1, al_protocol='KAFKA', ol_protocol='KAFKA', al_topics='accelleran.drax.acc.al.policy', ol_topics='accelleran.drax.acc.kpm_stats', nonrt_ric_id=1, friendly_name='drax', ip='10.6.11
2.60", port=31090, xapps=[1, ric_type='dRAX', policy_type: 1D1D1), srsRAN(id=None, al_protocol='REST', ol_protocol='REST', al_topics='policytypes', ol_topics='ol', nonrt_ric_id=None, friendly_name='srsRAN
s jp:‘lsz,las,uo,loo‘, port=8000, xapps=[], ric_type='srsRAN')]
172.30.0.5:48230 — "POST /nearRT-RIC?ric_type=srsran HTTP/1.1"
172.30.0.5:56662 - "GET /policy_type/srsRAN HTTP/1.1"

, port=31090, x
‘begreen_es1_8.1.0", 'desc
[{'type': 'object', 'properties': {'celll
"#/$defs/CellldList ' }}, 'additionalProperties': False, 'require
‘additionalProperties': False, 'required': ['targetPeeEnergy'l}, {'type': 'object'

172.30.0.5:38794 — "POST /policy_type/srsRAN HTTP/1.1"
vatid pcl)cy according to schema
Sent Al policy policyId='301" policyType='3' action='create' policyObject={'scope': {'sliceld': {'sst': 1, 'sd': '000001', 'plunId': {'mcc': '001', 'mnc': '02'}}}
‘ulSlicePriority': 10}} pcljcyStatusObject:PcljcyStatus(enFcrceStatus: enforced', lastModified=17594902UL
PUT http://192.168.40.100:8000/policytypes/3/policies/301 —> 200
: 172.18.0.2:50712 - "POST /policy_instance?id=301 HTTP/1.1"
Valid policy according to schema
Sent A1 policy pcl)cyId—‘301‘ policyType='3' action='create' policyObject={'scope': {'sliceld': {'sst': 1, 'sd': '000001', 'plmnId': {' : 'eel', 'mnc': '02'}}}, ‘'sliceSlaObjectives': {'dlSlicePriority': 50
‘ulSlicePriority': 50}} policyStatusObject=PolicyStatus(enforceStatus="enforced', lastModified=175949030;
PuT http: //192 168.40.100: 8000/ pol icytypes/3/policies/301 —> 200
.18.0.2:39890 - "POST /policy_instance?id=301 HTTP/1.1"
vatid pcl)cy according to schema
Sent AL policy policyld='301" policyType='3' action='create’ policyObject={'scope': {'sliceld': {sst': sd': '000001', 'plunId': {'mcc': '001', 'mnc': '02'}}}
‘ulSlicePriority': 100}} policyStatusObject=PolicyStatus(enforceStatus='enforced', lastModified=: 1759u90°5o)
PuT http://192.168. 0. 100:8000/policytypes/3/policies/301 -> 200
172.18.0.2:443U8 - "POST /policy_instance?id=301 HTTP/1.1"
172.18.0.2:44364 — "DELETE /policy_instance?policy_instance_id=361 HTTP/1.1"

*sliceSlaObjectives': {'dlSlicePriority': 10

*sliceSlaObjectives': {'dlSlicePriority': 100

Figure 19: Reception of the Al policy by the Non-RT RIC and forwarding to the Near-RT RIC

Curl

curl -X "GET®
“http://192.168.40.58:30000/policy_instance® \
-H ‘'accept: application/json'

Request URL

hitp://192.168.48.50:30008,

Server response

Code Details

22 Response body

"policy id": "MANCY302",
pn]lty data"' {

H

1.

"sliceSla0bjectives™
"d151icePriority™
"ulSlicePriority™

i
b
"tllestalp "1759490543"

pn.hcytype id":

"nea;rt_ric_id" £

Figure 20: Generated Al policy instance in the Non-RT RIC

60

D6.3 — NANCY Integrated System — Final Version

Figure 21: Near-RT RIC and xApp validation and application of the A1l policy

3.19. Artificial Intelligence Network Quality Module (AINQM)

The Artificial Intelligence Network Quality Module is a module designed to carry out predictions about
upcoming network outages. Outages are essentially events and intervals of highly dissatisfactory
service. The AINQM in the form of its Docker Container API in fact delivers probability outputs, which
measure how probable the event of an outage is. Additionally, post-processing was put to use, so that
the final output of the module is in actuality binary: outage (1) or uptime/available (0). The work
carried out in this framework is meticulously laid out in [20]. Table 20 summarizes the AINQM
functional tests.

Table 20: AINQM functional tests summary

Functional Test ID Objective Status
AINQM_F001 Predlcjclon of network outage probability for ol
analytics.
Prediction of network outage probability to
AINQM_F002 anticipate network events and support Completed

decision-making.

Analytic Functional Test Description

Test type Functional

Identifier AINQM_F001, AINQM_F002

Tester CERTH

Test Purpose Verify the receipt and plausibility of probability predictions for upcoming network
outages.

References [20]

Configuration High-end commercial workstation or Docker Container APl Environment
Pre-processed Dataset (COLOSSEUM) [21] available

\
=
7

D6.3 — NANCY Integrated System — Final Version

2 S
-y
Q@R

0-%

>
z
(¢]
<

e |
Al model complete with fine-tuning and testing via validation and testing data

Pre-test The Docker Container RESTful API has already been built, alongside with its multitude of
conditions dependencies, in the workstation, which has been prepared for execution.
Test Step Type Description Result
Sequence

1 Stimulus Completed

Docker Component/service is executed/run within
the testing environment

2 Stimulus Values are inserted as body arguments/payload Completed
parameters (CSV, range) and both sent (via the
POSTMAN or curl tool)
3 Check Get a prediction that is plausible for upcoming Pass
outages
Test Pass
Verdict

3.20. Network Information Framework (NIF)

This component describes the development and validation of the Network Information Framework
(NIF), a comprehensive system designed to assess and optimize Blockchain-based Radio Access
Networks. The framework incorporates three Al-driven predictive models addressing key
performance indicators:

e Coverage Probability Prediction Model — Estimates network coverage reliability across urban
environments, leveraging datasets such as the University of Murcia’s 5G deployment
produced by NANCY.

e Outage Probability Prediction Model — Predicts the likelihood of network outages using
datasets like the Colosseum urban simulation [21].

e Latency Prediction Model — Evaluates blockchain consensus-induced latency across multiple
consensus mechanisms, enabling comparison and optimization of performance and security
trade-offs.

The NIF is integrated into an interactive web-based platform, allowing users to upload datasets,
execute model predictions, and visualize performance outcomes in real time. More information can
be found in [20]. The functional tests for the Network Information Framework are summarized in Table

21.
Table 21: NIF functional tests summary
Functional Test ID Objective Status \
NIF_F001 Al model testmg.w!th synthetic data to ensure Gl
reasonable predictions.
NIF_F002 Er'lsure the Al 'mf)del s loss function converges Completed
without overfitting.
NIF_F003 Successful creation of users and data upload el
process.
Analytic Functional Test Description
Test type Functional
Identifier NIF_F001, NIF_F002, NIF_F003

-2
2y \
> my
i)

0-%

D6.3 — NANCY Integrated System — Final Version

-,
NANCY
L __|

/
0

Tester 8BELLS
Test Purpose Verify the NIF’s Al models training, prediction quality, and user/data handling
functionalities.

References [20]
Configuration eTest environment deployed with default system settings
*Al models configured with baseline hyperparameters (batch size, learning rate, epochs)
eSynthetic dataset stored in designated test data directory
eDatabase schema applied and connection strings configured
eUser management and authentication modules enabled
eLogging and monitoring services configured for test runs

Pre-test eServices running
conditions eTest accounts created and accessible
eSynthetic dataset available and valid
eDatabase initialized and empty
eAdmin credentials verified
eLogging and monitoring enabled
eNetwork connectivity verified
eCompute resources allocated (GPU/CPU/memory)

Test Step Type Description Result
Sequence
1 Stimulus Completed
Start services and verify endpoints are reachable.

2 Stimulus
Load synthetic dataset into the test environment. Completed
3 Check
Dataset format and validity confirmed. Pass
4 Stimulus
Train Al models (all three) using synthetic dataset Completed
with baseline hyperparameters.
5 Check
Training losses decrease and converge within Pass
expected range for all models.
6 Stimulus
Create new user account. Completed
7 Check
User record stored in database and accessible. Pass
8 Stimulus
Upload sample dataset via user account. Completed
9 Check
Data upload completes successfully and is Pass
retrievable.

63

Z =’_(\‘
o §
-2

D6.3 — NANCY Integrated System — Final Version

Test Pass
Verdict

3.21. Smart Pricing Policies (SPP)

The Smart Pricing Module (SPM) is part of Task 4.5 “Smart Pricing Policies” and is described in detail
in [13] - Smart Pricing Policies. It provides Al-driven pricing and resource allocation mechanisms for
the B-RAN, leveraging Multi-Agent Reinforcement Learning (MARL) and multi-round blind reverse
auctions to ensure fair and competitive pricing. Within the NANCY framework, the SPM interacts
closely with the NANCY Marketplace through a dedicated API service, enabling dynamic price
discovery. Table 22 summarizes the functional test for the Smart Pricing Policies component.
Moreover, Figure 22 to Figure 26 illustrate indicative instances of the tests.

Table 22: SPP functional tests summary

Simulation environment testing

SPP_F001 (Boundary conditions, auction rules Completed
etc) with synthetic data.
Ensure the neural network loss

SPP_F002 . . - Completed
function converges without overfitting.
Performance testing under load to

SPP_F003 measure and improve latency and Completed
throughput.
Reinforcement learning model testing

SPP_F004 with synthetic data to ensure Completed

reasonable behaviour.

Analytic Functional Test Description

Test type Functional

Identifier SPM_F001

Tester 8BELLS

Test Purpose Validate that the SPM simulation PettingZoo environment correctly enforces
boundary conditions and auction rules using synthetic data.

References [13] (Section 3.2 Multi-round Blind Reverse Auction, Section 3.3 Training
Environment Parameters)

Configuration PettingZoo-based MARL environment with randomized providers, 10 auction rounds,

bid limits 20-100.

Pre-test conditions Environment initialized, at least 3 synthetic providers defined.

Test Step Type Description Result
Sequence
1 Stimulus Initialize auction environment with Environment setup
synthetic providers and random bids succeeds
2 Check Boundary conditions (min/max bids, Constraints respected
number of rounds) applied correctly
3 Check Auction completes after fixed number of Auction terminates
rounds without invalid states correctly
Test Verdict Pass

Analytic Functional Test Description

64

D6.3 — NANCY Integrated System — Final Version

Test type
Identifier
Tester

Test Purpose

References

Configuration

Pre-test conditions

Test Step
Sequence
1
2
3
4

Test Verdict

Functional
SPM_F002 + SPM_F004
8BELLS

& >
Y gl Y
g
& R 2
W o NP
\.’/
NANCY

Ensure that the neural network loss converges without overfitting and that the

reinforcement learning agents display reasonable, sustainable bidding st
under synthetic data.

rategies

[13], (Section 3.3 Training Process, Section 3.3.3 Reward Function, Section 5

Performance Evaluation)

PPO training with PettingZoo MARL environment, 500 training steps, 2—10 providers,

randomized bid limits between 20-100.

Training environment initialized, RL agents seeded with default hyperparameters.

Type Description Result
Stimulus Start PPO training in auction environment Training begins

Check Training loss decreases and stabilizes within Loss converges
threshold

Check Agents produce competitive but not Stable pricing
excessively low bids (30-35 range on average, behavior
Figure 23)

Check Agents avoid collusion or repetitive degenerate Behavior
strategies reasonable

Pass

Analytic Functional Test Description

Test type
Identifier
Tester

Test Purpose
References

Configuration

Pre-test conditions

Test Step
Sequence

1

2

3

Test Verdict

Functional
SPM_F003
8BELLS

Evaluate the SPM’s latency and throughput when subjected to high-frequency

auction simulations.

[13] (Section 5.1 Results from Testing and Simulations, Section 5.2 Performance

Benchmarks).

Containerized SPM testbed running 100 simulated auctions/minute with
randomized provider parameters.

Containerised SPM live, Load generator active

Type Description
Stimulus Run bulk auction simulations with randomized
parameters
Check Average response time (Figure 26)
Check Throughput with no dropped auctions

Result

Requests
processed

Latency
acceptable
Throughput
acceptable

Pass

65

D6.3 — NANCY Integrated System — Final Version

verse Auction Env Ini
Number of bidders: 4
: [Provider_0: 32-95, Provider_1: 28-91, Provider_2: 37-99, Provider_3: 22-84]
Initial bids: [67.4, 72.1, 80.9, 45.2]
Max rounds: 10

Bids within constraints

[Round 1] L t bid: Provider_3 @ 45.2
Bids within con

[Round 2] Lowest bid: Provi 0@44.8
Bids within constraints

[Round 3] Lowest bid: Provider_0 @ 43.6
Bids within constraints

[Round 4] Lowest bid: Provider_1 @ 42.9
Bids within constraints

[Round 5] L t bid: Provider_1 @ 42.1
Bids within constra

[Round €] Lowest bid: Provider_0 @ 41.7
Bids within constraints

[Round 7] Lowest bid: Provider_2 @ 41.2
Bids within constraints

[Round 8] L st bid: Provider_2 @ 40.6
Bids within constraints

[Round 9] L

Bids within con

= Auction Complete
nner: Provider_
:39.7
d, env terminated

Figure 22: Environment test terminal output

Average Percentage Price Difference Per Round

15 4

10 4

i I- -

[
wn

-10 4

Average Percentage Difference

=15 4

=20 T

Round

Figure 23: Average Agent Behavior

66

D6.3 — NANCY Integrated System — Final Version

Distribution of Winning Prices

Z 504
s
g

404
£

30 4

20 4

10 4

o

35
Winning Price
Figure 24: Winning Prices Distribution
Training Rewards
250 —— policy_reward_mean

Reward Range (Min-Max)

200

o
)
=

Episode Reward
]
-]

50 %

4] 50 100 150 200 250

Figure 25: Training Rewards

Starting load test: 100 auctions/min

[Batch 1] 103 requests | Avg latency: 790.7 ms | Success: 100% (0 dropped)
[Batch 2] 108 requests | Avg latency: 787.4 ms | Success: 100% (0 dropped)
[Batch 3] 112 requests | Avg latency: 811.9 ms | Success: 100% (0 dropped)
[Batch 4] 105 requests | Avg latency: 799.3 ms | Success: 100% (0 dropped)
[Batch 5] 107 requests | Avg latency: 778.6 ms | Success: 100% (0 dropped)

=== Load Test Summary ===

Total requests: 535

Successful: 535 (100%)

Dropped: 0 (0.0%)

Average response time: 793.58 ms

Figure 26: Load test terminal output

z w3

\
=
7

W
0-%

67

]
D6.3 — NANCY Integrated System — Final Version e e

3.22. Explainable Al (XAl)

The NANCY Explainable Al (XAl) Component is a core building block of the NANCY framework, designed
to enhance transparency and interpretability of Al models across multiple network domains. As
detailed in [22], the component integrates several state-of-the-art explainability techniques including
SHAP for global interpretability, LIME for local instance level explanations, and GradCAM/SHAP hybrid
methods for vision based semantic communication scenarios. These techniques produce both visual
artifacts such as plots, bar charts, and heatmaps, and structured JSON outputs, enabling explanations
to be consumed by other NANCY components.

The XAl Component interacts with:

e FLIDS: Provides explainability for intrusion detection models, including those trained using
federated learning approaches.

e AINQM: Offers interpretability for outage prediction in 5G networks, clarifying the influence
of performance metrics such as PRBs, CQl, and buffer sizes.

e Semantic Communications models (ASL recognition and V2X object detection): Applies
GradCAM and SHAP to highlight how CNN and YOLO models focus on semantic features
within images.

e XAl Dashboard: Feeds structured explanations in both visual and JSON formats into the
interactive visualization platform for operator use.

e LLM Powered Analysis Component: Passes SHAP-derived feature attributions to the LLM,
which generates natural language explanations suitable for human decision makers.

Through this integration, the component ensures that Al driven predictions within NANCY are
explainable, auditable, and actionable. It serves as the central explainability layer, connecting model
outputs to human operators via dashboards and LLM interpretation. The functional tests of the XAl
component are summarized in Table 23.

Table 23: XAl functional tests summary

Functional Test ID Objective Status \

Validation of system ability to load a saved

XAl_F001 model and retain its prediction methods. Comaisty

XAl_F002 Check that traffic data is preprocessed Completed
correctly.

XAl_F003 Validation of sy.stem generation of SHAP-based el
global explanations.

XAl_F004 Validation of system generation of LIME-based Completed

local explanations.

Analytic Functional Test Description

Test type Functional

Identifier XAI_F001

Tester MINDS

Test Purpose Verifies that a pre-trained model can be loaded successfully and works as expected. The

goal is to confirm that the model remains usable after loading, keeping its ability to
make predictions with both predict and predict_proba.

References From anomaly_detection_explainer.py module, the load_model method.
Configuration e A mock RandomForestClassifier is trained on random synthetic data.
e The trained model is serialized and saved as a pickle file in a temporary
directory.

D6.3 — NANCY Integrated System — Final Version

e Required libraries (scikit-learn, numpy, pickle, pytest framework) are installed
in the test environment.

Pre-test e Avalid pickle file containing a trained model exists at the given path.
conditions e The environment permits reading the model file from disk.
Test Step Type Description Result
Sequence
1 Stimulus Call load_model method with the path to the Model object
saved model file. returned
2 Check Verify that the loaded object is not None. Pass
3 Check Verify that the loaded object has the method Pass
predict.
4 Check Verify that the loaded object has the method Pass
predict_proba.
Test Pass
Verdict
Test type Functional
Identifier XAI_F002
Tester MINDS
Test Purpose This test verifies that the preprocess_data method correctly prepares network traffic

data for machine learning models. The goal is to ensure that irrelevant columns are
removed, missing or infinite values are handled, and numerical features are properly
scaled using a provided pre-trained scaler, while preserving the target labels.
References From anomaly_detection_explainer.py module the preprocess_data method.
Configuration e Asample dataset simulating network traffic is generated with 50 instances,
including metadata columns (Flow ID, Src IP, Dst IP, Protocol, Timestamp,
Label) and numerical features used for modeling.
e A pre-trained StandardScaler is created and saved to a temporary file to
simulate the original scaler used.
e Required libraries (pandas, numpy, scikit-learn, joblib, pytest framework) are

available.
Pre-test e The sample data and scaler file exist and are accessible.
conditions e The environment permits reading the model and scaler files from disk.
Test Step Type Description Result
Sequence
1 Stimulus Call preprocess_data with the sample dataset and Returns X_scaled
mock scaler. DataFrame and
y_true Series
2 Check Verify X_scaled is a pandas DataFrame. Pass
3 Check Verify y_true is a pandas Series. Pass
4 Check Verify non-feature columns (Flow ID, Src IP, Dst IP, Pass
Protocol, Label) are removed from X_scaled.
5 Check Ensure that X_scaled contains no NaN values. Pass
6 Check Ensure that X_scaled contains no infinite values. Pass
Test Pass
Verdict
Test type Functional
Identifier XAI_F003
Tester MINDS

AN
@
N
\.’/

NANCY
L __|

-
)

-2
0-%

D6.3 — NANCY Integrated System — Final Version

Test Purpose Verifies that the global_explain function can successfully generate global feature
importance explanations for a machine learning model using SHAP. The test ensures
that the function can process input data, calculate SHAP values, and save both visual
(PNG) and JSON outputs without raising exceptions.

References From anomaly_detection_explainer.py module the preprocess_data, load_model and
global_explain methods.
Configuration e Raw sample_data DataFrame containing network traffic features.

e A mock RandomForestClassifier saved as a pickle file (mock_model).

e A mock StandardScaler saved as a joblib file (mock_scaler), used for
preprocessing the numeric features.

e Temporary path (tmp_path/global_output) where explanation files (plots and
JSON) are stored.

e Required packages (shap, matplotlib, pandas, numpy, pytest framework) are
installed and available.

Pre-test e The mock model has been trained and saved to disk.
conditions e The mock scaler has been trained and saved to disk.
e Sample network traffic data has been created and contains all required
columns, including the features used by the model.
e The environment has write access to the temporary output directory
(tmp_path) and read access to load the model and scaler.

Test Step Type Description Result
Sequence
1 Stimulus Preprocess the sample_data using Returns X_scaled
preprocess_data and the mock scaler DataFrame
2 Check Load the mock model from file using load_model. Returns the
trained model
object
3 Check Call global_explain method to generate Generates PNG
explanations plots and JSON
files in the output
directory
4 Verify that no exceptions are raised during the Pass
execution of global_explain.
Test Pass
Verdict
Test type Functional
Identifier XAI_F004
Tester MINDS
Test Purpose Verifies that the local_explain function can generate local explanations for a network
flow without raising exceptions. The test ensures that the function executes properly.
References From anomaly_detection_explainer.py module the preprocess_data, load_model and

local_explain methods.
Configuration
e Sample data (raw network flow dataset, not scaled).
e A mock model pretrained RandomForestClassifier and saved.
e A Mock Scaler used in preprocessing to scale numeric features.
e Flow ID set to O (first row of the dataset).
e Temporary directory tmp_path / "local_output" for storing PNG and JSON files.
e Required packages (LIME, matplotlib, json, pandas, numpy, pytest framework)
are installed and available.

70

AL

N
&
&
\.’/
NANCY

-2
0-%

D6.3 — NANCY Integrated System — Final Version

Pre-test
conditions e Sample data has been created (DataFrame with 50 network flows and relevant
features).
e The mock model has been trained and saved to disk.
e The mock scaler has been trained and saved to disk.
e The environment has write access to the temporary output directory
(tmp_path) and read access to load the model and scaler.
Test Step Type Description Result
Sequence
1 Stimulus | Preprocess the sample_data using Returns X_scaled
preprocess_data and the mock scaler. DataFrame
2 Stimulus Load the mock model from file using load_model. Returns the
trained model
object
3 Stimulus Call local_explain method to generate Generates PNG
explanations for the first flow. plots and JSON
files in the output
directory
4 Check Verify that no exceptions are raised during the Pass
execution of local_explain.
Test Pass
Verdict

3.23. Federated Learning Intrusion Detection System (FL-IDS)

The FL-IDS component provides a privacy-preserving and scalable security mechanism for detecting
anomalies and cyber threats in Beyond 5G (B5G) and 6G networks. It leverages Federated Learning
(FL) to train intrusion detection models collaboratively across distributed clients, without centralizing
sensitive network traffic data. This approach aligns with the O-RAN distributed architecture,
minimizing bandwidth consumption and reducing privacy risks, while maintaining strong detection
performance.

The system, first detailed in [6], is implemented on the Flower (Flwr) framework and supports flexible
aggregation strategies (e.g., FedAdagrad), dynamic client scaling, containerized deployment, and
robust error handling. It includes a streaming-based preprocessing pipeline that transforms raw
network traffic into ML-ready features, ensuring consistency across clients and preserving privacy.

Beyond the FL-IDS neural network-based architecture, a second methodology has also been
developed for Federated Random Forest (FedRF) anomaly detection in cellular networks. This
consensus-based approach, as described in [6] and related publications, enables fully decentralized
feature selection and improves resilience against central points of failure.

Interactions with other NANCY components:

e Data Processing Pipelines: FL-IDS integrates with NANCY’s data collection and traffic
preprocessing components to extract flows and features.

e Orchestration & Deployment: Its Docker/Kubernetes-based deployment ensures smooth
integration with NANCY’s orchestration layer for scalable, distributed environments.

The tests for the FL-IDS are summarized in Table 24.

71

]
D6.3 — NANCY Integrated System — Final Version e e

Table 24: FL-IDS functional tests summary

Functional Test ID Objective Status
FL-IDS_F001 Validation that the client returns the el
correct model parameters.
FL-IDS_F002 Validation that the client model fit Completed
works as expected.
FL-IDS_F003 Validation of the client model ol

evaluation (loss, evaluation metrics).
Validation that the client saves the
FL-IDS_F004 model and handles the directory Completed
creation correctly.

Validation that the server initializes
without starting a real server

FL-IDS_F C |
S_F005 (mocked model and server Ry

functions).
Validation that the client initializes,

FL-IDS_F006 without connecting to a server Completed
(mocked data and start function).

FL-IDS_F007 Vallldatlon th?t the run_experiment ol
script can be imported.

FL-IDS_F008 Verify that the weighted average of Completed

metrics is calculated correctly.

Analytic Functional Test Description

Test type Functional

Identifier FL-IDS_F001

Tester MINDS

Test Purpose Verify that the client can return its model parameters in the expected format
References From NancyClient class in the src.client.client module, the get_parameters method.
Configuration e Test environment using unittest with numpy package installed.

e Mock training data with 100 samples, 10 features, and 3 classes.

Pre-test e NancyClient instance initialized with training and testing data.
conditions e Random seed set to ensure reproducibility.
Test Step Type Description Result
Sequence
1 Stimulus Call get_parameters method with the argument List of parameters
(). returned
2 Check Verify output is a list Pass
3 Check Verify each parameter is a numpy.ndarray. Pass
Test Pass
Verdict
Test type Functional
Identifier FL-IDS_F002
Tester MINDS
Test Purpose Verify that the client can fit its local model and return updated parameters, number of
examples, and metrics.
References From NancyClient class in the src.client.client module, the fit method.
Configuration e Test environment using unittest and numpy package installed.

e Training dataset of 100 samples and 10 features.

Pre-test e C(Client initialized with data and 1 training epoch.
conditions e Initial parameters obtained via get_parameters.

D6.3 — NANCY Integrated System — Final Version

z w3

\
=
7

0-%

Type Description Result
Stimulus Call fit method with initial_params and 1 epoch. Returns updated
parameters,
number of
examples, and
metrics
Check Verify updated parameters are a list. Pass
Check Verify num_examples equals to 100. Pass
Check Verify returned metrics is a dict containing "loss" Pass
and "accuracy".
Pass

Analytic Functional Test Description

Test Step

Sequence
1
2
3
4

Test

Verdict

Test type

Identifier

Tester

Test Purpose
References
Configuration
Pre-test

conditions

Test Step
Sequence

u b wWwN

Test
Verdict

Functional
FL-IDS_F003
MINDS

Verify that the client can evaluate its model and return loss, number of test examples,

and evaluation metrics.

From NancyClient class in the src.client.client module, the evaluate method.
e Test environment using unittest.
e Test dataset of 50 samples.

e Client initialized with data.
e Model parameters obtained via get_parameters.

Type Description Result
Stimulus Call evaluate method with retrieved parameters. Returns loss,
number of
examples, and
metrics
Check Verify loss is a float. Pass
Check Verify num_examples equals to 50. Pass
Check Verify metrics is a dict. Pass
Check Verify metrics include "accuracy", "tpr", "fpr", "f1", Pass
"auc".
Pass

Analytic Functional Test Description

Test type
Identifier
Tester

Test Purpose
References
Configuration

Pre-test
conditions

Functional

FL-IDS_F004

MINDS

Verify that the client can save its model to a specified path.

From NancyClient class in the src.client.client module, the save_model method.

e Test environment using unittest with unittest.mock.patch to replace
Sequential.save and os.makedirs.

e TensorFlow must be installed, because the model is instantiated in the client

constructor.

e NancyClient initialized with mock data.
e Sequential.save patched to prevent actual file writing.
e os.makedirs patched to prevent directory creation.

73

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR
0-%

>
z
(¢]
<

Test Step Type Description Result
Sequence

1 Stimulus Call save_model with “test/path” input. Model save

function invoked
2 Check Verify mock_save was called once with "test/path" Pass
as input.

Test Pass
Verdict
Test type Functional
Identifier FL-IDS_F005
Tester MINDS
Test Purpose Verify that the Flower server can be initialized without actually starting a real server.
References From server module in the src.server directory, the start_server method.
Configuration e Test environment using unittest and unittest.mock.patch to mock model

creation (create_model) and Flower server start (flwr.server.start_server).
e Numpy, Tensorflow, Flwr packages installed.

Pre-test e MagicMock model with get_weights method returning sample numpy arrays.
conditions e create_model patched to return the mock model.
o flwr.server.start_server patched to prevent real server startup.

Test Step Type Description Result
Sequence
1 Stimulus Call start_server with test parameters Server
initialization

function called
successfully

Test Pass
Verdict

Test type Functional

Identifier FL-IDS_F006

Tester MINDS

Test Purpose Verify that a Flower client can be initialized without actually connecting to a server.
References From client module in the src.client directory, the start_client and load_data methods.
Configuration e Test environment with unittest

e Packages numpy, pandas, joblib, tensorflow and flwr installed.
e Mocks for load_data and flwr.client.start_numpy_client

Pre-test e Mock load_data returns synthetic train/test datasets (100 train, 50 test
conditions samples, 10 features, 3 classes)
e flwr.client.start_numpy_client patched to avoid real server communication
1
Test Step Type Description Result
Sequence
1 Stimulus Call start_client with test parameters. Client initialization
function called
3 Check Verify start_numpy_client is called once Pass
4 Check Verify server_address argument matches Pass
expected.
Test Pass
Verdict
Test type Functional

74

L
D6.3 — NANCY Integrated System — Final Version .'.‘\.l_
NANCY
-

Identifier FL-IDS _F007
Tester MINDS
Test Purpose Verify that the run_experiment script can be imported and contains a main function.
References From scripts directory the run_experiment module.
Configuration e Test environment with unittest.
Pre-test e Script run_experiment.py exists in the expected location.
conditions
Test Step Type Description Result
Sequence

1 Stimulus From scripts import run_experiment. Module imported

successfully

2 Check Verify the module has a main attribute. Pass
Test Pass
Verdict
Test type Functional
Identifier FL-IDS_F008
Tester MINDS
Test Purpose Verify that the weighted_average function correctly computes a weighted average of a

list of metric values.

References From server module in the src.server directory, the weighted_average method.
Configuration e Test environment with unittest and numpy package installed.
Pre-test e Sample list of metrics, corresponding weights and the expected weighted
conditions average pre-computed.
Test Step Type Description Result
Sequence

1 Stimulus Call weighted_average with sample metrics and Returns a numeric

weights. result
2 Check Verify the result is approximately equal to the Pass
expected average.

Test Pass
Verdict

3.24. Memory Traffic Generator - Resource Monitor (MTG-RM)

The Memory Traffic Generator — Resource Monitor (MTG-RM) component is designed to evaluate,
stress, and control system behavior under memory traffic conditions. It provides a controlled
framework for generating and monitoring high levels of memory activity, which are representative of
both legitimate high-performance workloads and potentially malicious memory-bound applications.

The MTG-RM module serves a dual purpose:

1. Memory Traffic Generation (MTG): This subsystem is capable of producing intense and
configurable memory access patterns to simulate interference scenarios or denial-of-service
(DoS) conditions at the memory subsystem level.

2. Resource Monitoring (RM): The monitoring subsystem provides fine-grained insight into CPU-
level resource utilization and memory traffic intensity through the use of Performance
Monitoring Units (PMUs).

75

D6.3 — NANCY Integrated System — Final Version

2 S
-y
QR

0-%

>
z
(¢]
<

L |
The MTG-RM framework is therefore used for assessing the resilience of computing systems to
improve real-time performance and security. Table 25 summarizes the MTG-RM functional tests.

Table 25: MTG-RM functional tests summary

Functional Test ID Objective Status
Demonstrate capability of generating intense
memory traffic to simulate malicious behavior.
Monitor the system resource usage at the CPU
MTG-RM_F002 level as provided by Performance Completed
Measurement Units.

Limit the CPU resources assigned to malicious

MTG-RM_F001 Completed

MTG-RM_F003 . Completed
application.
Test type Functional
Identifier MTG-RM_F001
Tester SSS
Test Purpose The test aims to demonstrate the capability of generating intense memory traffic by
continuously accessing memory areas with a limit-case access pattern that maximizes
interference. The memory traffic generator application is further protected by
SCHED_DEADLINE to control its impact.
References
Configuration Selection of amount of memory to be accessed, selection of period and runtime for
SCHED_DEADLINE
Pre-test None.
conditions
Test Step Type Description Result
Sequence
1 Stimulus
Launch a script with the following command:
taskset -c Score chrt -d -T Sruntime -D Speriod -P
Speriod 0 ./dos-attack-sim-endless -m 131072
2 Check The test is successful when a meaningful
slowdown of any other memory-bound application
is observed.
Test Pass
Verdict
Test type Functional
Identifier MTG-RM_F002
Tester SSS
Test Purpose The test aims to demonstrate the capability of the memory traffic monitor tool to
analyze the memory traffic of any application. The test consists in running the memory
traffic analyzer tool to read the ARM performance counters of a memory-intensive
application.
References
Configuration The application to be monitored is selected from the IsolBench benchmark suite,
specifically the "latency" application.
Pre-test None.
conditions

2 -2
i \
-2

D6.3 — NANCY Integrated System — Final Version

Test Step Type Description Result
Sequence
1 Stimulus The script used to test the monitor is "test-
monitor.sh" in the "sss_malicious_appl/monitor"
folder. What it does is launching the following
command:

taskset -c 1 chrt -r 99 ../appl/dos-attack-sim -m 1 -i
100000000 & ./start-monitor.sh S!

2 Check The test is successful when the monitor creates a
.csv file in the "results" folder named with the PID
of the monitored application containing the value
of the counters read by the monitor, thus proving
that the monitor is able to read the performance
counter of the PMU.

Test Pass
Verdict

Test type Functional

Identifier MTG-RM_F003

Tester SSS

Test Purpose This test aims at assessing the capability of SCHED_DEADLINE Linux’s scheduling class of
controlling the amount of CPU interference generated by software tasks.
References

Configuration Selection of a CPU-eager application (yes), as well as SCHED_DEADLINE period, runtime
pair and target processor core.

Pre-test None
conditions
Test Step Type Description Result
Sequence
1 Stimulus
Launch the following command to execute “yes’
protected by SCHED_DEADLINE:
taskset -c Score chrt -d -T Sruntime -D Speriod -P
Speriod 0 yes > /dev/null
2 Check Monitor the CPU interference (i.e., usage) of ‘yes'
and corresponding impact of other processes.
Test Pass
Verdict

3.25. Post Quantum Cryptography — Secure Communications (PQC-SC)

This component enables MQTT communication secured with TLS through the Mosquitto broker,
leveraging OpenSSL for cryptographic operations. It supports both classical and post-quantum
algorithms, with the OpenSSL provider facilitating modular integration of PQC algorithms from the
Open Quantum Safe (0QS) library. This setup ensures encrypted, authenticated, and quantum-
resistant communication between MQTT clients and the broker. Further details can be found in [11]-
Section 5: PQC for Secure Communications.

77

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR

0-%

>
z
(¢]
<

L.
Table 26: PQC-SC functional tests summary

Functional Test ID Objective Status
PQC-SC_F001 Successful. integration of PQC algorithms into el
OpenSSL library.
PQC-SC_F002 Successful communication using TLS of a Completed

specific MQTT application.

Analytic Functional Test Description

Test type Functional
Identifier PQC-SC_F001
Tester TEI
Test Purpose Integrate PQC algorithms for key exchange and digital signatures within the TLS protocol
considering OpenSSL library
References [11] - Section 5 PQC for Secure Communications
Configuration Containerized testbed environment with docker.
Pre-test Network connectivity among the various elements of the testbed.
conditions
Test Step Type Description Result
Sequence
1 Stimulus Run a container using modified version of OpenSSL Pass

integrated with OQS (Open Quantum Safe) as a
specific provider.

2 Check Use the specific “openssl list” command to check if Pass
post-quantum cryptography (PQC) signature
algorithms are available.

3 Check Run the appropriate “openssl list” command to Pass
verify that post-quantum cryptography (PQC) Key
Encapsulation Mechanism (KEM) algorithms are

available
Test Pass
Verdict
Test type Functional
Identifier PQC-SC_F002
Tester TEI
Test Purpose Demonstrate PQC algorithms integrated in OpenSSL TLS library in an MQTT protocol
communication scenario.

References [11] - Section 5 PQC for Secure Communications
Configuration Containerized testbed environment with docker.
Pre-test Network connectivity among the various element of the testbed.
conditions
Test Step Type Description Result
Sequence

1 Stimulus Run Mosquitto MQTT broker integrated with Pass

OpenSSL PQC enabled library

2 Stimulus Run the Mosquitto client (publisher or subscriber) Pass
with OpenSSL and the PQC library enabled, then
connect to the broker.

3 Check Capture the communication using the tcpdump Pass
utility to generate a pcap file, then verify in the TLS

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR
0-%

>
=
o
<

L |
handshake that post-quantum cryptography
algorithms are being used.
Test Pass
Verdict

3.26. Distributed Anomaly Detection and Mitigation (D-ADM)

This component enables distributed anomaly detection and compensation on the edge. For the
anomaly detection part, it is based on machine learning models to detect anomalies in the edge
servers’ workload (e.g., CPU, RAM, disk, network usages), while for the anomaly compensation part it
is based on a game-theory algorithm for balancing network and computing resources in order to
dynamically equalize a certain metric (defined by the operator) among the different users, to reach a
so-called Wardrop User Equilibrium. Both components are detailed in [6], and in particular in sections
2.3 and 2.7 respectively. A summary of the functional tests of the FL-IDS is included in Table 27.

Table 27: FL-IDS functional tests summary

Functional Test ID Objective Status
D-ADM_F001 Application and validation of the automatic
anomaly d.etectlon methodoIogY within a ol
testbed with data from malicious server
applications.
D-ADM_F002 Testing of anomaly compensation techniques in Completed

a testbed for load balancing purposes.

Analytic Functional Test Description

Test type Functional

Identifier D-ADM_F001

Tester CRAT

Test Purpose Demonstrate the correctness of the implementation of the components and of

the interfaces

References [6], Section 2.3: “Federated Learning Algorithm for Improved Anomaly Detection
in Cellular Networks*

Configuration The machine learning models have been trained using ITL datasets 2 and 3

(respectively for normal operation and under attack). The configuration is taken
by a Docker Compose script associated with an ENV file

Pre-test conditions Receiving metrics from the testbed or synthetic data for the prediction of
anomalies.
Test Step Type Description Result
Sequence
1 Stimulus Send a normal operation sample

(unseen at training stage) to the
anomaly detection module
2 Check Check that the anomaly detection Pass
modules classify it as normal execution
and send the correct data to the
visualization dashboard (if connected)
(Figure 27)

oy
D6.3 — NANCY Integrated System — Final Version e e

3 Stimulus Send a normal operation sample
(unseen at training stage) to the
anomaly detection module
4 Check Check that the anomaly detection Pass
modules classify it as anomaly and send
the correct data to the visualization
dashboard (if connected) (Figure 28)

Test Verdict Pass
Analytic Functional Test Description
Test type Functional
Identifier D-ADM_F002
Tester CRAT
Test Purpose Demonstrate the correctness of the implementation of the components and of the
interfaces
References [6], Section 2.7 “Adversarial Dynamic Healing based on Wardrop Equilibrium*
Configuration The configuration is passed at class instantiation time by the caller module
Pre-test Receiving metrics from the testbed or synthetic data for load balancing
conditions
Test Step Type Description Result
Sequence
1 Stimulus Call the load balancing module to get the data

rates of the loT device towards the different
available edge servers
2 Check Check that the defined metric is equalized among Pass
the different edge servers (e.g., load of the
servers in terms of received requests/s)

3 Stimulus Reduce the load capacity of a server (by altering
its reported metric) at timestep 400
4 Check Check that a new equilibrium is reached Pass
considering the new capacity of the edge server
Test Pass

Verdict

Figure 27 and Figure 28 show specific steps of the tests, while the respective test results are
illustrated in Figure 29.

80

-3¢
-

D6.3 — NANCY Integrated System — Final Version

¢
¢

N
NY'ld
NANCY

2025-09-29 18:05:56,062 - waitress - INFO - Serving on http://0.0.0.0:8080
2025-09-29 10:06:29,092 - AnomalyDetectionModule - DEBUG - I:' {\r\n "timestamp": 2, \r\n “sensitivity": 0.6,
\r\n "data": [{ "timestamp": 1 \r\n "cpul”:0.022 \r\n “cpu2“:0.011,\r\n "epu3”: 0.001,\r\n cpud”:e
.84, \r\n "disk_a":8.0148,\r\n rdisk_u":0.59,\r\n "mem_u! 2063, \r\n "mem_c .7728,\r\n "mem_f":0.0585,
\r\n "net_d .8017 \r\n "net_u -1450\r\n Nr\n J\r\n}*
2025-09-29 10:06:29,092 — AnomalyDetectionModule - INFO - AnomalyDetection requested
2025-09-29 10:06:29,092 - AnomalyDetectionModule - DEBUG - {'timestamp': 2, 'sensitivity': 0.6, 'data': [{'times
tamp': 1, 'cpul': ©.822, 'cpu2': 0.011, "cpu3 0.001, 'cpud': 0.004, 'disk_a': ©.0148, 'disk_u': ©.52, 'mem_ 0.2U063, 'mem_c': 0.7728, 'm
em_f': 0.0585, 'net_d': ©.0017, 'net_u': 0.1454}]1}
2025-09-29 10:06:29,092 - AnomalyDetectionModule — DEBUG — Timestamp: 2
2025-09-29 10:06:29,102 — AnomalyDetectionModule - DEBUG — Parameters after conversion: [{'cpul': ©.822, 'cpu2':
0.811, 'cpu3': 0.001, 'cpuld': 0.00U, 'disk_a': 0.0148, 'disk_u': 0.59, 'mem_u': ©.2063, 'mem_c': 0.7728, 'mem_f': ©.8585, 'net_d': ©.0017,
‘net_u': 0.1u54}]
2025-09-29 10:06:29,119 — AnomalyDetectionModule - DEBUG — SHAP values: (array(['cpul®, 'cpu2', 'cpu3', ‘'cpud',
‘disk_a', ‘'disk_u', 'mem_u',
‘mem_c', 'mem_f', 'net_d', 'net_u'], dtype=object), array([[2.75949885e-82, -2.759U9885e-02],
.22605U20e-03, -U.22605U20e-03],
-1.79851042e-04, 1.798510u2e-04],
.7T701783e-85, -2.77701783e-05],
.08661833e-02, -1.08661833e-02],
.88756893e-01, 3.88756893e-01],
.2175U306e-02, -8.21754306e-02],
.66927U83e-02, -1.66927U83e-02],
.9249uu78e-03, -5.92U9uUlT78e-03],
-2.58228U69e-83, 2.58228U69e-03],
.27587526e-83, -2.27587526e-03]]1))
2025-09-29 10:06:29,119 - AnomalyDetectionModule — DEBUG — Most important feature: disk_u
2025-09-29 10:06:29,119 - AnomalyDetectionModule - DEBUG — Anomaly count: © out of 1
2025-09-29 10:06:29,120 - AnomalyDetectionModule - DEBUG - Anomaly: False, Message: None

Figure 27: Step 2 of the FL-ADM_001 test

2025-09-29 10:08:14,331 - AnomalyDetectionModule — DEBUG - b'{\r\n "timestamp"”: 2,\r\n “sensitivity": ©.6,
\r\n "data": [\r\n {\r\n "timestamp": 2 \r\n "cpul":0.965, \r\n "cpu2":0.06d \r\n "cpu3":0.0771, \r\n
003, \r\n "disk_a":0.0856,\r\n isk_u":1,\r\n .0992, \r\n "mem_c":0.U4676, \r\n "mem_f":0
usud, \r\n "net_d":0.8001,\r\n "net_u":8.1253\r\n }\r\n}*
2025-09-29 10:08:14,331 - AnomalyDetectionModule - INFO - AnomalyDetection requested
2025-09-29 10:08:14,331 - AnomalyDetectionModule - DEBUG - {'timestamp': 2, 'sensitivity': 8.6, 'data': [{'times
tamp': 2, 'cpul': 0.965, "cpu2': 0.084, 'cpu3': 8.8771, ‘cpud': 0.003, 'disk_a': ©.8856, 'disk_u': 1, 'mem_u': ©.0992, ‘mem_c': 0.U4676, 'mem
_f': 0.usu4, 'net_d': 0.0001, 'net_u': 0.1253}]}
2025-09-29 10:08:14,331 - AnomalyDetectionModule - DEBUG - Timestamp: 2
4,336 - AnomalyDetectionModule - DEBUG - Parameters after conversion: [{'cpul': 8.965, 'cpu2':
': 0.0856, 'disk_u': 1.8, 'mem_u': ©.8992, ‘mem_c': 0.4676, 'mem_f': ©.464U, 'net_d': 0.0001,

3
2025-89-29 10:08:14,3
0.08d, 'cpu3': 0.8771, 'cpud': 0.003, 'disk_a
'net_u': 0.1253}]

2025-89-29 10:08:14,353 - AnomalyDetectionModule - DEBUG - SHAP values: (array(['cpul', 'cpu2', 'cpu3', 'cpuli',
‘disk_a', 'disk_u', 'mem_u',

‘mem_c', 'mem_f', ‘'net_d',6 'net_u'l], dtype=object), array([[-9.83418763e-02, 9.83uU18763e-02],
.5126U214e-0U, 9.5126U21Ue-04],

.51017423e-63, 1.51017423e-03],

.65615107e-0U, 5.65615U07e-04],

.16014902e-02, 1.16414902e-02],

.15509U66e-01, 3.15509U66e-01],

3U335608e-01, 3.3U335608e-01],

.77100907e-03, -8.77400907e-03],

.6708U835e-03, -1.67084835e-03],

.278853U6e-0U, -2.278853U6e-0U],

.47718284e-04, -L.U4771828Ue-04]1]))
2025-09-29 10:08:14,353 - AnomalyDetectionModule - DEBUG - Most important feature: mem_u
2025-09-29 10:88:14,353 - AnomalyDetectionModule - DEBUG - Anomaly count: 1 out of 1
2025-09-29 10:08:14 354 — AnomalyDetectionModule — DEBUG — Anomaly: True, Message: Anomaly Detected: mem_u

Figure 28: Step 4 of the FL-ADM_001 test

Load Evolution - Wardrop Balancer

L e — Server #1 load ’
Server #2 load
0.9 A === load limit
z
g 0.8 1
o
[0
o
3 0.71
©
o
v 0.6 1 i | ‘J
= Iy " I J Hli‘i:"" i
= 0.5 Iy ! | -
0.4
0 200 400 600 800 1000
Step

Figure 29: Results of steps 2 and 4 of D-ADM_F002

81

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR

0-%

>
z
(¢]
<

3.27. ETSI Openslice

A summary of functional tests conducted for OpenSlice integration into the NANCY platform is
provided in Table 28. All these integration activities are now concluded as OpenSlice demonstrates
readiness for the final NANCY use case demonstration and validation activities.

Table 28: OpenSlice functional tests summary

Functional Test ID Objective Status

0SL_F001 Test connection with Service Orchestrator via ol
NIS2.
Test connection with Service

0SL_Foo02 Repository/Registry via NIS3. Completed
Test connection with resource Telemetry via

OSL_F003 Completed
NIS5.

OSL_F004 "[ﬁ;'é connection with Compute Controller via Completed

Dropped due to no availability of
OSL_F005 Test connection with NFVO. NFVO in the Greek testbeds
where OpenSlice was used

Analytic Functional Test Description

Test type Functional

Identifier OSL_F001

Tester UBITECH

Test Purpose Test connection with the NANCY Service Orchestrator (Maestro) via interface NIS2
References [16], [1], and [2]

Configuration -

Pre-test Maestro and OpenSlice instances deployed. IP connectivity between Maestro and
conditions OpenSlice already established. OpenSlice has available services in its service catalogue.
Test Step Type Description Result
Sequence

1 Stimulus Repeat Maestro_F001 Pass
Test Maestro successfully peers with OpenSlice and fetches services from the Pass
Verdict OpenSlice service catalog
Test type Functional
Identifier OSL_F002
Tester UBITECH
Test Purpose Test connection with the NANCY service repository/registry via interface NIS3
References [16], [1], and [2]

Configuration -

Pre-test OpenSlice and the NANCY service registry instances are deployed. A service
conditions specification is onboarded onto the OSL catalogue and a Kubernetes cluster is already
linked with OpenSlice’s resource and service catalogues.

Test Step Type Description Result
Sequence
1 Stimulus User logins to OSL portal Pass
2 Check User orders the deployment of a helm-based Pass

service (located in the NANCY service registry)
atop an existing Kubernetes cluster

D6.3 — NANCY Integrated System — Final Version

Pass

3 Check OpenSlice initiates order and pulls service artifact
(i.e., helm chart) from the service registry
4 Check OpenSlice successfully deploys service on the test
cluster
Test OpenSlice successfully pulls service artefacts from the NANCY service
Verdict registry
Test type Functional
Identifier OSL_F003
Tester UBITECH
Test Purpose Test connection with resource telemetry via interface NIS5
References [16], [1], and [2]

Configuration -

Pre-test Maestro_F002 is already done, therefore a Kubernetes cluster is already created by
conditions OpenSlice
Test Step Type Description Result
Sequence
1 Stimulus OpenSlice orders a Prometheus helm service atop Pass
the created Kubernetes cluster
2 Check Prometheus get deployed on a specific port of the Pass
cluster
3 Check OpenSlice exposes the Prometheus port through Pass
ingress
4 Check User verifies that Prometheus APl is indeed Pass
exposed
Test OpensSlice successfully instantiates resource-level telemetry on existing Pass
Verdict Kubernetes cluster using interface NIS5
Test type Functional
Identifier OSL_F004
Tester UBITECH
Test Purpose Test connection with compute controller via interface NIS6
References [16], [1], and [2]
Configuration -
Pre-test OpenSlice instance already deployed. An OpenStack instance already deployed. IP
conditions connectivity between OpenSlice and OpenStack
Test Step Type Description Result
Sequence
1 Stimulus OpenSlice user issues an order of a compute Pass
resource (e.g., a VM) via the OpenSlice Resource
Order API
2 Check OpenSlice establishes connection with an Pass
OpenStack Virtual Infrastructure Manager
3 Check OpenSlice requests an OpenStack VM Pass
4 Check OpenSlice attaches VM resource characteristics Pass
(e.g., flavour info, IP, ssh key, etc.) to a resource
entry in its TMF Resource Inventory Management
API
5 Check OpenSlice user consumes this information to Pass

access the created VM

83

D6.3 — NANCY Integrated System — Final Version

Test
Verdict

OpenSlice successfully instantiates a compute resource using interface
NIS6

84

oy
D6.3 — NANCY Integrated System — Final Version LS & &
\."/

4. Updates on Integration of NANCY Components and Services

This section presents the integration activities conducted to combine the diverse NANCY components.
Building upon the outcomes of the functional testing described in Section 3, the integration work
focused on ensuring the correct interaction among the NANCY components. The section first outlines
the final set of NANCY integration points, providing their final implementation status and possible
updates in their descriptions compared to the previous platform version documented in [2].
Subsequently, it provides a detailed description of the integration tests performed for each interaction
between components, including objectives, configuration details, execution steps, and test results.
Finally, the section reports the monitoring and coordination mechanisms used to oversee the
integration process, ensuring stability and consistency across all domains of the NANCY architecture.
The results confirm that the NANCY system has reached a high level of integration maturity, enabling
its readiness for end-to-end platform validation and deployment in the project.

4.1. Integration Points Updates

Table 29 is the updated NANCY integration matrix, which was initially presented in [2]. In this table,
there are a few integration points which have been dropped (marked with a strikethrough), as well as
new ones (highlighted in yellow) compared to what was shown in [2]. Table 30 provides the updated
summary of integration points specifications (initially identified and fully specified in [2]). For the
integration points that were dropped compared to [2], a justification is provided.

85

D6.3 — NANCY Integrated System — Final Version

1.

2.

©0l® N o v s

10

26
27

20.
21.
22.
23.
24.
25.
SecCom

MRAT-NCP

ID-Mngt

DAC

BC

. Wallet

Al Virtualizer
BRAN-model

.SemCom
. QKDSim

. VOSyS

Monitor
11.
12.
13.
14.
15.
16.
17.
18.
19.

Marketplace
Maestro
Models
SEMR
Elasticity
PQC Sign.
TFS
RIC-mngr
AINOM

NIF

SPP

XAl
FL-IDS
MTG-RM
PQC-

. D-ADM
. BSS

1,2

Table 29: NANCY integration matrix

4

1,8 1,13 1,17
2,5 2,10
3,11
4,5 4,11
511 | 542 527
6,10 6,14
11,21
12,27
13,14 13,45 1317
14,19 14,23
16,25
19,20 19,
22
22,23

86

]
D6.3 — NANCY Integrated System — Final Version e e

Table 30: Integration points specification summary

NANCY
NANCY Platfor Protoc Integration in
Integration m Objective ol testbeds/demon Status
Points Interfac strators
e
Allow access for 5G
MRAR-NCP-ID NIS13, network usage for a HTTP Spanish
Uu, over . Completed
Mngnt (1,2) remote non-5G expansion
PC5) PC5
subscriber.
uu, Offline
MRAT-NCP — S1, Send encoded video data Spanish
NIS7, and decode at the . Completed
SemCom (1,8) transfe expansion
NIS5, edge]
NIS8
Ul Infer location and
MRAT-NCP — s1, Zcr)lverarga:io dep;ztdr'g Offline
WAL EB = Mz extracted from the UE. s Spams',h Completed
(1,13,1,17) NIS5, r expansion
Throughput forecast
NIS8 . .
based on radio metrics
extracted from the UE.
Configure the wallet To be completed
with NANCY ID during final
ID Mngnt — N/A credent!als, use gRPC Spanls',h |ntegrat!on at
Wallet (2,5) credential to expansion Spanish
authenticate towards expansion
NANCY services. testbed
Instantiate OP-TEE
solution 2 for caching
. API
mechanisms on ARM-
. based
based far-edge device on
ID Mngnt — included in the MRAT- Global Spanish
VoSyS Monitor N/A NCP. This will be used 2 . Completed
Platfor expansion
(2,10) to securely store the
m TEE
access token of Client
NANCY subscriber to AP
accelerate
authorisation times.
e Provide the required
DAC— crouting e gt | AP
Marketplace NI11 & & All Completed
(3,11) agreement. over
! e Receive the = HTTPS
generated digital

2 Introduced in D4.3: Trustworthy Grant/cell-free Cooperative
Access Mechanisms

87

]
D6.3 — NANCY Integrated System — Final Version e e

NANCY
NANCY Platfor Protoc Integration in
Integration m Objective ol testbeds/demon
Points Interfac strators

e

agreement to be
signed
Once the identity is in
the wallet, the user
connects to the Fabric
network using a
connection profile
NIS13 (YAML or JSON file). gRPC All Completed
Once connected, the
user can submit
transactions or query
the ledger through the
smart contract API.
BC - Deploy the Smart
Contracts of the

Marketplace NI10 marketplace on the N/A All Completed

BC — Wallet
(4,5)

(4,11) Blockchain network
Send the required
transactions to the
Blockchain based
marketplace for any
Wallet - operation (both read
Marketplace NI and write). All the gRPC All Completed
(5,11) interactions with the
marketplace happen
through the wallet (or
the oracles in specific
cases)
Wallet - N/A Query the blockchain- | gRPC All Dropped,
Maestro (5, 12) based marketplace for because the
potential service wallet is
providers and sign SLA deployed at the
transactions. All the BSS, which then
interactions with the interacts with
blockchain happen Maestro (section
through the wallet 5.2)
(which acts as a client
app).
Publish services in the Dropped
blockchain-based because it’s not
marketplace and really an
Wa:lsetz;)BSS TBD become aware of gRPC All integration but
! signed SLAs involving rather an
current clients. All the independent app
interactions with the (wallet)

88

]
D6.3 — NANCY Integrated System — Final Version .'.’ .l,
NANCY
NANCY Platfor Protoc Integration in
Integration m Objective ol testbeds/demon Status
Points Interfac strators
e
blockchain happen deployed at the
through the wallet BSS side
(which acts as a client
app).

Issue service orders to
MAESTRO to trigger

the instantiation of Greek In-lab
MAESTRO - BSS REST testbed and New and

(12,27) NIS1 the corresponding |~ ,p, Outdoor Completed
services at the remote
demonstrator.

target Kubernetes

cluster?.

Allow to deploy VNFs

from OpenStack Nova @ Libvirt Italian InLab

into vManager API testbed

partitions

Integrate NAOMI in

Slice Manager and

Al_Virt - SEMR NIS5 further provide | REST
(6,14) MLOps to models that API

are deployed on

NAOMI.

e Provide the
information used for
calculating the most
suitable price forthe = REST

Marketplace — better service. API Greek in-lab
SPP (11,21) NI12 e Receive the most over testbed SelifElad
suitable price forthe = HTTPS
most suitable
service fulfilling the
given features.
Network Al Workflow
Democratisation
Models — SEMR N/A (NAOMI) can provide | REST Spanish
(13,14) MLOps for the models API expansion
that are going to be

deployed in repo

In-place resource Dropped as all

Modgl.s— eIastici.ty technique REST Sl key parameters

Elasticity NIS5 allocating computing AP . are already

(13,15) resources within a measured as part
slice of the "elasticity"

AI_Virt — VoSyS

Monitor (6,10) e

Completed

N/A Completed

Completed

3 The integration testing among the BSS and MAESTRO is covered in section 3.12 and through the description
of the workflow in section 5.2 involving the Greek outdoor demonstrator’s BSS.

89

D6.3 — NANCY Integrated System — Final Version

NANCY
Integration
Points

NANCY
Platfor
m
Interfac
e

Objective

Integration of the

Throughput

Protoc
(o]

Integration in

testbeds/demon

strators

Dropped as it
was identified

. . . that the two
forecasting service will
. . - components
assist in predicting R
. don’t need to
upcoming throughput interact directl
Models — TFS NISS optimizing Al-based | REST TBD Both of themy.
(13,17) network API
. , separately
functionalities for . .
different scenarios interact with
. MRAT-NCP, in
measuring speed and
latenc of model the framework
serviny of the Spanish in-
& lab testbed.
SEMR will provide a
set of functionalities
that cover the full ML
pipeline through
SEMR - FL-IDS . REST Greek In-lab
(14,23) NIS5 NAOMI tool'm order AP Testbed Completed
to streamline the
deployment of the FL-
IDS model to the
Greek In-lab Testbed
The SEMR will be
continuously Dropped as it
monitoring the was identified
performance of the that the two
SEMR —AINOM NIS8 AINQM module, thus REST TBD components
(14,19) . . API ,
triggering and overall don’t need to
optimizing retraining interact directly.
processes in changing
network conditions.
Integration of the HW
signature token into
Internal secure
PQC Sign — PQC UE communication API Italian Massive Completed
SecCom (16,25) interfac . calls loT testbed P
o infrastructure to use
PQC HW signing
capabilities
B o e
AINQM - NIF Y M code
NIS8 order to predict . None Completed
(19,20) integra
network outages for)
. . tion
different scenarios
AINQM- XAl NISS AINQM will be utilised REST Greek In-lab Completed
(19,22) to calculate the AP| Testbed *

90

At
D6.3 — NANCY Integrated System — Final Version .'.’ .L’
\."/

NANCY
NANCY Platfor Integration in

. .. Protoc
Integration m Objective ol testbeds/demon Status

Points Interfac strators
e

outage probability,
and XAl will provide
the rationale behind
the decisions of the
respective Al model.
The output of the
distributed FL Training
will be the Al-enabled
XAl - FL-IDS Intrusion Detection Greek In-lab
(22,23) NIS8 System that the Greek TBD Testbed Completed
in-lab testbed will
utilize to identify
different attacks

4.2. Integration Testing of NANCY Integration Points

The current section provides the analytic integration test descriptions for each one of the NANCY
integration points in Sections 4.2.1 - 4.2.18.

4.2.1. Multi Radio Access Technologies & ID Management (MRAT-NCP & ID-Mngnt)

Table 31 summarizes the MRAT-NCP - ID-Mngnt integration tests.

Table 31: MRAT-NCP - ID-Mngnt integration tests summary

Integration Test ID Objective Status ‘
MRAT-NCP_ID- Test Issuer to generate credentials e
Mngnt_1001
MRAT-NCP_ID- Test p-abc cryptographic operations with
Mngnt_IOOE retriepved key\;pforgvefifier i Completed
MRAT-NCP_ID- Test p-abc cryptographic operations with el
Mngnt_l003 retrieved keys for pseudonym generation
Test type Integration
Identifier MRAT-NCP_ID-Mngnt_1001, MRAT-NCP_ID-Mngnt_l1002, MRAT-NCP_ID-

Mngnt_l003
Testers umu
Test Purpose The main purpose of the test is to validate that the entire verification flow allows a

Remote OBU, with no 5G network connectivity of its own, to access the services offered
by the provider or MRAT-NCP. To do this, the correct performance of each phase of the
identity management process must be verified, ensuring that the wallet properly
generates the credential and that the MRAT-NCP can verify it correctly in order to finally
establish a secure connection.

References [5], [4]
Configuration Cohda MK®6, Raspberry Pi 5 and LattePanda

91

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR

0-%

>
z
(¢]
<

-
Pre-test There must be ethernet connectivity between each of the Cohda devices and their
conditions respective module (Raspberry Pi or Lattepanda).
The provider module must have connectivity with at least one of the operators.
The Cohda devices must have GPS signal and PC5 coverage between them.
The remote UE and the MRAT-NCP have correctly configured their own p-abc wallet
(both of them) and blockchain wallet (only the MRAT-NCP)

Test Step Type Description Result
Sequence
1 1 Stimulus Provider (MRAT-NCP) broadcast via PC5 the Pass

required format of the credentials.

2 Check The remote vOBU consults its own p-abc wallet to Pass
obtain a credential that complies with the format
and requirements specified by the provider.

3 The remote vOBU sends the credential and Pass
indicated the desired service to the provider.

4 Check The MRAT-NCP receives and validates the Pass
credential using the p-abc wallet and collects from
the blockchain the issuer's public key needed to
validate the remote UE credential with the
blockchain wallet.

2 5 Check After validation, the consumer and provider Pass
establish an encrypted communication, one per
each consumer authenticated.

Test It is confirmed that the credential authentication and validation Pass
Verdict mechanism via MRAT-NCP works correctly and that, after verification,

an encrypted and secure communication is established between each

authenticated consumer and the provider.

4.2.2.Multi Radio Access Technologies & SemCom (MRAT-NCP — SemCom)

Table 32 summarizes the MRAT-NCP — Semcom integration tests, while Figure 30 and Figure 31
illustrate the respective results.

Table 32: MRAT-NCP — Semcom integration tests summary

Status (Completed, Dropped,

Integration Test ID Objective rend e
MRAT- Test the provisioning of the data from different ot
NCP_SemCom_l001 video sources to the SemCom encoder.

MRAT- Test the transmission of the extracted Completed
NCP_SemCom_1002 semantic information.
MRAT- Test the accuracy of the DT created at the edge

Completed

NCP_SemCom_1003 server

Analytic Integration Test Description

Test type Integration

Identifier MRAT-NCP_SemCom_l001, MRAT-NCP_SemCom_l002, MRAT-
NCP_SemCom_l003

Testers UMU, INNO

AL

N
&
&
\.’/
NANCY

-2
0-%

D6.3 — NANCY Integrated System — Final Version

Test Purpose Validate the use of SemCom in a realistic vehicular scenario and evaluate the performance
improvement attained in comparison with regular data transmission.

References [10]

Configuration The SemCom component is comprised of two entities, namely the semantic encoder and

the semantic decoder. In the simulated setup, the former is deployed on the network
nodes (cars, RSUs, drones, etc.) capturing video of the observed location. The extracted
semantic information will be transmitted through the network to the edge server, where
the semantic decoder will be deployed in order to create a DT.

Pre-test This vehicle has access to a DT service. It has the SemCom encoder installed but not

conditions activated. It requests the activation of the DT service from the 1st BS that it connects. The
request is forwarded to the SemCom encoder of all nodes in proximity. The vehicle, a
drone, and a roadside camera are identified.

Test Step Type Description Result
Sequence
1 Stimulus The vehicle, the RSU, and the UAV receive a request Pass
to initiate their SemCom encoders.
2 Check The data captured by the vehicle camera are Pass
provided to the onboard SemCom encoder.
3 Check The data captured by the RSU camera are provided Pass
to the onboard SemCom encoder.
4 Check The data captured by the UAV camera are provided Pass
to the onboard SemCom encoder.
5 Check All SemCom encoders extract the semantic Pass

information from the local video data that are
available at each node.
6 Check Only the extracted semantic information is Pass
transmitted through the network to the simulated
edge server.

7 Check The SemCom decoder at the edge server receives Pass
the semantic information from all nodes.
8 Check The SemCom decoder at the edge server creates Pass
the DT scene.
Test The tests confirm that SemCom is successfully validated in a realistic Pass
Verdict vehicular scenario, enabling efficient semantic transmission and DT scene

reconstruction with improved performance over regular data
transmission.

93

D6.3 — NANCY Integrated System — Final Version

—_ —e— 1 Camera ._‘.‘__.-0
’ —
=m- 2 Cameras __.....---‘
-#- 3 Cameras L— el
.’—- -l=
Gl --."'“-
f’# —-."—-
”- -.”
. = -
’/ .-_.-“"
o - _____.--.
o -~ - I
E ,’- ”. .-'-___,-.
[* [D o
|] ./ /, ..--""'"-—-‘
."'0"' .’/ ‘.n ./
=] / 7’ /
] s @
a b /
> / = ®
“ 100 YA /
* @
/
R4 /
o @
L]
1 2 3 4 5 6 7 8 9 10 11 12

Time steps

Figure 30: Execution time as a function of the number of multi-view frames (UMU dataset)

-
— === ==
- -

...-.—-l—l.

1 Camera (Semantic)

2 Cameras (Semantic)
3 Cameras (Semantic)
1 Camera (Conventional)
2 Cameras (Conventional)
3 Cameras (Conventional)

—— - -
10* i e
——'."..—-.- ..-----."'"'-'._-—
A D U e g ————— =l
o - =" N _.__...-l-""‘."
- -
3 - T -
10 u B
3
N 102
W
©
E
©
(m) [
101 .__..--." -
-"""-.-:-""".—-.--—. _— :
/'__,...--'. ——" ==
./. -— " -
/. .--"""-" -
10° :/./ -m-
all=
./ -H-
1 2 3 4 5 6 7 8 9
Time step

10

11

12

Figure 31: Required data as a function of the number of multi-view frames for conventional and SemCom systems (UMU

dataset)

94

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
Q@R

0-%

>
z
(¢]
<

L |
4.2.3. Multi Radio Access Technologies, Models & Traffic Forecasting Service (MRAT-NCP —
Models —-TFS)

Table 33 summarizes the MRAT-NCP — Models -TFS integration tests, while Figure 32 and Figure 33
show the respective results.

Table 33: MRAT-NCP — Models -TFS integration tests summary

Integration Test ID Objective Status \
MRAT- Evaluate the decision for data path
NCP_Models_l001 reconfiguration depending on network Completed
status
Test type Integration
Identifier MRAT-NCP_Models_l001
Testers UMU, IS, CERTH, Bi2S
Test Purpose Test the accuracy of the different ML models generated from the data extracted from

the Spanish extension testbed. Decision making in terms of the optimal operator
selection will be supported, via real-time ML model inference.

References [5], [17], [20]

Configuration Data collected from UMU'’s testbed. Such data included several uplink and downlink
information and were used to test the ML models. Thus, the ML model validation
process was conducted using real-world data.

Pre-test A 5G or 6G network should be provided for wireless connectivity

conditions UEs should be able to collect and utilise data regarding their RSSI levels and other Signal
Strength-related measurements
The model inference should execute on either the UE devices or to a centralised server
Python libraries should be supported for the model inference process.

Test Step Type Description Result
Sequence
1 1 Stimulus (JSI)Pinging containerized version of the Pass
localization model with new test data:
2 Check (JSl)Inference with the localization model (LaaS) Pass
3 Check (JSI)Comparing results to the ground truth and Pass

evaluating the error between model error and
new test data error with statistical t-test

4 Stimulus (CERTH)A value is inserted for the android walk Pass
time-series number
5 Stimulus (CERTH)A value is inserted for the number of steps Pass

the forecasting has to take place and both sent
(via POSTMAN or curl tool)

6 Check (CERTH)Receipt of results and their plausibility Pass
to justify operator selection
2 1 Stimulus (BI2S) Feeding the model with data which are Pass
collected from the field (UMU’s testbed)
2 Check (BI2S) Check the model outputs, after inference is Pass
completed
3 Check (BI2S) Assess the model’s outputs against the Pass
ground truth that is available from the collected
data.
Test Based on computed statistical significance, the test was passed. Pass

Verdict

D6.3 — NANCY Integrated System — Final Version ! &%l

800

700 A

600 4

500 A

T T T T T T T
0 200 400 600 800 1000 1200 1400

Figure 32: Example of localization experiment with ~2m average error. Horizontal and vertical axis represent longitude and
latitude, and y_true and y_pred are the location vectors containing x and y coordinate.

Mean Forecasted vs Ground Truth Values for udo_nokia_20240325

=== Ground Truth
~== Ground Truth
=== Ground Truth
——- Ground Truth
15000 { --- Ground Truth
——- Ground Truth
—=- Ground Truth
=== Ground Truth
~=- Ground Truth
10000 1 ——- Ground Truth
Mean Forecasted

17500 +

12500 4

Values

7500

5000

2500 +

T
0 50 100 150 200 250 300
Time Steps

Figure 33: Graph derived from retrained TFS model for UDP protocol, tested with Nokia operator data; Ground Truth lines
stem from separate forecasting horizon steps (step=1 to 10)

4.2.4. ID Management & Wallet (ID-Mngnt — Wallet)

Table 34 summarizes the ID-Mngnt - Wallet integration tests.

Table 34: ID-Mngnt - Wallet integration tests summary

Integration Test ID Objective Status
ID Test configuration of the wallet with ID
Mngnt_Wallet_I001 credentials

Completed

96

D6.3 — NANCY Integrated System —

ID Test verification of credentials provided by

Final Version

Mngnt_Wallet_l002 a wallet Completed
ID Generation of privacy preserving
Mngnt_Wallet_l003 attributes Completed
ID Verification ~of privacy preserving
Mngnt_Wallet_l004 | attributes Completed
ID PSK key derivation from 5G root key _

On going

Mngnt_Wallet_l005

ID Credential generation and issuance based
Mngnt_Wallet_l006 on subscriber capabilities

ID Issuer's pK retrieval from blockchain

Mngnt_Wallet_l007

Partially completed

On going

KN
CYLLINTS
L
g
N R 3
W o N

\.’/
NANCY

Analytic Integration Test Description ‘

Test type Integration

Identifier ID Mngnt_Wallet_l001, ID Mngnt_Wallet_Il002, ID Mngnt_Wallet_l003, ID
Mngnt_Wallet_l004, ID Mngnt_Wallet_l005, ID Mngnt_Wallet_l006, ID
Mngnt_Wallet_l007

Testers UMU, NEC

Test Purpose Use the wallet for ID management purposes such as Authentication and

Authorisation.
References [5], [6]

Configuration Cohda MK®6, Raspberry Pi 5 and LattePanda

Pre-test 5G key user

conditions The remote UE and the MRAT-NCP have correctly configured their own p-abc wallet
(both of them) and blockchain wallet (only the MRAT-NCP)

Test Step Type Description Result
Sequence
1 1 Stimulus Consumer and Issuer derives key from 5G key to On going
establish a secure channel
2 Check Consumer request Verifiable Credential to issuer On going
3 Check Issuer generates and sends credential to Pass
Consumer
4 Check Consumer stores credential on its wallet Pass
2 1 Stimulus Consumer receives proximity service notification Pass
2 Check Consumer sends VC with required information to Pass
Provider
3 Check Provider retrieves Issuer’s pK from blockchain On going
4 Check Provider verifies the VC Pass
Test The flow is proper and secure, as it establishes a protected channel Pass
Verdict through 5G key derivation, enables the consumer to reliably receive and

store the credential, and ensures that the provider can verify its
authenticity and validity using the issuer’s public key recorded on the

blockchain.

97

D6.3 — NANCY Integrated System — Final Version

4.2.5. ID Management & VoSysMonitor (ID-Mngnt — VoSySMonitor)

Table 35 summarizes the ID-Mngnt - VoSySMonitor integration tests.

Table 35: ID-Mngnt - VoSySMonitor integration tests summary

Integration Test ID

ID

Test type
Identifier
Testers

Test Purpose

References
Configuration

Objective

Test read and write access of ID system on
Mngnt_VoSySMonitor_l001 OP-TEE-based cache.

Integration

Analytic Integration Test Description

ID Mngnt_VoSySMonitor_l001

umy, vos

Status

Completed

Instantiate Open Trusted Execution Environment (OPTEE) solution for caching
mechanisms on ARM-based far-edge device included in the MRAT-NCP.

[12]

For this scenario we need an ARMv8 board with Trustzone capabilities (eg. AM69SK)

with VOSySmonitor firmware installed. This board will act as the “relay node” in the V2X
scenario and will be deployed at the network edge. The board will feature a fully-fledged
Linux OS in the main non-secure partition, while in the Secure partition the OP-TEE OS

will be installed.

Pre-test Regarding the workflow, a Client Application on the Non-Secure OS is the starting point
conditions to invoke Secure Storage Operations towards the Trusted Application on the Secure OS.
Each operation always passes through the secure firmware (VOSySmonitor), ensuring
the security of the operations.
For this test, the Client Application will request secure storage operations from the TEE
related to user pseudonyms and their capabilities in the system.
Test Step Type Description Result
Sequence
1 Stimulus V2X relay node request to securely store a Pass
user with pseudonym “abc” that associates
with NANCY services “A,B,C” to the OP-TEE
REE_FS secure storage
2 Check Client application opens a trusted session and Pass
offloads the “store” request to the Trusted
Application through VOSySmonitor
3 Check Information successfully stored into the Pass
secure data store in an encrypted format
4 Stimulus V2X relay node request to quickly retrieve Pass
the capabilities of the user with pseudonym
“abc” from the relay node
5 Check Client application opens a trusted session and Pass
offloads the “load” request to the Trusted
Application through VOSySmonitor
6 Check Response is ready at the V2X relay node that Pass
associates the user with pseudonym “abc”
with the NANCY services “A,B,C”
Test The REE_FS Secure Storage service of OP-TEE is validated to Pass
Verdict successfully handle operations in the V2X relay node that quickly

associates users based on their pseudonyms with associated NANCY
services, acting as a secure data cache at the network edge.

98

D6.3 — NANCY Integrated System — Final Version

2 S
-y D
QR

0-%

>
z
(¢]
<

4.2.6. Digital Agreement Creator & Marketplace (DAC — Marketplace)

Table 36 summarizes the ID-Mngnt - VoSySMonitor integration tests.

Integration Test ID
DAC_ Marketplace_l001

Table 36: ID-Mngnt - VoSySMonitor integration tests summary

Objective Status \
Test the correct generation and
reception of a digital agreement
P & & Completed

based on the information from the
marketplace.

Analytic Integration Test Description

Test type
Identifier
Testers

Test Purpose

Integration

DAC_ Marketplace_l001

TECNALIA, DRAXIS

Test the correct generation and reception of a digital agreement based on the
information from the marketplace.

References [4]
Configuration Not needed
Pre-test
conditions
Test Step Type Description Result
Sequence
Stimulus Pass
The marketplace makes a request to the DAC for
the suitable agreement creation:
http://188.245.61.44:8090/DAC/createSLA.
Check The DAC creates and returns the agreement to Pass
the marketplace
Test Pass
Verdict
4.2.7.Blockchain Component & Wallet (BC — Wallet)
Table 37 summarizes the Blockchain and Wallet integration tests.
Table 37: BC - Wallet integration tests summary
Integration Test ID Objective Status
Test correct user connection to the
BC_Wallet_l001 Fabric network using a connection Completed
profile (YAML or JSON file).
Test correct submission of transactions
BC_Wallet_l002 or queries to the ledger through the Completed
smart contract API.
Analytic Integration Test Description
Test type Integration
Identifier BC_Wallet_l001, BC_Wallet_l002
Testers NEC
Test Purpose Test if the wallet can communicate with the blockchain.

References
Configuration

Architecture and components description can be found in [4].
Blockchain is up and running, connection profile of the blockchain is available to the
wallet.

Y
D6.3 — NANCY Integrated System — Final Version e e
NA.N’CY
L |
Pre-test Blockchain is up and running.
conditions
Test Step Type Description Result
Sequence
1 Stimulus Start the wallet service providing the connection
profile.
2 Check Wallet returns no error and listening on the Pass
designated port.
Test Pass
Verdict

4.2.8. Blockchain Component & Marketplace (BC — Marketplace)

Table 38 summarizes the Blockchain and Marketplace integration tests.

Table 38: BC - Marketplace integration tests summary

Integration Test ID Objective Status \
Test the correct deployment of the
BC_ Marketplace_l001 smart contracts on the Blockchain Completed
network.
Analytic Integration Test Description
Test type Integration
Identifier BC_ Marketplace_l001
Testers TECNALIA, NEC
Test Purpose Test the correct deployment of the smart contracts on the Blockchain network.
References [4]
Configuration The Hyperledger Fabric Blockchain network configuration is described in [4].
Pre-test Not applicable
conditions
Test Step Type Description Result
Sequence
1 Stimulus Deployment of the marketplace smart contracts in Pass
the Blockchain network
2 Check The marketplace API is accessible Pass
Test Pass
Verdict

4.2.9. Wallet — Marketplace

Table 39 summarizes the Wallet - Marketplace integration tests.

Table 39 Wallet - Marketplace integration tests summary

Integration Test ID Objective Status \
Test the correct execution of functions

Wallet_Marketpl 1001 C |
allet_Marketplace_00 in the marketplace from the wallet. Ry
Integration with the smart contract
Wallet_Marketplace _1002 marketplace: Completed

(Provided Wallet_F001) Test all wallet
interfaces related to marketplace

100

-2
2y \
>y
i)

0-%

D6.3 — NANCY Integrated System — Final Version

/
0

’
NANCY

L |
operations to manage providers,
services and searches.
Integration with PQC signing:
(Provided Wallet_F001) Unit test for the
Wallet_Marketplace_l003 correctness of the wallet PQC signing Completed
function and the verification function on
SLARegistry chaincode.
Integration with the smart contract SLA:
(Provided Wallet_F001 and
Wallet_F005) Test wallet signSLA
interface to see if the SLA is correctly
Wallet _Marketplace _1004 signed and updated (also with PQC Completed
signature) and if the subscribers for
SLASigning events get notified. Test
wallet getSLA and getSLAByConsumerld
to look up SLAs in the blockchain.
Integration with the oracle:
(Provided Wallet_FO01, Wallet_F004
and Wallet_F006) Test wallet
Wallet _Marketplace _I005 createSearch interface to see if the Completed
oracle triggers SLA creation correctly and
if the subscriber for SLASigning events

get notified.
Test type Integration
Identifier Wallet_Marketplace_l001, Wallet_Marketplace_l002

Wallet_Marketplace_l003, Wallet_Marketplace_l004,
Wallet_Marketplace_l005

Testers TECNALIA, NEC

Test Purpose Test the correct execution of functions in the marketplace from the wallet.

References The marketplace workflow and corresponding wallet API calls are described in [4]
Configuration The marketplace and the SLARegistry smart contracts are deployed. The smart pricing

service and the DAC service are up and running. The oracle services are up and running
with the correct configuration to communicate with the blockchain network as well as the
smart pricing and DAC services.

Pre-test Unit tests for the deployed smart contracts are passed successfully. Oracle services are all
conditions registered and enrolled successfully in the blockchain. Start the wallet gateway service on
a given port.
1 1 Stimulus Invoke wallet API call to create a sample
provider.
2 Check If provided malformed call parameters, call fails, Pass
and wallet returns corresponding error message.
3 Check If the ‘id’" attribute in the call parameters is Pass

present and there is no DID in the called wallet
that matches this value, call fails, and wallet
returns corresponding error message.
4 Check If call parameter are well formatted, further Pass
checks refer to the test of createProvider call on
the marketplace smart contract. If successful, the
wallet returns the newly created provider
information. If failed, the wallet returns the
corresponding error message from the blockchain.

101

D6.3 — NANCY Integrated System — Final Version

5 Check When the creation in step 1.4 is successful, call Pass
listProviders from the wallet and returns the just
created provider.

2 1 Stimulus Test to update and delete a provider similar to test
1.
3 1 Stimulus Invoke wallet API call to create a sample service.
2 Check If provided malformed call parameters, call fails, Pass
and wallet returns corresponding error message.
2 Check If the ‘provider_id’ attribute in the call parameters Pass

is present and there is no DID in the called wallet
that matches this value, call fails, and wallet
returns corresponding error message.
3 Check If call parameter are well formatted, further Pass
checks refer to the test of createService call on the
marketplace smart contract. If successful, the
wallet returns the newly created service
information. If failed, the wallet returns the
corresponding error message from the blockchain.

4 1 Stimulus Test to update and delete a service similar to test
3.
5 1 Stimulus Invoke wallet API call to create a sample search.
2 Check If provided malformed call parameters, call fails, Pass
and wallet returns corresponding error message.
3 Check If the ‘consumer_id’ attribute in the call Pass

parameters is present and there is no DID in the
called wallet that matches this value, call fails, and
wallet returns corresponding error message.
4 Check If call parameter are well formatted, further Pass
checks refer to the test of createSearch call on the
marketplace smart contract. If successful, the
wallet returns the search result. If failed, the
wallet returns the corresponding error message
from the blockchain.

6 1 Stimulus Call the wallet service to subscribe the SLAInit
event.
2 Check Invoke the createSearch call with valid Pass

parameters. The wallet returns an SLAInit event
with the matched consumer_id as in the
createSearch call

7 1 Stimulus Call the wallet service to subscribe the SLASigning
event. Invoke the signSLA call to the wallet.
2 Check If provided malformed call parameters, call fails, Pass
and wallet returns corresponding error message.
3 Check If the ‘slald’ in the signSLA call parameters does Pass

not exist in the SLARegistry, call fails and wallet
returns error message.

4 Check If the ‘uid’ in the signSLA call parameters cannot Pass
be found in the wallet, call fails and wallet returns
error message.

5 Check If the corresponding DID of the ‘uid’ call parameter Pass
does not match either the ‘provider_id’ or the
‘consumer_id’ in the SLA of the provided “slald”,
call fails and wallet returns corresponding error
message.

6 Check When ‘uid” matches either provider_id or Pass
consumer_id of the corresponding SLA, if the DID

102

oy
D6.3 — NANCY Integrated System — Final Version e e

corresponds to the ‘uid’ parameter uses PQC
signature scheme as the verification method,
when the PQC signature produced by the wallet is
successfully verified and stored by the blockchain,
the wallet returns empty. Meanwhile, wallet that
subscribed to the SLASigning event receives a
notification of the signed SLA, in which either the
producer signature or consumer signature field is
now a PQC signature.

7 Check When ‘uid’ matches either provider_id or
consumer_id of the corresponding SLA, if the DID
corresponds to the ‘uid” parameter uses non-PQC
signature scheme as the verification method,
when the signSLA call from the wallet is
successfully validated and stored by the
blockchain, the wallet returns empty. Meanwhile,
wallet that subscribed to the SLASigning event
receives a notification of the signed SLA, in which
either the producer signature or consumer
signature field is the transaction ID of the
corresponding successful signSLA transaction.

8 Check If check 7.6 and 7.7 fails, the wallet returns the Pass
error message from the blockchain and receives
no corresponding notification.

Test Pass
Verdict

4.2.10. Al Virtualiser & VoSysMonitor (AlVirt— VoSySMonitor)

Table 40 summarizes the AlVirt— VoSySMonitor integration tests.

Table 40: Al Virt - VoSySMonitor integration tests summary

Integration Test ID Objective Status
Test response of VoSySMonitor to Libvirt
commands (virsh define, virsh start, virsh
AlVirt_VoSySMonitor_l001 create, virsh shutdown, virsh destroy, virsh Completed
reboot, virsh suspend, virsh resume)
triggered from AlVirt through OpenStack

Analytic Integration Test Description

Test type Integration

Identifier AlVirt_VoSySMonitor_l001

Testers 12CAT, VOS

Test Purpose The purpose of this test is to validate the operations on vManager’s partitions initiated
from the Libvirt tool, as integration point with the Al Virtualiser.

References [8]

Configuration For this scenario we need an ARMv8 board with VOSySmonitor firmware deployed and

one management partition (a Linux OS) booted.

Pre-test To start the testing, we load the vManager driver on the management partition (making
conditions /dev/vmanager available).

Also, the Libvirt “virtvmand“ service must be ready and accessible through the
“vman:///system” URI. The vManager user-space daemon “vmand” should be also
available in the system

103

-2
2y \
> my
i)

0-%

D6.3 — NANCY Integrated System — Final Version

’
NANCY

/
0

Test Step Type Description Result
Sequence
1 Stimulus ./vmand Pass

Spawning the vManager daemon as the first step
2 Stimulus virsh —c vman:///system define <xml_file> Pass

Libvirt xml_file points to <kernel>image, <disk>
image and <device tree> file
3 Check Domain <domain> defined from <xml_file> Pass

(Libvirt output)
4 Check Partition #X created Pass

(vManager daemon output)
5 Check Is /dev/vmanX Pass

Partition device is available at Linux management
partition

6 Stimulus virsh —c vman:///system list —all Pass

Check available partitions through Libvirt

7 Check List shows partition with ID #X, Name <domain> Pass
and State “shut off”
8 Stimulus virsh —c vman:///system start <domain> Pass

Libvirt command to start the partition execution
9 Check Domain <domain> started Pass

(Libvirt output)

10 Check vManager daemon shown messages that DTB and Pass
Kernel images were loaded successfully
11 Check Partition boot-up messages appear on the Pass
partition’s serial console
Test The successful creation and startup of a vManager partition is tested Pass
Verdict through Libvirt commands, simulated as being instructed by the Al
Virtualiser
4.2.11. Al Virtualiser & Self-Evolving Model Repository (AlVirt -SEMR)

The autoscaling benchmark was designed to evaluate the performance and responsiveness of the
inference service under varying concurrency levels. The test sequentially launched batches of HTTP
POST requests to the QoE endpoint deployed through Ray Serve, sending a fixed inference payload
while progressively increasing the number of concurrent requests from 1 up to 1024. Each batch was
executed in parallel using a thread pool, measuring the round-trip time (RTT) of each individual
request. The resulting latencies were stored for statistical analysis and aggregated into mean,
percentile, and standard deviation metrics. Between experiments, a cooldown period of 160 seconds
was introduced to allow the underlying autoscaler to adjust the number of replicas and stabilize. The
collected data, exported to inference_all.csv, was later processed using a custom plotting script that
visualizes the mean latency and percentile bands across concurrency levels, along with boxplots and
jittered scatter distributions. This methodology enables a clear assessment of how the inference

104

\
=
7

D6.3 — NANCY Integrated System — Final Version

2 S
-y
Q@R

0-%

>
z
(¢]
<

L |
system scales under load and how effectively autoscaling mechanisms maintain latency within
acceptable bounds. Table 41 summarizes the Al Virt - SEMR integration tests.

Table 41: Al Virt - SEMR integration tests summary

Integration Test ID Objective Status \
AlVirt_SEMR_1001 Test connectivity between the Al Virt Completed

and JSI SEMR cluster
AlVirt_SEMR_1002 Test triggering the Al Virt (through the | Completed

Slice Manager APl end point) after
provisioning it with the JSI SEMR
kubeconfig file

AlVirt_SEMR_I003 Test capacity threshold for latency New and Completed
Test type Integration
Identifier AlVirt_SEMR_1003
Testers i2CAT, IIS
Test Purpose Test how the capacity increments affect the latency and how this could help us reach a
threshold value depending on the final use case.
References
Configuration The benchmark was conducted on a NAOMI-deployed Ray Serve cluster running on
Kubernetes, with the QoE inference endpoint exposed at http://<cluster-ip>/ray-
api/qoe/. The client used Python 3.10 in a virtual environment with requests, pandas,
and matplotlib, sending concurrent POST requests to measure latency. Prometheus and
Grafana were configured for observability, and autoscaling was enabled with a 160-
second cooldown between tests to allow the system to stabilize before the next
concurrency level.
Pre-test
conditions The NAOMI Ray Serve cluster was fully deployed and operational, with the QoE
endpoint accessible via the API gateway.
e All Ray head and worker pods were in a Running state and the autoscaler was
active.
e The client machine had network connectivity to the cluster and sufficient system
limits (ulimit -n > 65535) for concurrent HTTP connections.
e Required Python dependencies (requests, pandas, numpy, matplotlib) were
installed and the benchmark_autoscaling.py script was executable.
e Monitoring services (Prometheus, Grafana, and MLflow) were running to observe
resource usage, scaling activity, and log experiment metrics.
e The inference payload was validated through a single manual request to confirm
model readiness before starting the load test.
Test Step Type Description Result
Sequence
1 Stimulus Environment checking Pass
2 Check Client setup and initial warmup Pass
3 Check Benchmark execution Pass
4 Check Latency recording and results aggregation Pass
5 Check Confirm the threshold to increase the CPU Pass
capacity and minimize the latency
Test We managed to run the plotting script to generate summary figures showing Pass
Verdict latency trends and variability across loads.

105

]
D6.3 — NANCY Integrated System — Final Version e e

Figure 34 illustrates the individual response times observed when sending increasing numbers of
concurrent requests to the QoE inference endpoint. Each dot represents the latency of a single
request. As the level of concurrency grows, the dispersion of latency values also increases, indicating
higher variability and occasional performance degradation at higher loads. The trend highlights the
system’s scaling behavior and the impact of concurrent demand on end-to-end response times. With
this test we obtain the threshold in which to activate more processing in order to reduce the CPU,
depending on the final use case needs.

Latency distributions by concurrency (boxplots)

T
T 1
10" - -

0 T

>

(9]

g T

8

T
100 4
' —_——
1 2 4 8 16 32 64 128 256 512 1024
Concurrent requests (num_req)
Figure 34: Concurrent requests vs latency in seconds
4.2.12. Marketplace & Smart Pricing Policies (Marketplace — SPP)
Table 42 summarizes the Marketplace — SSP integration tests.
Table 42: Marketplace - SPP integration tests summary
Integration Test ID Objective Status
Test the correct reception of the most
Marketplace_SPP_l001 suitable price of the most suitable service Completed

from those available in the marketplace

Analytic Integration Test Description

Test type Integration

Identifier Marketplace_SPP_l001

Testers TECNALIA, 8BELLS

Test Purpose Test the correct reception of the most suitable price of the most suitable service

from those available in the marketplace

References [13], [4]

Configuration Not applicable

Pre-test A service request should have been received in the marketplace which should have
conditions selected suitable services in terms of request definition.

L __|
106

\
=
7

D6.3 — NANCY Integrated System — Final Version

> ,(0—(0
-y
QR

0-%

>
z
(¢]
<

Test Step Type Description Result
Sequence
1 Stimulus The marketplace makes a request to the SP for the Pass
most suitable service in terms of price:
https://nancy-smart-
pricing.8bellsresearch.com/price_calculation
2 Check The smart pricing provides the most suitable Pass
service and the most suitable price.

n Check
Test Pass
Verdict
4.2.13. Models - Self Evolving Model Repository (SEMR)

Self-Evolving Model Repository (SEMR) is a modular platform that manages the full lifecycle of Al/ML
models—from training and storage to serving and monitoring. This test validates its integration
capabilities and performance under realistic workflow orchestration scenarios. Table 43 summarizes
the Models — SEMR integration tests.

Table 43: Models - SEMR integration tests summary

Integration Test ID Objective Status

Testing the speed and latency of model

Models_SEMR_I001 Completed

serving
Test type Integration
Identifier Models_SEMR_I001
Testers s
Test Purpose The integration will evaluate the performance of the orchestration of the lifecycle of Al-
based models and their serving.
References Detailed description in [18]
Configuration All configurations are set as helm values. Documentation and all configurations can be

found in SEMR/helm_charts/values.yaml
Project is modular with 5 main components:
e Al/ML model store with MLflow
e Distributed computing and Al/ML training with Ray
e Workflow orchestration with Flyte
e Data storage with MinlO
e System monitoring with Prometheus & Grafana

Pre-test Minimal requirements
conditions e 12 CPU cores
e 32GBRAM

e 100GB Available disk space

Test Step Type Description Result
Sequence
1 Stimulus Register, Trigger workflows
2 Check Monitor, collect metrics Pass
3 Check Run training jobs Pass
4 Check Deploy models Pass

L __|
107

z =’_(\‘
%o 5
-2

D6.3 — NANCY Integrated System — Final Version

5 Check Store, fetch models Pass
6 Check Save, load data Pass
Test Check inference latency, mean latency and execution length Manual
Verdict inspection/monitoring
—e— Speedup //”
----- Ideal Linear Scaling e
20
o 14.93
15}

Inference Latency Speedup
—
o

w

10 15 20 25

[0 S

Number of Replicas

Figure 35: Inference speedup vs number of replicas

Figure 35_depicts mean inference latency speedup compared to the increasing number of model
replicas when running 500 concurrent requests on a deployed QoE model. By increasing the number
of replicas a linear latency reduction is expected. The ideal linear speedup is plotted on the graph for
comparison.

108

\
=
7

]
D6.3 — NANCY Integrated System — Final Version e e
\."/

S0 NAOMI Centralized
——— NAOMI Distributed
—— O-RAN
40
=
o 301
=
T
=z
-
=
g ol
= 0
10
U i L L L L
0 200 400 600 800 1000

Number of Parallel Requests

Figure 36: Mean latency vs. Number of parallel Requests

Figure 36 presents mean end-to-end latencies for concurrent inference requests on the deployed QoE
prediction model. By increasing the number of concurrent requests ((x) axis) sent to the APl endpoint,
the mean latency increases (measured in seconds on (y) axis). The mean latencies for the O-RAN
solution as well as both NAOMI solutions, centralised and when deployed on a distributed

infrastructure, are plotted on the graph.

109

D6.3 — NANCY Integrated System — Final Version

2 -5
&y
HEE(

1400 W Data Extraction
e Model Training
B Model Deployment (NAOMI Only)

1200
B Other (Task/Container Creation...)

_ 1000
e
=
50
g 800
3
g
2
£ 600
=
<5

400

200

No Data
0 NAOMI 1x O-RAN 1x NAOMI 10x O-RAN 10x NAOMI 100x O-RAN 100x

AI/ML Workflow Systems and Datasct Size (x) Multiplier

Figure 37: Execution time of different Al/ML workflow systems and dataset size

Figure 37 presents the execution times of the QoE prediction workflow on both solutions for a
reference dataset (1 x), a dataset with 10 times the size of the reference dataset (10 x) and a dataset
100 times the size of the reference one (100 x). Different dataset sizes and solutions are plotted on
the (x) axis and execution time in seconds on the (y) axis for each of the experiments.

4.2.14. Self-Evolving Model Repository & Federated Learning Intrusion Detection System
(SEMR — FL-IDS)

Table 44 summarizes the SEMR — FL-IDS integration tests.

Table 44: SEMR — FL-IDS integration tests summary

Status (Completed,

Integration Test ID Objective Dropped, New and
completed)

Validation of NAOMI full integration

SEMR_FL-IDS_I001 (M LfI.ov.v model sttJ.ragef Ray Se.rve, endpoint ol
prediction functionality using mocked
services).
Validation of MLflow model storage

SEMR_FL-IDS_1002 integration (run directories, artifacts, Completed
MLmodel).
Validation of Ray Serve deployment

SEMR_FL-IDS_1003 functionality (mock predictor, async Completed
predictions).

Analytic Integration Test Description

Test type Integration
Identifier SEMR_FL-IDS_1001
Testers MINDS

Test Purpose | Verify that the system integrates correctly with NAOMI by validating MLflow model
storage, Ray Serve deployment, and REST API endpoint response with mock predictions.
References e The module deploy_model and test_endpoint test.

e NAOMI documentation.

110

-2
2y \
>y
i)

0-%

D6.3 — NANCY Integrated System — Final Version

/
0

’
NANCY

L |
Configuration e Test environment with unittest framework.
e Installed packages: miflow, ray[serve], requests, numpy.
e Mocked dependencies: miflow.set_tracking_uri, mlflow.pyfunc.load_model,
ray.init, ray.serve.run, requests.post.

Pre-test e mlruns directory exists (MLflow default storage)
conditions e deploy_model.py script present in workspace
e test_endpoint.py script present in workspace
e Mock MLflow model object prepared with predict method
e Mock REST API response set to status_code=200 with JSON prediction output

Test Step Type Description Result
Sequence

1 Check Verify mlruns directory exists.

2 Check Verify deploy_model.py script exists.

3 Check Verify test_endpoint.py script exists.

4 Stimulus Send POST request to Mocked API endpoint

“http://localhost/ray-api/nancy/” with returned sample
sample test data. predictions successfully.

5 Check Verify response status code = 200. Pass
6 Check Verify response JSON contains Pass
"predictions" key.
7 Check Verify returned predictions match Pass
expected shape (3x7).
Test Verdict Pass
Test type Integration
Identifier SEMR_FL-IDS_1002
Testers MINDS
Test Purpose Verify that a trained model has been correctly saved to MLflow by checking the
existence of the mlruns directory, run subdirectories, and model artifacts (model/ or
MLmodel file).
References e miruns/ directory (default MLflow tracking storage).

e Training pipeline output.
e MLflow documentation.
Configuration e Test environment with unittest framework.
e Required packages: miflow, glob, os.
e MLflow local tracking backend (file-based in mlruns/).

Pre-test e At least one MLflow run has been executed before this test.
conditions e “mlruns” directory exists and contains a subdirectory “mlruns/0”.
e Run directory should contain either “artifacts/model/” with saved model files,
or “MLmodel” file with run metadata.

Test Step Type Description Result
Sequence
1 Check Verify mlruns directory exists. Pass
2 Check Verify mlruns/0 directory exists. Pass
3 Check Collect run directories under mlruns/0 and ensure Pass
there is at least one (so the latest run exists).
4 Check If artifacts/model/ exists, verify it contains model Pass (files found)
files.

111

D6.3 — NANCY Integrated System — Final Version

2 S
-y
QR

0-%

>
z
(¢]
<

5 Check If artifacts/model/ does not exist, then, if Pass (if files exists)
MLmodel file exists in run directory, verify its
presence.
6 Check Else, if “artifacts/model/” and “MLmodel” do not Pass
exist, verify run directory contains metadata files.
Test Pass
Verdict
Test type Integration
Identifier SEMR_FL-IDS_1003
Testers MINDS
Test Purpose Verify that the model can be loaded from MLflow, a Ray Serve predictor can be
instantiated, and predictions can be returned in the expected format.
References e The deploy_model module.
e MLflow and Ray Serve APl documentation.
Configuration e Test environment with unittest framework.
e Required packages: mliflow, ray, numpy, fastapi, asyncio.
Pre-test o mliflow.pyfunc.load_model is patched to return a mock model.
conditions e ray.init and ray.serve.run are patched to avoid starting real Ray processes.
e deploy_model.py exists in the project root.
Test Step Type Description Result
Sequence
1 Check Verify that deploy_model.py exists in the project Pass
root.
2 Stimulus Initialize mocked predictor object (MockPredictor). Creates and
returns predictor
object.
3 Stimulus Generate predictions with test data through Returns
predictor’s predict method (async). predictions JSON.
4 Check Verify predictions include "predictions" key. Pass
5 Check Verify predictions item of JSON has length 1 (list). Pass
6 Check Verify predictions list contains 7 items (length=7). Pass
Test Pass
Verdict
4.2.15. Post Quantum Cryptography Sign & Secure Communications (PQCSign —
PQCSecCom)

Table 45 summarizes the PQC Sign — PQC SecCom integration tests.

Table 45: PQC Sign — PQC SecCom integration tests summary

Integration Test ID Objective Status
Test the integration of the PQC Signature
Token and the PQC secure communication

PQCSign_PQCSecCom _1001 component for Dilithium algorithm sign in ComplEres
hardware
Test type Integration
Identifier PQCSign_PQCSecCom _1001
Testers TEI

112

D6.3 — NANCY Integrated System — Final Version

Test Purpose

References

Configuration

Evaluate the integration of the PQC Signature Token with the PQC secure

communication component, with the Dilithium algorithm using hardware-based digital

signing.

[11]
Raspberry Pl 4 wit

h Raspberry Pi OS (Bookworm version) with installed

libclassicclient_8.1.0-b01.00_raspberrypi.aarch64.deb library for interact with TDIS HW

token.
Pre-test Physical smart card reader with TDIS token insert.
conditions
Test Step Type Description Result
Sequence
1 Stimulus Run NancyTest app provided by TDIS with pkcs11 Pass
option and a proper string content to be signed in
hardware
2 Check The app successfully signs the content checking Pass
the results and the logs.
3 Stimulus Run the PQC Secure Communication (PQC-SC) Pass
component with pkes11 HW configuration to
enable the signing in hardware.
4 Check The PQC-SC successfully sign the content, using Pass
TDIS token, checking the results and the logs.
Test Pass
Verdict
4.2.16. Al Network Quality Module & Network Information Framework (AINQM — NIF)

Table 46 summarizes the AINQM — NIF integration tests.

Integration Test ID
AINQM_NIF_

Test type
Identifier
Testers

Test Purpose

References

1001

Configuration

Pre-test
conditions

Test
Sequence

Step

Table 46: AINQM - NIF integration tests summary

Objective Status

Test the correct format for the input and Completed
output of the Al model

Analytic Integration Test Description

Integration
AINQM_NIF_l001
8BELLS

Test the correct format for the input and output of the Outage Probabilty Prediction Al

model.
[20], Chapter 4

Test input files prepared in JSON format

Output expected in

Type

Stimulus

structured JSON with defined schema

Description

Provide valid input JSON to Al model’s input.

Result

Completed

113

D6.3 — NANCY Integrated System — Final Version

Z =’_(\‘
o §
-2

2 Check Pass
Model returns output JSON in correct schema
(fields present and typed).
3 Stimulus Completed
Send malformed input JSON (e.g., missing field).
4 Check Pass
Model returns error message with proper format.
5 Stimulus Completed
Send input with extra/unexpected fields.
6 Check Pass
Model ignores extra fields or returns warning
without failure.
Test Pass
Verdict
4.2.17. Al Network Quality Module (AINQM) - XAl

Table 47 summarizes the AINQM - XAl integration tests.

Table 47: AINQM - XAl integration tests summary

Integration Test ID

AINQM_XAI_l001

AINQM_XAI_l002

AINQM_XAI_1003

AINQM_XAI_1004

AINQM_XAI_I005

Objective
Validation of connection to AINOM
prediction component.
Validation of outage prediction
workflow by ensuring
PredictionClient returns correct
outage probability and time index.
Validation of XAl integration by
checking IntegratedExplainer uses
PredictionClient for predictions
and enriches results.

Validation of SHAP global
explanations, ensuring proper
output directory and success
status.

Validation of LIME local
explanations, confirming access
status and correct handling of
output directory.

Status

Completed

Completed

Completed

Completed

Completed

Analytic Integration Test Description

Test type Integration
Identifier AINIQM_XAI_l001
Testers MINDS

Test Purpose

component and detect its availability.

References
Configuration .

From prediction_client module the PredictionClient class.
Test environment with unittest and requests package installed.
e The requests.get method patched to return 200 OK.

Verify that the system can successfully establish a connection to the AINQM prediction

114

L
D6.3 — NANCY Integrated System — Final Version .'.‘\.l’
NANCY
-

Pre-test e Mocked requests.get simulates service availability at http://localhost:5000.
conditions e No real service required.
Test Step Type Description Result
Sequence

1 Stimulus Call PredictionClient.is_available() to check service Returns True

avalilability.

2 Check Verify is_available() result equals True. Pass
Test Pass
Verdict
Test type Integration
Identifier AINIQM_XAI_l002
Testers MINDS
Test Purpose Validate that outage predictions can be retrieved correctly from AINQM and contain

expected fields.

References From prediction_client module the PredictionClient class.
Configuration e Test environment with unittest and requests, pandas packages installed.

e The requests.post method patched to return mock outage prediction.

Pre-test e Sample DataFrame (test_df) with required network features written to
conditions temporary CSV.
e Mock requests.post configured to return outage probability 0.75,
Binary_Outage=1 and Classification="Outage_Risk".

Test Step Type Description Result
Sequence
1 Stimulus Call PredictionClient.predict with test_df and Returns mock
time index=2. prediction dict
2 Check Verify time_index matches input (2). Pass
3 Check Verify "Outage Probability" is equal to 0.75. Pass
Test Pass
Verdict
Test type Integration
Identifier AINIQM_XAI_l1003
Testers MINDS
Test Purpose Ensures that the IntegratedExplainer component correctly calls the PredictionClient to

obtain outage predictions (via the mocked HTTP response) and then applies its own
post-processing logic to enrich the raw prediction with additional fields.
References From integrated_explainer module the IntegratedExplainer class.
Configuration e Test environment with unittest and requests, pandas packages installed.
e Patched requests.post for prediction.

Pre-test e Mock PredictionClient service returns outage probability and classification
conditions fields.

e IntegratedExplainer initialized with prediction URL http://localhost:5000.

Test Step Type Description Result
Sequence
1 Stimulus Call IntegratedExplainer.predict with test_df and Returns enriched
time index=2. prediction dict
2 Check Verify "Outage Probability" present in result. Pass
3 Check Verify "Binary_Outage" present in result. Pass

115

L
D6.3 — NANCY Integrated System — Final Version .'.‘\.l’
NANCY
-
4 Check Verify "Classification" present in result. Pass
Test Pass
Verdict
Test type Integration
Identifier AINIQM_XAI_l004
Testers MINDS
Test Purpose Validate that SHAP-based global feature importance explanations can be generated for
outage prediction.
References From integrated_explainer module the IntegratedExplainer class.
Configuration e Test environment with unittest and pandas, scikit-learn, xgboost packages
installed.
e Patched preprocess_data_robust, outage_prediction_explainer.global_explain
and IntegratedExplainer.model.
Pre-test e Synthetic dataset generated via sklearn.make_classification.
conditions e XGBoost model trained on sample data.
e Patches simulate data preprocessing and SHAP explanation generation.
Test Step Type Description Result
Sequence
1 Stimulus Call IntegratedExplainer.explain_global with Returns
mock_df and output_dir arguments. explanation result
dict
2 Check Verify status in explanation results equals to Pass
"success".
3 Check Verify output_directory in explanation results Pass
matches the input path.
Test Pass
Verdict
Test type Integration
Identifier AINIQM_XAI_1005
Testers MINDS
Test Purpose Validate that LIME-based local explanations are generated correctly for a specific
prediction instance.
References From integrated_explainer module the IntegratedExplainer class.
Configuration e Test environment with unittest and pandas, scikit-learn, xgboost packages
installed.
e Patched preprocess_data_robust, outage_prediction_explainer.local_explain
and IntegratedExplainer.model.
Pre-test e Synthetic dataset generated via sklearn.make_classification.
conditions e XGBoost model trained on sample data.
e Patches simulate preprocessing and LIME explanation function.
Test Step Type Description Result
Sequence
1 Stimulus Call IntegratedExplainer.explain_local with Returns
mock_df, sample_id=2 and output_dir arguments. eXP|a“3;i°“ result
ict
2 Check Verify status in explanations dict equalt to Pass
"success".
3 Check Verify output_directory in explanations dict Pass

matches input path.

116

D6.3 — NANCY Integrated System — Final Version

2 S
-y
QR

0-%

>
z
(¢]
<

Test Pass
Verdict
4.2.18. Explainable Al & Federated Learning Intrusion Detection System (XAl — FL-IDS)

Table 48 summarizes the XAl — FL-IDS integration tests.

Table 48: XAl — FL-IDS integration tests summary

Integration Test ID Objective Status \
XAL FL-IDS_1001 Yalldatlon of model transfer and loading Completed
into the XAl component.
XAI_FL-IDS_1002 Validation of expected explanations Completed

generation and storage.

Analytic Integration Test Description

Test type Integration
Identifier XAI_FL-IDS_l001
Testers MINDS

Test Purpose Validate that a federated learning model (mock trained) is correctly transferred from the FL
component to the XAl component and can be loaded successfully.

References From anomaly_detection_explainer.py module the load_model method.
Configuration e Test environment with unittest and sklearn, pandas, pickle, shutil packages
installed.

e Trained RandomForestClassifier on sample random data.
e Mocked filesystem operations (os.makedirs, shutil.copy) and pickle.load.

Pre-test e Mock trained FL model serialized as .pkl.
conditions e Mock destination directories in XAl component.
Test Step Type Description Result
Sequence
1 Stimulus Call function to transfer FL model to XAl Mocked copy invoked
directory.
2 Check Verify XAl model path exists. Pass
3 Stimulus Load model using mocked pickle.load. Model loaded
4 Check Verify loaded object has the expected Pass
methods.
Test Verdict Pass
Test type Integration
Identifier XAI_FL-IDS_1002
Testers MINDS
Test Purpose Validate that the XAl component can generate global and local explanations using the
transferred FL model.
References From anomaly_detection_explainer.py module the load_model, global_explain and
local_explain methods.
Configuration e Test environment with unittest and sklearn, pandas, shap, LIME packages
installed.

e Mocked FL model (RandomForestClassifier).
e Mocked file I/O (os.makedirs, plt.savefig, json.dump).

Pre-test e Synthetic random dataset for test purposes created.
conditions e XAl model directory contains mock FL model.

117

4.3. Integration Monitoring

o
D6.3 — NANCY Integrated System — Final Version LS . &
NANGY
-
Test Step Type Description Result
Sequence
1 Stimulus Load the mock model from file using load_model. Returns the
trained model
object
2 Stimulus Call global_explain with sample dataset. Generates PNG
plots and JSON
files in the output
directory
3 Check Verify the global explanation results are the Pass
expected.
4 Stimulus Call local_explain with a sample flow ID. Generates PNG
plots and JSON
files in the output
directory
5 Check Verify the local explanation results are the Pass
expected.
Test Pass
Verdict

In the context of the integration activities, regular monitoring of the progress updates, issues reporting
and planning for their resolution was performed. Specifically, as described in D6.2, the integration
aspects were discussed during the weekly WP6 meetings and ad-hoc meetings were organized among
the involved partners to deal with specific technical issues. To streamline the integration monitoring
process and facilitate communication among the technical teams, a central management project
based on GitHub was used for issue tracking and reporting on the progress of the integration activities.
Through this tool, regular feedback was provided from the technical teams for all functional and
integration testing activities (Figure 38 and Figure 39).

11

8

D6.3 — NANCY Integrated System — Final Version

= O NANCY-PROJIECT / Projects / NANCY integration monitoring &

£ NANCY integration monitoring
[Backlog ~ M Team capacity [current iteration [E Roadmap B my items + New view

Q Filter by keyword or by field

(O Functional Tests 27 Estimate: 0 (O Integration Tests 20 Estimate: 0 0o (O End-to-end (system level) tests 4 - (O Open issues/ action items © 000
Describing the overview and status of NANCY Describing the overview and status of NANCY Estimate: 0 Estimate: 0
functional tests relevant to the NANCY integration tests, relevant to the NANCY Describing the overview and status of NANCY end- In this column we can describe open issues/
BRI B M r R i EE D to-end tests, relevant to the defined NANCY use discussion items that should be considered in the
a a case scenarios from the pilots. context of integration and should be discussed in
(D NANCY-Integration-monitoring #3 [] (D NANCY-integration-monitaring #26 the context of regular or bilateral integration
D-ADM (CRAT) MRAT-NCP - ID-Mngnt (UMU) (@ NANCY-integration-monitoring #54 meetings
Completed Completed SSI Authentication and Authorization (NEC)
() NANCY-integration-monitoring #1 (5) NANCY-integration-monitoring #29
MRAT-NCP (UMU) MRAT-NCP - SemCom (UMU, INNO) () NANCY-integration-monitoring #55
Service activation through MAESTRO service
orchestrator (OTE, UBI)
(D NANCY-integration-monitoring #3 (O NANCY-integration-monitoring #30
ID_Mngnt (UMU) MRAT-NCP — Madels -TFS (UMU, US, CERTH)
(©) NANCY-integration-monitoring #56
Service activation through Slice Manager (EHU,
i2Cat)
NANCY-integration-monitoring #4 NANCY-integration-monitoring #33
© ©
DAC (DRAXIS) ID Mngnt — Wallet (UMU, NEC)
[Ongoi
SLA creation and Marketplace mediation (NEC,
(D NANCY-integration-monitoring #5 () NANCY-integration-menitoring #34 TECN)
BC (NEC) ID Mngnt - VoSySMenitor (UMU, VOS)
Completed Completed
(7) NANCY-integration-maonitoring #6 v (7) NANCY-integration-manitoring #35 v
+ Additem + Add item + Add item + Add item

Figure 38: High-level view of dedicated Github project for NANCY integration monitoring

SEMR — FL-IDS (JSI, MINDS) #46 i@ 2o x
_Q NANCY-PROJECT/NANCY-integration-monitoring Private

‘ konfragkos opened on Feb 19 - edited by NNtampakis Edits Assignees 9
No one - Assign yourself
Objective: The Self-Evolving Model Repository (NAOMI) will be integrated in the Greek In-lab testbed, aiming to support the
Federated Learning-based training of an Al Intrusion Detection System (IDS) along with its deployment, inference, and re- Labels]
training if needed. The NAOMI framework will offer several functionalities (train, load model, load data) to the FL-IDS, aiming

to line the Learning O i (FLOps).

A— :

No type
Vo 2 Togoer Workdoms [S 2 P oses
Projects &
| wiorkon ‘ Montorng ‘ Model ‘
Onchesranr Software Sure
T]. [NANCY integration monitoring
i oo s sy Status | Integration Tests | v ~
. Priority Choose an option
Size Choose an option
SEMR_FL-IDS_I001: Validation of the deployment of NAOMI in the Greek In-lab testbed and the consumption of e
network traffic in a csv format (network flows) Estimate Enter number..
. Iteration Choose an iteration
© Status (Not started/ Ongoing/ Completed): Completed
o Expected Availability (if not completed): Available Start date No date
@ Testing method {(manual/automated through CI/CD): Manual End date No date
© Link to CI/CD pipeline {jenkins if applicable): Mot applicable
SEMR_FL-IDS_|002: Utilisation of certain NAOMI functionalities (load model, load data, etc.) for the identification e
and classification of network flows between benign traffic and attack type Milestone 8

No milestone
© Status (Not started/ Ongeing/ Completed): Completed

© Expected Availability (if not completed): Available

Relationships b
© Testing method (manual/automated through CI/CD): Manual

None yet
© Link to CI/CD pipeline (jenkins if applicable): Not applicable

119

Nl
ANCY

D6.3 — NANCY Integrated System — Final Version

z w3

SEMR - FL-ID5 (JSI, MINDS) #46
MANC CY-integration-monitoring

Integration tests could be found here in 3 files:

test_full_naomi_integration.py | Add integration with NAOMI
test_mlflow_storage.py
test_ray_deployment.py

Also screenshots:

1t
“min_it

the IP addre

Figure 39: Example of integration point-specific reporting view

120

Y]
D6.3 — NANCY Integrated System — Final Version LS
N

5. NANCY Platform — System-Level Validation Workflows

This section provides a detailed description of the end-to-end verification workflows designed to
validate various aspects of the NANCY platform at a system level from an integration perspective.
These workflows encompass operations across the central management, inter-operator, and
testbed/demonstrator domains.

The selected workflows are largely horizontal, spanning multiple testbed and demonstrator use cases,
and aim to assess the readiness of the corresponding procedures before their execution at the
different demonstrations (T6.5-T6.9), following the integration plan presented in [2]. Accordingly,
these system-level testing activities serve as a preliminary step to the more detailed test activities
being conducted at the individual testbeds and demonstrators as per the approach outlined in [3] for
evaluating and validating the expected results of the NANCY project. The analytical evaluation results
of these test activities will be reported in D6.10.

5.1. Self Sovereign Identity (SSI) Authentication and Authorization

SSI (Self-Sovereign Identity) is a standardized distributed identity management approach to allow
users to have full control of their own identities and credentials while authentication and
authorization are processed in an anonymous way.

The objective of the SSI Authentication and Authorization workflow, horizontal to various NANCY test
beds, is to provide the platform and its users with a distributed infrastructure for privacy
management® in service provisioning. This infrastructure allows users to authenticate themselves and
be authorized to certain NANCY services using decentralized identities and verifiable credentials.

In other words, we provide a means for:

e A user to build and manage its own decentralized identity; what we call Decentralized
Identifiers (DIDs).

e Auser to provide a valid signature based on its decentralized identity (authentication)

e Anissuer — not necessarily the service provider —to issue a credential to a given user, stating
that such user should have access to service X. The user keeps the credential for itself (no
centralized credentials) and when needed provides a verifiable presentation of said credential
to a verifier entity in order to be authorised to service X (authorisation).

e Equip the system with a decentralized ledger on top of which the former procedures can be
realised.

Prerequisites for the workflow:

To understand the prerequisites for this workflow to function, it is important to revisit what is
indicated in [4]: “W3C has proposed corresponding standards for SSI systems®, namely, the
Decentralized Identifiers (DIDs) and the Verifiable Credentials (VCs). DID provides a standardized
approach to uniquely identifying users or subjects in decentralized systems, and VC describes a way
to manage credentials, i.e., digitally signed attestations regarding a subject's attributes or affiliations,
by leveraging DIDs for trust and interoperability. The standards propose an architecture where a user

4 See NANCY D5.2 and ETSI GR PDL 019
(https://www.etsi.org/deliver/etsi gr/PDL/001 099/019/01.01.01 60/gr PDL019v010101p.pdf)
5 https://www.w3.org/TR/did-1.0/

121

https://www.etsi.org/deliver/etsi_gr/PDL/001_099/019/01.01.01_60/gr_PDL019v010101p.pdf
https://www.w3.org/TR/did-1.0/

/,”\
\."/
NANCY
L |
holds DIDs and VCs in their own digital wallet, requests issuers to acquire VCs, and interacts with
verifiers to get authenticated by presenting Verifiable Presentations (VPs) derived from his VCs
without disclosing his credentials. Meanwhile, all parties upload the public part of their identifiers and

schemas in a verifiable data registry for other parties to look up information.

-2
N-2

D6.3 — NANCY Integrated System — Final Version

Thus, the key prerequisites are:

e To deploy the NANCY blockchain as the verifiable data registry. This includes registering the
DIDs and associated public keys of all parties in the blockchain. Also, revoked verifiable
credentials — if any — should be listed in the blockchain too.

o From [4]: “As a verifiable data registry, the NANCY blockchain manages DID
registration and VC revocation through two smart contracts. In NANCY, the DID
registration is handled by smart contract DIDRegistry, which records DIDs and public
keys associated with the DIDs. Meanwhile, another smart contract, VCRegistry, keeps
a list of all revoked VCs for verifiers to look up during authentication.”

e To equip all parties with the NANCY wallet: issuer/s, user/s, verifier/s and application service.
The NANCY Wallet WALLETGATEWAY creates and holds the DIDs and credentials for said parties.
In addition, the wallet runs a gRPC service to communicate with the blockchain. As explained
in [4], the NANCY wallet gateway has defined specific gRPC methods to interact with the
marketplace and the DID registry smart contracts. Also, as a gateway to the blockchain, the
wallet serves as a registrar of the NANCY Certification Authority, and it registers as well as
enrolls each user to the blockchain.

NANCY Wallet

issuer | user
¢ verify ID i yerify VP ! e
«(—y)h «(L)n verifier

issue VC

verify xxDID

revoke VC ' - i query VC
O e Q : revacationList

Q ‘Verifiable Data Registry'O§

NANCY
Blockchain

Figure 40: SSI Architecture with NANCY wallet and NANCY blockchain

The sequence diagram of the authentication & service authorization procedures is provided in Figure
41 and described analytically in the following.

122

D6.3 — NANCY Integrated System — Final Version

“. ‘.)
wallet
Issuer UE wallet

1.0 requestG ial{addn

>

VC issuance protess
]

dummy issuer :

behavior, :
issues any VC i
upon request

VG

1.1 requestApthorization{ad
>

-
€—ok?

1.2 signMessaga(DID,,. servicd
»

) -
< ig

DID,, claims)

dr,, DID,, VC,)

authorization process

| request_payload)

Blockchain

1.2* your_request_to_service th,

ave
authorization
esult

t contains (DID,, sery

ice_request_payload, sig)

>
2

1.

.

isthuthorizationResult:

=

>

Dec

>
authorization result

1.3 verifyMessage

(DID,,, service_re

1.4*askifDID, is a

——ok?—>
uthorized

=

(DID,,)

1.4* authorization result

ision to grant service

»

Figure 41: SSI authentication and authorization procedures

quest_payload, sig)

Setup: All entities, i.e., issuer, UE, service provider verifier, and the application service, start a wallet

gateway service (Figure 42) that is connected to the NANCY blockchain, alongside their applications.

Note that upon the start of a wallet gateway service, at least one DID is created/retrieved for the
wallet derived from the provided “uid”. This DID is registered in the NANCY blockchain and its
verification method (i.e., public key) can be looked up by all entities in the blockchain.

123

Ny’
D6.3 — NANCY Integrated System — Final Version LS & &

r ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client t1 *1 !4 75
‘— GATEWAY_PORT=5080 GATEWAY_UID=UE docker-compose -f docker-compose-wallet.yaml run ——service-ports ——name UE wallet-service

[+] Creating 1/@

v Container docker-mongo-1 Running

Wallet service of NonUE starts listening on port 5000...

mongouri: mongodb://admin:adminpw@mongo:27017/

[main] INFO org.mongodb.driver.client - MongoClient with metadata {"driver’ name": "mongo-java-driver|sync|kmongo", "version": "5.5.0"},
"os": {"type": inux", "name": inux", "architecture" amdé4", "version .10.14-linuxkit"}, "platform": "Java/Ubuntu/21.@.7+6-Ubuntu-@
ubuntul22.04|Kotlin/2.0.8", "env": {"container": {"runtime": "docker"}}} created with settings MongoClientSettings{readPreference=primary, w
riteConcern=WriteConcern{w=null, wTimeout=null ms, journal=null}, retryWrites=true, retryReads=true, readConcern=ReadConcern{level=null}, cr
edential=MongoCredential{mechanism=null, userName='admin', source='admin®, password=<hidden>, mechanismProperties=<hidden>}, transportSettin
gs=null, commandListeners=[], codecRegistry=ProvidersCodecRegistry{codecProviders=[ProvidersCodecRegistry{codecProviders=[ValueCodecProvider
{}, BsonValueCodecProvider{}, DBRefCodecProvider{}, DBObjectCodecProvider{}, DocumentCodecProvider{}, IterableCodecProvider{}, MapCodecProvi
der{}, GeolsonCodecProvider{}, GridFSFileCodecProvider{}, Jsr31@CodecProvider{}, JsonObjectCodecProvider{}, BsonCodecProvider{}]}, org.litot
e.kmongo.service.CustomCodecProvider@24959ca4, ProvidersCodecRegistry{codecProviders=[org.litote.kmongo. jackson.JacksonCodecProvider@1028988
6]1}1}, loggerSettings=LoggerSettings{maxDocumentLength=1080}, clusterSettings={hosts=[mongo:27017], srvServiceName=mongodb, mode=SINGLE, req
uiredClusterType=UNKNOWN, requiredReplicaSetName='null', serverSelector="null', clusterListeners="[]"', serverSelectionTimeout='30000 ms', lo
calThreshold="15 ms'}, socketSettings=SocketSettings{connectTimeoutMS=10000, readTimeoutMS=0, receiveBufferSize=@, proxySettings=ProxySettin
gs{host=null, port=null, username=null, password=null}}, heartbeatSocketSettings=SocketSettings{connectTimeoutMS=10080, readTimeoutMS=18008,
receiveBufferSize=8, proxySettings=ProxySettings{host=null, port=null, username=null, password=null}}, connectionPoolSettings=ConnectionPoo
1Settings{maxSize=10@, minSize=@, maxWaitTimeMS=128008, maxConnectionLifeTimeMS=8, maxConnectionIdleTimeMS=08, maintenanceInitialDelayMS=@, m
aintenanceFrequencyMS=60008, connectionPoollListeners=[], maxConnecting=2}, serverSettings=ServerSettings{heartbeatFrequencyMS=1000@, minHear
theatFrequencyMS=500, serverMonitoringMode=AUTO, serverListene *[1*, serverMonitorListeners="[]"}, sslSettings=Ss1Settings{enabled=false,
invalidHostNameAllowed=false, context=null}, applicationName='null', compressorList=[], uuidRepresentation=UNSPECIFIED, serverApi=null, auto
EncryptionSettings=null, dnsClient=null, inetAddressResolver=null, contextProvider=null, timeoutMS=null}
[cluster—ClusterId{value="'68d535d52561e8b5dac3d47d', description='null'}-mongo:27017] INFO org.mongodb.driver.cluster - Monitor thread succe
ssfully connected to server with description ServerDescription{address=mongo:27@17, type=STANDALONE, cryptd=false, state=CONNECTED, ok=true,
minWireVersion=0, maxWireVersion=25, maxDocumentSize=16777216, logicalSessionTimeoutMinutes=3@, roundTripTimeNanos=25761333, minRoundTripTi
LEELLES)

>>>> Non-UE Wallet <<<<

Create new user in the wallet:

>> Enrollment ID: 'nancy-UE-B9PQdE7zFi6yFZDUuASFy9'

>> DID: 'did:nancy:UE-BIPQAE7zFi6yFZDUUASFy9"

WARNING: Runtime environment or build system does not support multi-release JARs. This will impact location-based features.

Successfully enrolled user admin and imported it into the wallet

Successfully enrolled user 'nancy-UE-B9PQdE7zFibyFZDUuASFy9' with role 'non-UE' and imported it into the wallet

Server started, listening on port 5000...

Figure 42: Start a UE wallet gateway service at address ‘localhost:5000” with uid="UE' and corresponding
DID="did:nancy:UE-7kb29s3uKveUdfkuGZeg9)'

Note that all wallet calls are defined as gRPC calls, which are described in [4]. The examples in the
snapshots below use grpcurl as the grpc client to invoke the wallet calls.

Step 1.0: The UE acquires a verifiable credential (VC) from the issuer.

As preparation for the authorization process, the UE must first acquire a Verifiable Certificate (VC)
from an issuer, who is known to/trusted by the (service provider) verifier. And here we describe how
an UE acquire a VC from an issuer.

First the UE application invokes the RequestCredential gRPC call of the UE wallet service, providing its
holder DID DID,, the list of claims of the holder (e.g., attributes that the UE wants the issuer to
acknowledge in the VC), and the address of the issuer wallet service (Figure 43). And then the UE
wallet acquires the VC from the issuer wallet if the request is approved.

— ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client :1 *1 75 INT x < 14:34:07
— grpcurl —plaintext -d *{"issuerAddress": "195.37.154.23:8881", “credParam": {"holderDID": "did:nancy:UE-B9PQdE7zFi6yFZDUuASFy9", "claims
": "{\"age\": 20}"}}' localhost:5000 dlt.DltGatewayService/RequestCredential

“credential”: "{\"@context\":[\"https://www.w3.0rg/2018/credentials/v1\' https://www.w3.0rg/2018/credentials/examples/vi\"],\"type\": [\"
VerifiableCredential\",\"NancyCredential\"],\"id\" did:nancy:vc-71dfa9b9-8a38-477e-8b50-57d471837bbd\",\"issuer\":\"did:nancy:wallet-exter

nal-test-3EtvHYvKEDF4JAWPproLvS\",\"issuanceDate\":\"2025-09-25T1 31Z\",\"expirationDate\":\"2029-06-17T18:56:59Z\",\"credentialSubject\
:UE-BIPQdE7zFi6yFZDUUASFy9\",\"age oof\":{\"type\":\"EcdsaSecp256k1Signature2@019\",\"created\":\"2825-09-25T1

2:30:31Z\",\"domain\" :\"nancy.example.com\",\"nonce\ j7aN6\",\"proofPurpose\ ssertionMethod\",\"verificationMethod\ i

nancy:wallet-external-test—3EtvHYvkEDF4JAWPproLvS#key-1\ i eyJiNjQiOmZhbHN1LCJjcm1@IjpbImI2NCIdLCIhbGCci0iIFUZzIINKksifQ. .gguel

vMvyRumPAgGKYy_aRkTilLb7hHQGiqLMIxtRagq-0GmHzmjZRUbewqZDWzGlY_FRPABBoLcj87yA\"}}"

}

Figure 43: Invoke RequestCredential call to UE wallet with a claim of ‘age:20’ to
issuer wallet service at '195.37.154.23:8881".

Step 1.1: The UE triggers the authorization process to the verifier.

The UE application invokes the gRPC call RequestAuthorization to the UE wallet service., providing its

holder DID DID,, the credential VC ID used to acquire authorization, and the address of the verifier

wallet service (Figure 44), and receives the authorization result from the verifier. In the authorization

process, the UE wallet actually first asks the verifier wallet for a challenge nonce, then generates a
L |

124

D6.3 — NANCY Integrated System — Final Version

verifiable proof (VP) based on the challenge nonce and the VC, and the verifier wallet finally verifies
the VP (Figure 45). After that, the verifier saves upon each authorization request, the validation results

for later reference in its local database.

r ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker » feature/impl-ssi-client 1 *1 !4 ?5 ~----------cvvnvvnn v < 14:34:15
‘— grpcurl -plaintext -d ‘'{"verifierAddress": "195.37.154.23:8881", "authParam": {"vcId": "did:nancy:vc-71dfa9b9-Ba3@-477e-8b50-57d471837bbd
*, "holderDID": "did:nancy:UE-B9PQdE7zFi6yFZDUuASFy9"}}' localhost:5008 dlt.DltGatewayService/RequestAuthorization
{

"result": true

Figure 44: Invoke RequestAuthorization call to UE wallet with the acquired VC to verifier wallet service at
'195.37.154.23:8881"

[2025-09-25T12:35:12.218279968] >>> getNonce request from "did:nancy:UE-BO9PQdE7zFi6yFZDUuASFy9'

[2025-09-25T12:35:12.419452716] >>> VP validation request from 'did:nancy:UE-B9PQdE7zFi6yFZDUuASFy9':##k Verification SUCCEED ##k

Figure 45: Verifier wallet received and processed the authorization request from UE.

Step 1.2: The UE signs its service request messages and attaches its signature to all its future service
requests (the service requests is UC specific outside of SSI scope).

Once the authorization is successful, meaning that the UE has proved to the verifier of the service
provider that it possesses a valid credential, the UE can further request access to services from the
service provider.

More specifically, if the UE wants to access an application service, the UE application first calls the UE
wallet to sign its service request via gRPC call SignMessage using the credential of the DID, (Figure
46) , and the signature is sent along the service request to the application service.

r ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker ; feature/impl-s lient #1 *1 14 75 »--------- v ¢ 14:38:56

‘— grpcurl —-plaintext —d "{"did": "did:nancy:UE-BO9PQdE7zFi6yFZDUuASFy9","payload": “"service_request_message_digest_example"}' localhost:50800
dlt.DltGatewayService/SignMessage

“vmId": "did:nancy:UE-B9PQdE7zFi6yFZDUuASFy9#key-1",
“signature": "MEYCIQCWYmhkBRNUvyaTyljhlklgsS70wS@R85GCcRBhi/BnRQIhAN2TdzFgGX+tF4HT8zpquN32xo7w6BFc@jDZzLWUSRgT"

Figure 46: UE application requests UE wallet to sign a request payload digest.

Step 1.3: The application service processes the request and verifies the signature sent from the UE.

The application service first authenticates the UE if the request sender is really DID, as claimed in the
request. To achieve this, the application invokes the gRPC call VerifyMessage on his wallet service,
which looks up in the blockchain to retrieve the public key of the DI D, and verify the signature (Figure
47).

— =~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker > feature/impl: —client +1 *1 14 ?5 v { 14:
— grpcurl -plaintext —-d *{"did did:nancy:U PQdE7zFi6yFZDUUASFy9", "vmId did:nancy:UE-BIPQdE7zFi6yFZDUUASFy9#key-1", " payload
ice_request_message_digest_example", "signatu MEYCIQCWYmhkBRNUvyaTy1jhlk1lgs57@wS@R85GCcRBhi/BnRAINAN2TdzFgGX+tF4HT8zpquN32x07w6BFc@jDZzL

WUSRgT"}' localhost:508@ dlt.DltGatewayService/VerifyMessage
{

"result": true

Figure 47: Verifier wallet verifies the request payload signature.

Step 1.4: The service provider queries the verifier about the authorization result of the UE.

When the signature validation is successful, the application service further queries the verifier
application who authorizes all UEs in Step 1.2 for the authorization results. This call from the
application service to the verifier application is use-case specific and out of scope. Then the verifier

L __|
125

D6.3 — NANCY Integrated System — Final Version

application requests the verifier wallet to look up the authorization results of DID, with call
ListAuthorizationRequests or FindLatestAuthorizationResult and finally informs the result to the
application service (Figure 48).

r ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker » feature/impl-ssi-client t1 *1 !4 75 INT x ¢ 14:52:45
— grpcurl —plaintext —d *{"value": "{\"holderDID\": \"did:nancy:UE-BIPQdE7zFi6yFZDUuUASFy9\"}"}' 195.37.154.23:8881 dlt.DltGatewayService/Li

stAuthorizationResults

"value": "[VpVerificationResult(timestamp=2025-09-25T12:35:12.495Z, holderDID=did:nancy:UE-BIPQdE7zFi6yFZDUuASFy9, vp={\"@context\":[\"htt
ps://www.w3.0rg/2018/credentials/v1\"],\"type\": [\"VerifiablePresentation\"],\"verifiableCredential\":{\"@context\": [\"https://www.w.
18/credentials/vI\",\"https://www.w3.0rg/2018/credentials/examples/vi\"],\"type\": [\"VerifiableCredential\",\"NancyCredential\"],\"i
d:nancy:vc-71dfa9b9-8a36-477e-8b5@-5fd477837bbd\" ,\"issuer\":\"did:nancy:wallet-external-test-3EtvHYvKEDF4JAWPproLvS\",\"issuanceDate\
25-89-25T12:30:31Z\",\"expirationDate\":\"2029-06-17T18:56:59Z\",\" credentialSubject\": {\"id\" :\"did:nancy:UE-BIPQdE7zF i6yFZDUUASFy9\"

\":20},\"proof\": {\" type\" :\"EcdsaSecp256k1Signature2@19\",\" created\" :\"2025-09-25T12:30:312\", \"domain\" :\" nancy.example.com\",\"nonce\": \
"knWSNHGRK_j7aN6\", \"proofPurpose\" :\"assertionMethod\",\"verificationMethod\":\"did:nancy:wallet-external-test-3EtvHYvkEDF4JAWPproLvS#key-1
A A" jws\ " 2\ "eyJiNjQiOmZhbHN1LCIjcm18IjpbImI2NCIdLCIhbGci0iJFUZzIINksifQ. . gguellzR6tIivMvyRumPAgGKYy_aRkTilLb7hHQGiqLMIxtRaq—0GmHzmj ZRUbewqZDW
zGlY_FRPABBoLcj87yA\"}},\"proof\": {\"type\":\"EcdsaSecp256k1Signature2019\",\"created\" :\"2025-89-25T12:38:56Z\", \"domain\" :\"nancy.example

com\" ,\"nonce\" :\"DPSWfTauatAQ\",\"proofPurpose\":\"assertionMethod\",\"verificationMethod\":\"did:nancy:UE-BIPQAE7zFi6yFZDUuASFy9itkey-1\",\
"jws\" :\"eyJiNjQiOmZhbHN1LCJjcml@IjpbImI2NCIdLCIhbGci0iIFUzIINKsifQ. .@naRZI9DoykCU2R_KT20NHA4 ragsGAvOFYvzbb-LEo1qBbL4tDLI2McpSCdQDmxdjeBzeAE

Fcal-38iCtUwH1A\"}}, valid=true, errorMsg=)]"
}

Figure 48: Look up authorization results of the UE DID on the verifier wallet service.

5.2. Service Activation through BSS and Maestro Service Orchestrator

5.2.1.Prerequisites to the Workflow

o UE Connectivity: The User Equipment (UE) is registered and connected to the 5G network,
with the capability to initiate data sessions through the operator’s access domain. This
ensures that the UE can communicate with the BSS and subsequently access the instantiated
AR/VR service.

e SLA Definition and Mapping: The Service Level Agreement (SLA) template for the AR/VR
service is predefined, deployed within Maestro, and linked to the corresponding configuration
file in the BSS that describes the AR/VR service parameters. The BSS utilizes this configuration
to generate and issue service orders for the requested AR/VR service. An example of a
preconfigured service order within the BSS with the predefined service specification is shown

in Figure 49.

126

D6.3 — NANCY Integrated System — Final Version

"@type":

"description": "
"requestedStartDate”: "
"expectedCompletionDate”: "
"requestedCompletionDate": "
wetatat: ¥ B

"orderD:]
"serviceOrderItem": [

'
“service": {
“serviceSpecification": {

"
"serviceCharacteristic”: [

{ "name": " ", "valueType": " "

{ "name": *® " “valueTy v "value": "
“name"”: * "valueType": "
"rame": "

“name"”: " ", "valueType": " ", "value": "
"name": * ", "valueType": " " "yalue®: *

1,
“relatedParty*: [
{

"name": "
upglet: v

Figure 49: An example of a preconfigured service inside the BSS featuring all the necessary fields for a service order to
Maestro.

5.2.2.Workflow Description

n B n - -

User enrolls into AR/VR service -

N

. store IMSI .
: Create order for the AR/VR service

deploy AR/VR

result

Figure 50: Service activation workflow

The workflow, that is shown in Figure 50, begins when the UE initiates a request to enroll in the AR/VR
service through the Operator’s BSS, by visiting a dedicated web page and selecting the desired service,
as illustrated in Figure 51. This page displays the available preconfigured AR/VR services and includes
information about the user’s IP address and IMSI, which the BSS obtains through its interaction with
the 5G SMF API of the 5G Core.

127

]
D6.3 — NANCY Integrated System — Final Version e e

Register for a Service

Your IP Address:

10.10.10.1

Your IMSI:

imsi-202031001111111

Service Name Status Action

NGINX Deployment Available
Minds App Available
Minds App with Blockchain Available

Figure 51: BSS user enrollment dedicated web page

Once the user selects a service, the BSS creates and stores a persistent association between the user’s
IMSI and the selected service, which will later be used as part of the authentication process of the
AR/VR application server.

Subsequently, the BSS forwards the corresponding service order to Maestro via its northbound
interface. Maestro receives and processes the order, instantiates the required AR/VR service
components, and deploys them within the Kubernetes (K8s) cluster operated by OTE. Figure 52 shows
the logs during a user service registration, including IMSI lookup and Mastro service deployment.

128

D6.3 — NANCY Integrated System — Final Version 1@

111111 and

111111 and

Figure 52: BSS logs for user service registration

Through this automated orchestration, the AR/VR service is fully provisioned and made available for
the end user, ensuring that the end-to-end activation is aligned with the predefined SLA parameters.

Figure 53 shows the status of the Maestro service order as it appears in the web interface of the BSS
after a user service registration.

129

\
=
7

D6.3 — NANCY Integrated System — Final Version

Service Orders

Minds App with Blockchain [eell T35
ID: c53465bc-3bb7-46ce-b17a-84291027b484

> ,(0—(0
-y
Q@R

0-%

>
z
(¢]
<

Order Date: 2025-10-14 12:23 Requested Start: 2024-07-15 10:00
Start Date: N/A Expected Completion: 2026-08-16 10:00
Priority: N/A Completion Date: N/A

Category: N/A External ID: N/A

Service Order ltems
ID Action State Service Details

fbdb84c5-f0d6-4e6b-965c-albbe25b611d add COMPLETED Minds App with Blockchain Show JSON
3af38451-36a6-48fa-bcOb-55c46c810275
FEASIBILITY_CHECKED

Figure 53: Service orders and their status as seen in the BSS.

5.3. Service Activation through BSS and Slice Manager

The goal of this workflow (Figure 54) is to enable the instantiation of services provided by the EHU
operator using the Slice Manager orchestrator. Upon a service request, EHU’s service manager is
responsible for building an SLA that captures the service requirements and sends it to the Slice
Manager to enforce it. According to this SLA, the Slice Manager configures compute and RAN
resources through k8s and RIC Manager, respectively. Through this workflow, the EHU operator is able
to provide services to requesting users, meeting the requested requirements and KPls.

Prerequisites/Assumptions for the workflow: This workflow assumes that all the components
necessary for the EHU operator to provide its services are operational, including the O-RAN 5G
network and the MEC. In addition, the multi-hop network of vehicles is also deployed, with one of
them being able to request a service. Lastly, SSI components are also running in order to carry out the
authentication and authorization workflow.

130

D6.3 — NANCY Integrated System — Final Version

g
kubernetes
735;))y (BSS @@

Slice Manager

‘ UE 5G RAN NearRTRIC NonRTRIC (Service provider) . GrEnEsnEE
L), & xApp & xApp _ /;
Service iy
Request (SLA) . i HELM
; Build service
1 sa
i Request appl\catién service (ServiceSLA, ServicelD)}——
= Initiate deployment (video receiver app + face recognition app)%
Al RAN slice resources configuration
Slicing Policy

H Slicing

H priority to

. E2.based _:

PRB UE PRBs

; allocation

Application service ready
—Payload: recorded_video or recorded_video_summary
H Processing
Face recognition
Store resulis

Figure 54: Service activation through BSS and Slice Manager workflow

Workflow description:

EHU's service provider uses Slice Manager’s REST API for the lifecycle management of application
services in the MEC. When the service provider receives a valid request, first it constructs the SLA to
determine how that request will be relayed to the Slice Manager. Based on the SLA, the service
provider determines the compute resources (CPU, RAM), slice priority in the RAN, and the functional
characteristics of the application to deploy (i.e. whether the application processes a video stream or
a summary of the video in text format).

In regards to compute, the artifacts of the application are uploaded using the /network_service/post/
endpoint, whereas the /network_service_instance/post/ request is used to instantiate an onboarded
application. The content of this POST request depends on the SLA, as it impacts the kind of application
to deploy and the compute resources to allocate to it. This results in the deployment of the
corresponding helm chart in the Kubernetes cluster of EHU’s MEC.

ibuntu@sm-131:~$ kubectl get all -n demo-nancy-5g

READY STATUS RESTARTS AGE
pod/video-server-face-7f4b78c59c-zkcnh 1/1 Running 0 9d
pod/video-server-file-7f67478c49-14wwk 1/1 Running 0 9d

TYPE CLU IP EXTERNAL-IP POR)
service/udp-face-detection-service NodePort < 500 p500/UDP
service/udp-listener-service ClusterIP 6000/UDP

READY UP-TO-DATE AVAILABLE AGE
jeployment.apps/video-server-face 171 1 1 9d
leployment.apps/video-server-file 1/1 1 il ad

DESIRED CURRENT READY AGE
s/video-server-face-7f4b78c59c 1 1 1 9d
s/video-server-file-7f67478c49 1 1 1 9d

Figure 55: Deployment of target application’s helm chart in Kubernetes cluster of EHU’s MEC based on SLA specification

The dynamic modification of RAN resources is triggered by the reception of a slicing policy update
from the Slicing rApp running in the RIC Manager. This update is received through a REST API request
(PUT or POST), which identifies the target slice, either by a friendly name or by specifying its SST, SD,

131

AL

L |
MCC, MNC parameters (i.e., S-NSSAI and PLMNiD), and a slice priority. The slice priority is an integer
between 1 (highest) and 100 (lowest), representing the relative share of Physical Resource Blocks
(PRBs) among active slices. For instance, with two slices, priorities of 10—10 result in an even 50%-50%

PRB split, while 1-2 leads to a 66%-33% distribution. Examples of REST API calls are shown below:

0-%

D6.3 — NANCY Integrated System — Final Version

z w3

curl -X PUT http://ric-manager-service:8104/policyupdate -H '"Content-
Type: application/json" -d
'{"sst":"l ", "Sd":"OOOOOl ", "mcc"..HOOI ", "mnc":"OZ", "slice priO":"2"} r

curl -X PUT http://ric-manager-service:8104/policyupdate -H '"Content-
Type: application/json" -d
'{"sst": "l ", "Sd":"000002"1 "mcc":"001", "mnc":"O2", "slice prio":"l "} r

curl -X DELETE http://ric-manager-service:8104/policyupdate -H
"Content-Type: application/json" -d
'{"SSt".’"l", "Sd":"000002"/ "mcc"'.ﬂool", "mnC":"O2//}’

Policies can be updated or deleted (resetting the priority to its default value of 10) via the PUT/POST
and DELETE methods, respectively. Once a request is received, the rApp generates a valid Al SLA
Slicing policy and forwards it to the Near-RT RIC. The Near-RT RIC validates the policy instance against
the corresponding policy type schema (see Section 3.18) and then delivers it to the relevant xApp. The
SLA Slicing xApp continuously monitors the number of slices and the UEs associated with each one,
applying the received configuration by sending appropriate E2-RC messages to the srsRAN DU. These
messages dynamically control PRB allocation per UE for each slice. The correct enforcement of PRB
distribution can be verified through available Key Performance Metrics (KPMs) in srsRAN, such as
DRB.UEThpDI. Once both the compute and networking resources are ready and configured, the user
is notified and can begin using the service by interacting with the indicated IP address and port.

5.4. Service Level Agreement (SLA) Creation and Marketplace Mediation
(Inter-Operator Domain)

The objective of the SLA creation and Marketplace mediation workflow, potentially horizontal to
various NANCY test beds but currently being used in the Greek In-lab scenario, is to provide the
platform with a business-layer chaincode where operators can engage in the secure exchange of
resources to keep their quality of service for their customers. Here, we deliver to NANCY’s interdomain
a tool for operators to register (through their BSS) their available resources as well as to consume and
offload available resources from other operators when needed. The reader should note that the initial
assets to exchange (as described in [4]) were services, but after further discussions, it was decided
that resources were more flexible and closer to the reality of service provisioning in a B5G system.

In other words, we provide a means for:

e QOperators to provide information about themselves (as Provider Endpoints) and their
resources (Resource Endpoints), and to make requests for searching for other available
resources (Search Endpoints) from other operators.

e Oracles to allow automatic interaction with the Smart Pricing for the most suitable service
selection in terms of price, as well as with the Digital Agreement Creator for the generation of
the SLA between operators.

e Creating, signing, and registering SLAs between operators and end-users.

132

L
D6.3 — NANCY Integrated System — Final Version LS & &
\."/

L |
e Equip the system with a decentralized ledger containing the necessary chaincode so that the
former procedures can be realised securely, accountably and with privacy guarantees.

Prerequisites for the workflow:

The key prerequisites are:

e To have at least two providers listed in the marketplace, including their available resources.

e To equip all relevant parties with the NANCY wallet: operators and end-users. As mentioned
in Section 5.1, the NANCY Wallet WALLETGATEWAY creates and holds the DIDs and credentials
for said parties. In addition, the wallet runs a gRPC service to communicate with the
blockchain. As explained in [4], the NANCY wallet gateway has defined specific gRPC methods
to interact with the marketplace (e.g., for listing or searching for resources) and the SLA
Registry (e.g. for signing an SLA).

e To equip the oracles with a wallet so that they can interact with the NANCY blockchain and
subscribe to events.

e Forall parties to be subscribed - through their wallets - to the relevant events. See [4] for more
details:

o Oracles:
= initPricing event
= initSLACreation event
= initSLASignature event
o Others:
= SLAInit event
= SLASigning event

The sequence diagram of the workflow is shown in Figure 56 and will be described analytically in the
following.

133

]
D6.3 — NANCY Integrated System — Final Version e e

Figure 56: SLA creation and Marketplace mediation workflow

Step O (preparation): Both providers and consumers run their wallet service that connects them to
the blockchain which hosts the marketplace smart contract (Figure 57, Figure 58).

134

oo
D6.3 — NANCY Integrated System — Final Version LS & &

r ~/w/E/N/r/dlt-component/g/docker) feature/impl-ssi-client :1 *1 !4 75

— GATEWAY_PORT=5000 GATEWAY UID=provider docker—compose -f docker—-compose-wallet.yaml run ——service-ports ——name provider wal
let-service

[+] Creating 1/@

» Container docker-mongo-1 Running
Wallet service of NonUE starts listening on port 5@00...

mongouri: mongodb://admin:adminpw@mongo:27017/

[main] INFO org.mongodb.driver.client - MongoClient with metadata {"driver" "name" ongo-java-driver|sync |kmongo", "versio
n": "5.5.0"}, "os": {"type": “Linux", "name": "Linux", "architecture": "amd64", "version": "6.10.14-linuxkit"}, "platform": "J
ava/Ubuntu/21.0.7+6-Ubuntu-Bubuntul22.04 |Kot1lin/2.0.8", "env': {"container": {"runtime": "docker"}}} created with settings Mon
goClientSettings{readPreference=primary, writeConcern=WriteConcern{w=null, wTimeout=null ms, journal=null}, retryWrites=true,
retryReads=true, readConcern=ReadConcern{level=null}, credential=MongoCredential{mechanism=null, userName='admin', source='adm
in', password=<hidden>, mechanismProperties=<hidden>}, transportSettings=null, commandListeners=[], codecRegistry=ProvidersCod
ecRegistry{codecProviders=[ProvidersCodecRegistry{codecProviders=[ValueCodecProvider{}, BsonValueCodecProvider{}, DBRefCodecPr
ovider{}, DBObjectCodecProvider{}, DocumentCodecProvider{}, IterableCodecProvider{}, MapCodecProvider{}, GeolsonCodecProvider{
}, GridFSFileCodecProvider{}, Jsr3l18CodecProvider{}, JsonObjectCodecProvider{}, BsonCodecProvider{}]}, org.litote.kmongo.servi
ce.CustomCodecProvider@s@38d@b5, ProvidersCodecRegistry{codecProviders=[org.litote.kmongo.jackson.JacksonCodecProvider@32115b2
8]}1}, loggerSettings=LoggerSettings{maxDocumentLength=1008}, clusterSettings={hosts=[mongo:27017], srvServiceName=mongodb, mo
de=SINGLE, requiredClusterType=UNKNOWN, requiredReplicaSetName='null', serverSelector="null', clusterListeners="[]", serverSel
ectionTimeout="'30000 ms', localThreshold="15 ms'}, socketSettings=SocketSettings{connectTimeoutMS=10000, readTimeoutMS=@, rece
iveBufferSize=8, proxySettings=ProxySettings{host=null, port=null, username=null, password=null}}, heartbeatSocketSettings=Soc
ketSettings{connectTimeoutMS=10000, readTimeoutMS=10000, receiveBufferSize=@, proxySettings=ProxySettings{host=null, port=null
, username=null, password=null}}, connectionPoolSettings=ConnectionPoolSettings{maxSize=100, minSize=0, maxWaitTimeMS=120000,
maxConnectionLifeTimeMS=0, maxConnectionIdleTimeMS=8, maintenanceInitialDelayMS=0, maintenanceFrequencyMS=60000, connectionPoo
lListeners=[], maxConnecting=2}, serverSettings=ServerSettings{heartbeatFrequencyMS=1000@, minHeartbeatFrequencyMS=500, server
MonitoringMode=AUTO, serverListeners='[]"', serverMonitorListeners='[]"'}, sslSettings=Ss1Settings{enabled=false, invalidHostNam
eAllowed=false, context=null}, applicationName='null', compressorList=[], uuidRepresentation=UNSPECIFIED, serverApi=null, auto
EncryptionSettings=null, dnsClient=null, inetAddressResolver=null, contextProvider=null, timeoutMS=null}
[cluster-ClusterId{value="'68db94511@bcac@fec98@adc', description='null'}-mongo:27@17] INFO org.mongodb.driver.cluster - Monito
r thread successfully connected to server with description ServerDescription{address=mongo:27017, type=STANDALONE, cryptd=fals
e, state=CONNECTED, ok=true, minWireVersion=@, maxWireVersion=25, maxDocumentSize=16777216, logicalSessionTimeoutMinutes=38, r
oundTripTimeNanos=25812375, minRoundTripTimeNanos=0}
>>>> Non-UE Wallet <<<<
Create new user in the wallet:
>> Enrollment ID: "nancy-provider-LAqUYpNidzwj8VwUjA36N1"
>> DID: ‘did:nancy:provider-LAqUYpNidzwjBVwUjA36N1"
WARNING: Runtime environment or build system does not support multi-release JARs. This will impact location-based features.
An identity for the admin user 'admin' already exists in the wallet
Successfully enrolled user 'nancy-provider-LAqUYpNid4zwjBVwUjA36N1' with role 'non-UE' and imported it into the wallet
Server started, listening on port 5000...

Figure 57: Start provider wallet service at port 5000 and created DID 'did:nancy:provider-LAqUYpNi4zwj8VwUjA36N1'

— =~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker > feature/impl-ssi-client 21 *1 !4 75 ... « ¢ 10:29:32
‘— GATEWAY_PORT=6@8@ GATEWAY_UID=consumer docker—compose -f docker—compose-wallet.yaml run —service-ports —name consumer wallet-servi
ce
[+] Creating 1/@
» Container docker-mongo-1 Running
Wallet service of NonUE starts listening on port 6860...
mongouri: mongodb://admin:adminpw@mongo:27017/
[main] INFO org.mongodb.driver.client - MongoClient with metadata {“driver": name": "mongo-java-driver|sync|kmongo", "version": "5.5.
0"}, "os": {"type": "Linux", "name": "Linux", "architecture": "amd64", "versi : "6.10.14-linuxkit"}, "platform": “Java/Ubuntu/21.0.7+
6-Ubuntu-@ubuntul22.@4|Kotlin/2.0.0", "env": {"container": {"runtime": "docker"}}} created with settings MongoClientSettings{readPrefer
ence=primary, writeConcern=WriteConcern{w=null, wTimeout=null ms, journal=null}, retryWrites=true, retryReads=true, readConcern=ReadCon
cern{level=null}, credential=MongoCredential{mechanism=null, userName='admin', source='admin', password=<hidden>, mechanismProperties=<
hidden>}, transportSettings=null, commandListeners=[], codecRegistry=ProvidersCodecRegistry{codecProviders=[ProvidersCodecRegistry{code
cProviders=[ValueCodecProvider{}, BsonValueCodecProvider{}, DBRefCodecProvider{}, DBObjectCodecProvider{}, DocumentCodecProvider{}, Ite
rableCodecProvider{}, MapCodecProvider{}, GeolsonCodecProvider{}, GridFSFileCodecProvider{}, Jsr31@CodecProvider{}, JsonObjectCodecProv
ider{}, BsonCodecProvider{}]}, org.litote.kmongo.service.CustomCodecProvider@24959ca4, ProvidersCodecRegistry{codecProviders=[org.litot
e.kmongo. jackson.JacksonCodecProvider@l8289886]1}1}, loggerSettings=LoggerSettings{maxDocumentLength=1800}, clusterSettings={hosts=[mong
0:270171, srvServiceName=mongodb, mode=SINGLE, requiredClusterType=UNKNOWN, requiredReplicaSetName="null', serverSelector='null', clust
erListeners='[]"', serverSelectionTimeout="30000 ms', localThreshold='15 ms'}, socketSettings=SocketSettings{connectTimeoutMS=10@00, rea
dTimeoutMS=0, receiveBufferSize=@, proxySettings=ProxySettings{host=null, port=null, username=null, password=null}}, heartbeatSocketSet
tings=SocketSettings{connectTimeoutMS=10000, readTimeoutMS=10000, receiveBufferSize=8, proxySettings=ProxySettings{host=null, port=null
, username=null, password=null}}, connectionPoolSettings=ConnectionPoolSettings{maxSize=10@, minSize=@, maxWaitTimeMS=120008, maxConnec
tionLifeTimeMS=8, maxConnectionIdleTimeMS=@, maintenanceInitialDelayMS=8, maintenanceFrequencyMS=6000@, connectionPoolListeners=[], max
Connecting=2}, serverSettings=ServerSettings{heartbeatFrequencyMS=10000, minHeartbeatFrequencyMS=500, serverMonitoringMode=AUTO, server
Listeners="[]"', serverMonitorListeners='[]"}, sslSettings=SslSettings{enabled=false, invalidHostNameAllowed=false, context=null}, appli
cationName="null', compressorList=[], uuidRepresentation=UNSPECIFIED, serverApi=null, autoEncryptionSettings=null, dnsClient=null, inet
AddressResolver=null, contextProvider=null, timeoutMS=null}
[cluster—ClusterId{value="68db95442ac7411a1073284d"', description="null'}-mongo:27817] INFO org.mongodb.driver.cluster — Monitor thread
successfully connected to server with description ServerDescription{address=mongo:27@17, type=STANDALONE, cryptd=false, state=CONNECTED
, ok=true, minWireVersion=@, maxWireVersion=25, maxDocumentSize=16777216, logicalSessionTimeoutMinutes=38, roundTripTimeNanos=23464541,
minRoundTripTimeNanos=0}
>>>> Non-UE Wallet <<<<
Create new user in the wallet:
>> Enrollment ID: 'nancy-consumer-55pHm6at6WuwDKHNSBMKTF '
>> DID: 'did:nancy: consumer-55pHm6at6WuwDKHNSBMKZF '
WARNING: Runtime environment or build system does not support multi-release JARs. This will impact location-based features.
An identity for the admin user 'admin' already exists in the wallet
Successfully enrolled user 'nancy-consumer-55pHméat6WuwDKHNSBMK7F' with role 'non-UE' and imported it into the wallet
Server started, listening on port 6000...

Figure 58: Start consumer wallet service at port 6000 an created DID 'did:nancy:consumer-55pHm6at6WuwDKHN5BMK7F'

135

D6.3 — NANCY Integrated System — Final Version &

Step 1: Both provider application and consumer application call the wallet APIs to subscribe to all
SLA events relevant to the user.

The wallet gateway provides subscription to two SLA events: SLAInit and SLASigning. A user can invoke
his wallet gateway with gRPC method SubscribeToSLAInit and SubscribeToSLASigning to subscribe
these two events respectively (Figure 59).

— ~/work/EU_Projects/NANCY/repo/dlt—-component/gateway/docker » feature/impl-ssi-client t . 10:33:43
— grpcurl —-plaintext localhost:5000 dlt.DltGatewayService/SubscribeToSLAInit

— ~/work/EU_Projects/NANCY/repo/dlt—-component/gateway/docker » feature/impl-ssi-client t . 10:33:55
— grpcurl -plaintext localhost:5000 dlt.DltGatewayService/SubscribeToSLASigning

— ~/work/EU_Projects/NANCY/repo/dlt—-component/gateway/docker » feature/impl-ssi-client t . 10:34:29
— grpcurl -plaintext localhost:6000 dlt.DltGatewayService/SubscribeToSLAInit

— ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client t . 10:34:37
— grpcurl —plaintext localhost:6000 dlt.DltGatewayService/SubscribeToSLASigning

Figure 59: Call both provider and consumer wallet to subscribe to SLA events

Step 2: Provider application calls its wallet to create a new provider profile (CreateProvider) on the
marketplace in blockchain (Figure 60). The provider ID must be an existing DID in the wallet.

— =~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker ; feature/impl-ssi-client t1 *1 14 ?5 v { 14:53:18
— grpcurl —plaintext -d alue": "{\"id\": \"did:nancy:provider-LAqUYpNid4zwjB8VwUjA36NI\", \"name\": \"orange\", \"type\":\"publisher
\", \"available_resources\":60}"}"' localhost:5000 dlt.DltGatewayService/CreateProvider

“value": "{\"id\":\"did:nancy:provider-LAqUYpNidzwj8VwUjA36N1\",\"model_type\":\"nancy_provider\",\"model_version\":\"@.2.0\",\"owner
\":\"795eb927e23fdf913f55f@8f93bdbd2c6c71036b97aef843cIbadf0503fd5bd14\" , \"mspi_id\":\"0rgIMSP\",\"timestamp\":1759222889,\"name\" :\"ora
nge\",\"type\":\"publisher\",\"available_resources\":60}"

}

Figure 60: Provider creates a provider profile on marketplace

Step 3: Provider application calls its wallet to create a new service profile under the previous created
provider profile in the blockchain (Figure 61). The provider ID of the new service must match an
existing provider ID.

— =~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client t1 *1 !4 75

— grpcurl —-plaintext -d '{"value": "{\"provider_id\": \"did:nancy:provider-LAqUYpNidzwjBVwUjA3BNI\", \"cpu\": 4, \"ram\
n\": \"madrid\", \"storage\": 60, \"maximumULthroughput\": 34, \"maximumDLthroughput\": 56, \"minPrice\": 4@, \"maxPrice\":
alhost:5080 dlt.DltGatewayService/CreateService

{

"value": "{ "be9d9b15968946718c4d6920ded3c991551cbcfdbecd3cbabeec76a886b4f87a5e\" , \"model_type\" nancy_service\",\"model_versi
on\":\"8.2.0\",\"owner\ '795eb927e237df913f557@T93bdbd2c6c71036b97aeT843cIbad @583 fdSbd14\ ", \"mspi_id\":\"0rglMSP\",\"timestamp\":175
9223071, \"provider_id\' did:nancy:provider-LAqUYpNid4zwjB8VwUjA36BN1I\" ,\"cpu\":4,\"ram\":6,\" location\":\"madrid\",\"storage\" :60, \"maxi
mumULthroughput\":34,\"maximumDLthroughput\":56,\"minPrice\":40,\"maxPrice\":120}"

}

Figure 61: Provider application creates a new service profile through its wallet

Step 4: Consumer application calls its wallet to create a new search in the marketplace given the search
criteria (Figure 62).

When the marketplace finds multiple services that match the search criteria, the smart pricing service
is triggered to find the winner service with a suggested price, then the DAC service is triggered to

L __|
136

D6.3 — NANCY Integrated System — Final Version

create an initial SLA with the corresponding service for the consumer. The created SLA triggers an
SLAInit event that will be received by all subscribers, and in this case, both the provider and consumer
wallet service (Figure 63).

r ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker » feature/impl-ssi-client t1 *1 !4 75 < 3s { 11:04:35

— grpcurl —plaintext -d *{"value": "{\"consumer_id\": \"did:nancy:consumer-55pHm6at6WuwDKHNSBMK7F\", \"service_query\": { \"cpu\": { \
"$gt\": 1}}, \"provider_query\": {\"available_resources\": {\"$gt\": 40}}}"}"' localhost:5000 dlt.DltGatewayService/CreateSearch

{

"value": "{\"id\":\"e80bf2e8afadah78308625e84011f6c7cbeabcbbl9alb651fa923dblfbd5f68a\", \"model_type\ 'nancy_search\",\"model_versio
n\":\"@.1.2\",\"owner\" :\"795eb927e23fdf913f55f@8f93bdbd2c6c71036b97aef843cIbadf@503fd5bd14\" ,\"mspi_id\" :\"0rglMSP\",\" timestamp\":1759
t\"PRICE\",\"services\": [{\"id\":\"1864675179386ae4T996d04bab547d277b3d@86393d4d956ad@5cd57ffbfa12d\", "mndel _type\
"nancy_service\",\"model_version\":\"@.2.0\",\"owner' "cﬁbcﬂBcBeldeHcZB?fSa?aBacEefBafh9d32c24ddaS424Ehddh2599ach429211\
:\"0rglMSP\ i 11753263791, \"provider_id\":
"location\":\"kozani\",\ stnrage\":166.\"maximumULthrnughput\":180,\"maximumDLthroughput\"' 00, \"minPrice\ :108,\"maxPrice
d\":\"35c8f3d473cd73e729fedal6bal5c44588351eB3d1ab4Bfaef749e926437e93c\", \"model_type\":\"nancy_service\",\"model_version\
\'"f6e71aB2a728287dd13b286e22b649c691d2016576ebb393e89c9a9196@3ef17\" ,\"mspi_id \"0rglMSP\",\"timestamp\":1753271857,\"provid
id:nancy: holder—YSEHr2xoakJ31thKZuﬁlz\" \"cpu\":123 1123 i :\"ithaca\",\"storage\":18,\"maximumULthroughpu
ximumDLthroughput\":10,\"minPri i 41203282d3d12c55e76ec685947d4965059077edb298e83405135be8
d20118\",\"model_type\' nancy_service\" \"mudel version\" 8.2.0\",\"owner fée71a82a728287dd13b286e22b649c697d2016576ebb393e89c9
a9f9603ef17\",\"mspi_id\":\"0rgIMSP\",\" timestamp\" :1758715228,\"provider_id\":\"did:nancy:holder-YSEHr2XoakJ3iqbYKZu8iz\",\"cpu\":15,\
"ram\":15,\"location\":\"kozani\",\"storage\":15, \"maximumuLthroughput\":15, \"maximumDLthroughput\":15,\"minPrice\":5,\"maxPrice\" :50},
al’7e4d771ae2aa9%cdde463bb81b38e2c2c2b@1323eaf@622bb4276daar223b8\", \"mode1_type\" :\"nancy_service\",\"model_version\":\"@.2.0
"'f6e71a82a728287dd13b286e22b649c697d2016576ebb393e89c9a9f9603ef17\",\"msp d\ '0rg1MSP\",\"timestamp\" :1758715453,\"pr
:\"did:nancy:holder-YSEHr2Xoak]3iqbYKZuBiz\" pu\":5,\"ram\":5,\"location\":\"kozani2\",\"storage\":5, \"maximumULthroughpu
\":5,\"maximumDLthroughput\":5,\"minPrice\":1,\"maxPr. 513487ab62497630a7ce9d256c44dc5f71d9af3a28ccd11aal@87211ceclba
1c\",\"model_type\":\"nancy_service\",\"model_version\":
683ef17\",\"mspi_id\":\"0rglMSP\",\"timestamp\":1758716528,\"provider_id i i i :20,\"ram
\":20, \"lncat1on\'. kozani2\",\"storage\":20,\"maximumULthroughput\":2@,\ max1mumDLthrnu hput\":20, \"m1nPr1ce\" 5\ maxPrlce 6}, {\"1i
c1878241e15fe8cabca69851b218ce98f@dd38399dalc@lbedb6c5455b\", \"mode1_type L ", \"model_version\ 2.\",\
thcchBeldeScZB?f8a7a3ac6ef9afbada2c24dda54246bddb2599acb429211\" \"mspl id\" \"tlmestamp\" 1753262780, \"provid
id:nancy:wallet-external-test-3EtvHYvKEDF4JAWPproLvS\",\"cpu\":10, \"location\":\"kozani\",\"storage\":100,\"maxim
umULthroughput\" 100, \"maximumDLthroughput\":10@,\"minPrice\":10@,\"maxPrice\": BUU} {\"id\":\"747d8753c1df2959ed fd@9baabd f2683d087444b
3f50ceb3bB8531dcb6876T69a\", \"mode1_type\":\"nancy_service\",\"model_version\":\"@8.2.0\",\"owner\":\"d01820e9b4c06f9255d4825509ee45088e
20083db47c1703d361347844ef6f7\", \"mspi_id\":\"0rglMSP\",\"timestamp\":1751538155, \"provider_id\":\"did:nancy:holder-ArXjUAtfhuNHAkmBe8p
LBg\",\"cpu\":4 \"ram\" 6,\"location\":\"madrid\",\"storage\":6@, \"maximumULthroughput\" :34,\"maximumDLthroughput\":56,\"minPrice\":4@,
\"maxPric },{\"1id\":\"7b8893e97c5f72182a794ea3f96545d4dbbf8ab5b8517c3c637ecfch5c046197\", \"model_type\":\"nancy_service
\"0rglMsP\",\"timestamp
ozani2\",\"storage\":10
967028ce57e25d51e6fae97d4e@870bdcf 064
5d5f773765eB4h763c234112h3\" \"model_type\":\"nancy_ serv1ce\" \ ion\' 2. "f6e71a82a728287dd13b286e22b649¢c69
fd2016576ebb393e89c9a97f9603ef17\", \"mspi_id\ "0rglMSP\", \"tlmestamp\" 1758716642, \"provider_| id:nancy:holder-YSEHr2XoakJ3igbYK
ZuBiz\",\"cpu\":20,\"ram\":208,\" location\":\"kozani2\",\"storage\" :20, \"maximumULthroughput\":20,\"maximumDLthroughput\":2@,\"minPrice\
":89,\"maxPrice\":95},{\"id\":\"9cf2e3cfb662670T4c51f@fc2c4af18f48TaBb39c4542b6e357e@3bb912493ad\", \"model_type\":\"nancy_service\",\"m
odel_version\":\"@.2.@\",\"owner "f6e71aB2a728287dd13b286e22b649c69Td2016576ebb393e89c9a9796@3ef17\", \"mspi_id\" rglMsP\",\"times
tamp\":1758715446,\"provider_id\' did:nancy:holder-YSEHr2Xoak]3igbYKZu8iz\",\"cpu\":5,\"ram\":5,\" location\" :\"kozani\",\"storage\":5
»\"maximumULthroughput\":5, \"maximumDLthroughput\":5,\"minPrice\":1,\"maxPrice\": i be1293660b7121e18801bd3796753993e1d116deb
96a9ba@69a4492cd9852b91\", \"mode1_type\ ‘nancy_service\",\"model rsion\": 2. ’ "f6e71la82a728287dd13b286e22b649c697d2
016576ebb393e89c9a9f9603ef17\", \"mspi_id\":\"0rg1MSP\",\"timestamp\":1758715817, \"provider_id\ id:nancy:holder-YSEHr2Xoakl3igbYKZu8
iz\",\"cpu\ 20,\"location\":\"kozani2\",\"storage\":20,\"maximumULthroughput\":20,\"maximumDLthroughput\":20,\"minPrice\":3
5,\"maxPrice\":50}, {\ :\"be9d9b15968946718c4d6928ded3¢c991551cbcfabcd3cbabec76a886baf87a5e\", \"'model_type\":\"nancy_service\",\"mode
i 795eh927e23fdf913f55fElf93bdhd2c6c71636h973efﬂ43c9badf9593fd5hd14\" \"mspi_id \"OrglMSP\" ,\"ti
6,\"location\":\"madrid\",\"storage\":60
N max1mumULthroughput\ 34 \"max1mumDLthrnughput H :\"d1cb®3426c283a7c3127b4ccbe3183babbd4
12e1d1c85930a99289782b911bc5\", \"model_type\": i i S i HAS B.2.B\",\"nwner ":\"c6bc@9cBelde8c297fBa7a3ac6ef9af
b@da2c24dda54246bddb2599acbh429211\" , \"mspi_id\ ,\"timestamp\"':1753263645,\"provider_id\":\"did:nancy:wallet-external-test-3
EtvHYVKEDF4JAWPproaLvs\",\"cpu\":10,\"ram\":10,\" location\" :\"kozani\", \"storage\":100, \"maximumULthroughput\" :100, \"maximumDLthroughput
H :\"e23478elc3bdda7a2424262648574e50042492795b35210067 ce44a40Tb538c7\",\"model type\"
- 1 . TBZB?ECCZblf227fbladaBEB?ﬁbﬁBeBfc572ec53744f?4f93e429fﬂfd00f34f\"
timestamp\ i i : nancy:holder-XqBYPMMmBH4u7Pyd3puFCG\ g :10,\ locatlon\" \
"myservice\",\"storage\":10, \"maximumULthroughput\":18,\"maximumDLthroughput\":1@,\"minPrice\":18,\ maxPrice\" 8}, {\"id\":\"e48a586318
fff14c65287cb871b83ec17c19f94549del32dea3d480d1dd4fec7\", \"model_type\" :\"nancy_service\",\"model rsion\":\"0.2.0\",\"owner
a82a728287dd13b286e22b649c697d2016576ebb393e89c9a9f0603ef17\", \"mspi_id\":\"0rglMSP\",\" timestamp 1758716409,\ -
ncy:holder-YSEHr2XoakJ3igbYKZu8iz\",\"cpu\":2@,\" ram\":20,\" location\":\"kozani2\",\"storage\" : 28, \"maximumULthroughput\" :2@, \"maximumD
Lthroughput\":20,\"minPrice\":1,\"maxPrice\":15},{\"id\":\"fladf@7a9631b590a630acBbadB75466de6d6643e95add9ef4c971f432B9839\", \"model_t
\"model_version\":\"@.2.0\",\"owner\":\"c6bc@9cBeldeBc297fB8a7a3ac6ef9afb@da2c24dda54246bddb2599acb429211\",\" ms
,\"timestamp\":1751879113, \"provider_id\ id:nancy:wallet-external-test-3EtvHYvKEDF4JAWPpraLvS\",\" cpu\":4,\" ram\
location\":\"madrid\",\"storage\":60,\"maximumULthroughput\":34,\"maximumDLthroughput\":56,\"minPrice\" :40, \"maxPrice\ 20},{\"1
.\"ff652685:245d976613967TBaUBedBeﬂﬁcbbBEB4c2cc5ca1dffac51fd53be195\" \"model type\" \"nancy_service\", \"model _version\": ", \
b182d1528b3ef@@5346bbal86b2fe35b93cd6bacecacad4aBf24d@2f299d8524\", \"mspi_id g1MSP\",\"timestamp\":1752227569, \"pro id
id:nancy:test2-MfWtb2roRnCj918k6BxtFI\",\"cpu\":4,\"ram\" :6,\"location\" :\"madrid\", \"storage\":60,\"maximumULthroughput\":3
\"max1mumDLthrnughput\" 56,\"minPrice\":40,\"maxPrice\":120}],\"consumer_id\":\"did:nancy: consumer-55pHm6at6WuwDKHNSBMK7F\" ,\"pric
\"inull, \"sla\":null}"
}

Figure 62: Consumer creates a search on the marketplace which returns matched services

137

-2
2y \
>y
i)

0-%

zae
\

D6.3 — NANCY Integrated System — Final Version

(¢]

Y

> /

N

— ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client 1 *1 !4 7?5
— grpcurl —-plaintext localhost:5000 dlt.DltGatewayService/SubscribeToSLAInit
{

“"name": "InitSLA",

"payload {\"1d\ " a\"292\ ", \"value\" :\"{\\\"service_id\\\":\\\"fladf@7a9631b590a630ae@bhadB875466de6d6643e95add9ef4c971f432789839\\\",\\\"pro
vider_id\\\":\\\"did:nancy:wallet—external-test-3EtvHYVKEDFAJAWPproLvS\\\", \\\"price\\\":74.12, \\\"1d\\\" 1\ NN 2920\ ", \\\ " consume r_id\\\" s\ \\"
did:nancy: consumer-55pHm6at6WuwDKHNSBMK7FA\\" , \\\"hash_smartcontract\\\" :\\\"@x2424353\\\",\\\"service_description\\\": [{A\W\"1d\\\" 1AWV,
\\"model_typed\\" : AW\, AN 'mode 1_version\ A\ s AN WA, AN Towne i SR A" mspd_1d A AW, A\ timestamp\\\" 1@, \\\"provider_id\
\i\\\"did:nancy:wallet-external-test-3EtvHYVKEDF4JAWPproLvS\AN", \\N" cpud A" 10, \\\" ram\\\" 1@, \\\ " Location\\\" i VA VAN, A\ storage\\\ "1 @, \\\"
maximumULthroughput\\\":@, \\\"maximumDLthroughput\\\":@,\\\"minprice\\\":40,\\\"maxprice\\\":120}] }\" ,\"provider_i \"did:nancy:wallet
nal-test-3EtvHYVKEDF4JAWPproLvS\",\"consumer_id\" did:nancy: consumer-55pHm6at6WuwDKHNSBMKZF\" ,\"provider_sig\ consumer_sig\"

}

r ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client r1 *1 !4 75 v ¢ 10:33:55
— grpcurl -plaintext localhost:5000 dlt.DltGatewayService/SubscribeToSLASigning

— ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client 1 *1 !4 7?5
— grpcurl —-plaintext localhost:6008 dlt.DltGatewayService/SubscribeToSLAInit
{

A\ model_typed\\" i\ \NANY, A\ "mode 1_version\ A" AW ANV owne rV A i\ i i »\\\"provider_id\
AR torage\\\":0,\\\"
maximumULthroughput\\\":@,\\\"maximumDLthroughput\\\":@,\\\"minprice\\\":40,\\\"maxprice\\\":120}] }\" ,\" provider_ did:nancy:wallet-exter
nal-test-3EtvHYVKEDF4JAWPproLvS\",\"consumer_id\": id:nancy: consumer-55pHm6at6WuwDKHNSBMK7F\" ,\" provider_sig\": consumer_sig\" :\"\"}"
}

r ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client 1 *1 !4 75 v { 10:34:37
— grpcurl -plaintext localhost:6000 dlt.DltGatewayService/SubscribeToSLASigning

Figure 63: Both provider and consumer received notification of new SLAInit event with SLA_1D=292

Step 5: After the reception of the SLAInit event, the provider or consumer application checks the SLA
content, and if they agree on the contents of the SLA, it calls the wallet service to sign the SLA (slaSign)
providing the slald and their DIDs (Figure 64).

The wallet signs the SLA and provides the signature to the SLARegistry smart contract. If the signature
validation is successful, an SLASigning event is emitted to subscribers who can review the signed SLA
(Figure 65).

138

Ny’
D6.3 — NANCY Integrated System — Final Version LS & &

r ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker ; feature/impl-ssi-client 11 *1 !4 75 v ¢ 11:20:53

‘— grpcurl —plaintext —d "{"value": "{\"slaId\": \"292\", \"uid\": \"did:nancy:consumer- 55pHm5atEWuwDKHNSBMK7F\"}"}' localhost:6000 dl
t.D1ltGatewayService/SlaSign

{}

Figure 64: Consumer signs the SLA ID=292

— ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker » feature/impl-ssi-client :1 *1 !4 75 cee cee cee v < 10:33:43
— grpcurl —plaintext localhost:500@ dlt.DltGatewayService/SubscribeToSLAInit
{

id:nancy:wallet-external-test-3EtvHYvkEDF4JAWPproLvS\\\" ,\\\"price\\\":

—-55pHméat6WuwDKHNSBMKZFANN", \\\"hash_smartcontract\\\" :\\\"@x2424353\ | N

AN AN mode1_version\ A" ANV NN, A\ owne r\\ AN AN mspd_1d\\) imestamp\\\":0,\\\"provider_id\
M\ "did:nancy:wallet-external-test-3EtvHYVKEDFAJAWPpraLvS\AN", \\\"cpud i\ 1@, \\\ " ram\\\" : 8, \\\" Llocation\\\" s AW\, W\ storage\\\ " 1 0, \\\"
maximumULthroughput\\\":@,\\\"maximumDLthroughput\\\" :@,\\\"minprice\\\":40,\\\"maxprice\\\":120}] }\",\"provider_id\":\"did:nancy:wallet-exter
nal-test-3EtvHYVKEDF4JAWPproLvS\",\"consumer_id\" :\"did: nancy: consumer-55pHm6at6WuwDKHN5BMK7F\" ,\"provider_sig\": consumer_sig\" :\"\"}"

292\",\"value\" :\"{\\\"service_id\\\":\\\"f1ladf87a9631b590a630aclbasB75466de6d6643e95add9ef4co711432789839\\\", \\\"pro
vider_id\\\":\\\"did:nancy:wallet-external-test-3EtvHYvKEDF4JAWPpraLvSA\\\" , \\\"price\\\" 174,12, \\\"2d\ W\ ANV 2920\\ ", W\ consume r_id\\\ " s\ A"
did:nancy: consumer-55pHm6at6WuwDKHNSBMKZF\N\", \\\"hash_smartcontract\\\" :\\\"0x2424353\\\",\\\"service_description\\\": [{\\\"1d\ AW\ s AW\,
\\"mode1_type\\\" :\\ VN, N\ mode 1_version\\\" i\ \\"\\\", \\\"owner\\ AN N mspd VA SN W\ times tamp\\\": @, \\\"provider_id\
MW\ "did:nancy:wallet-external-test—3EtvHYVKEDF4JAWPproaLvS\\\", \\\ " cpul\\\" 18, \\\ " ram\\\" 1 @, \\\" Location\\\" s\ AN\ WY, W\ "storage\\\ "1 @, \\\"
maximumULthroughput\\\":0,\\\"maximumDLthroughput\\\":@,\\\"minprice\\\":40,\\\"maxprice\\\" :120}] }\" ,\"provider_id did:nancy:wallet-exter
nal-test-3EtvHYVKEDF4JAWPproLvS\",\"consumer_id\":\"did:nancy: consumer-55pHméat6WuwDKHNSBMK7F\" ,\"provider_sig\":\"\",\"consumer_sig\":\"152ed
9856ea73@faf3e8leda7dcfc7482cdbldlc@fe715697b9a@62b1d5995b8\ "}
}

— ~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker) feature/impl-ssi-client :1 *1 !4 ?5 v ¢ 10:34:29
— grpcurl —plaintext localhost:6008 dlt.DltGatewayService/SubscribeToSLAInit

“name": "InitSLA"

\"292\", \"value\" :\"{\\\"service_id\\\":\\\"fladf@7a9631b590a630aedbadB75466de6d6643e95add9eT4c9717432789839\\\" ,\\\"pro
\\\"did:nancy:wallet-external-test-3EtvHYvkEDF4JAWPproLvS\ Uprice\\\" 74,12, \\N" 1\ ANV 2920\, \\\ " consume r_id\

did: nancy consumer-55pHm6at6WuwDKHNSBMK7F\\\", \\\"hash_smartcontract\\\" :\\\"0x2424353\\\" ,\\\"service_description\\\": [{\\\"1d\ A\ s\ AN\ N
A\ mode1_type\\\ " AN\ A\ mode T_version\\\" i\ W\, VM owner\\ AN NN mspd_d\VAN AW W\ times tamp\\\": 0, \\\"provider_id\
AL nancy:wallet-external-test—3EtvHYVKEDFAJAWPproLvS\\\", \\\" cpu\\\" :@, \\\" ram\\\" : @, \\\" Location\\\" :\AV" NN, \\\"storage\\\":@, \\\"
maximumULthroughput\\\":@,\\\"maximumDLthroughput\\\":@, \\\"minprice\\\":40, \\\"maxprice\\\" :120}] I\", \"provider_id\":\"did:nancy:wallet—
nal-test-3EtvHYvKEDF4JAWPproLvS\",\"consumer_id\" did:nancy: consumer-55pHm6at6WuwDKHNSBMK7F\" ,\"provider_sig\" :\"\",\" consumer_sig\":\

}

— =~/work/EU_Projects/NANCY/repo/dlt-component/gateway/docker » feature/impl-ssi-client 1 *1 !4 75 s s s v ¢ 10:34:37
— grpcurl —plaintext localhost:6000 dlt.DltGatewayService/SubscribeToSLASigning
{

"name" :

"'payload i 292\", \"value\" :\"{\\\"service_id\\\":\\\"fladf@7a9631b590a630ac0bad875466de6d6643e95add9ef4c971f43289839\\\" ,\\\"pro
vider_id\\\":\\\"did:nancy:wallet-external-test—3EtvHYVKEDF4JAWPproLvS\\\" ,\\\"price\\\":74.12, \\\"1d\\\" 1\ \\"292\\\", \\\ " consume r_id\\\ " s\ \\"
did:nancy: consume r-55pHm6at6WuwDKHNSBMKZF\\\", \\\"hash_smartcontract\\\" :\\\"0x2424353\\\",\\\"service_description\\\": [{}\\"id\\\" s\
A\model_type\ W\ ANV WY A\ mode 1_versionh A\ iAWY, A owne AT SN ANV mspa_2d N AN AN\ times tamp\ A\ 1@, \\\"provider_id\
\W'i\\\"did:nancy:wallet-external-test-3EtvHYVKEDF4JAWPproLvS\\\", \\\"cpul\\\" 18, \\ " ram\\\" 1@, \\\ " Location\\\" s \ AN\, W\ "storage\\\ "1 0, \\\"
maximumULthroughput\\\":@,\\\"maximumDLthroughput\\\":@,\\\"minprice\\\":40,\\\"maxprice\\\" :120}])\",\"provider_id did:nancy:wallet-exter
nal-test-3EtvHYVKEDF4JAWPproLvS\",\"consumer_id\" :\"did:nancy: consumer-55pHm6at6WuwDKHNSBMK7F\" ,\"provider_sig\":\"\",\"consumer_sig\":\"152ed
9856ea73@far3eBleda7dctc7482cdbld1c@fe715697b9a@62b1d5995b8\ "}

}

Figure 65: Both parties receive the SigningSLA event and SLA id=292 now has the consumer signature.

Inside the marketplace, two different kinds of operations take place:

e The first one is related to the registration of operators and services, which should be done as
a starting point for the interdomain flow. The marketplace receives the CreateProvider or
CreateService requests from the operators’ wallets to register the details of the available
operators and services.

e The second one is related to the new service search in an offloading process. The marketplace
receives the CreateSearch request from the operator wallet to search for a suitable available
service to offload its current service to. Internally, there are the following different steps:

o The NANCY marketplace first searches among the registered services and operators
to find those whose features fullfill the requirements defined in the request.

o Once the suitable services are identified, the marketplace makes a price request to
the Smart Pricing. The Smart Pricing calculates the most suitable service in terms of

139

]
D6.3 — NANCY Integrated System — Final Version e e

price as well as the suitable price. More details are gathered in [13]. This information
is sent as response to the marketplace.

o The service identified by the Smart Pricing is the one to be considered for the
offloading process. At this point, the marketplace obtains all the details about the
selected service and sends them to the Digital Agreement Creator in an SLA creation
request. Besides, the requester operator details are also sent in the request.

o The Digital Agreement Creator generates the SLA and sends it back to the
marketplace.

o The marketplace receives the SLA and sends it to the SLA Signature smart contract for
the signature management by the two involved operators: the requester and the one
operating the identified service.

140

Ny’
D6.3 — NANCY Integrated System — Final Version LS & &
N

6. Conclusions

NANCY develops a secure and cutting-edge framework for Beyond 5G (B5G) wireless networks by
integrating advanced technologies such as Artificial Intelligence, Blockchain, Quantum-safe
technologies, MEC, and Orchestration. Its goal is to enable intelligent and secure resource
management, adaptive networking, and enhanced orchestration performance.

This deliverable builds upon the results reported in [1] and [2] to provide the final version of the
NANCY integrated system. It presents the specifics of the interconnection among NANCY operational
domains and the testbeds/demonstrators, emphasizing the flexible instantiation of relevant NANCY
components for different demonstration use cases. Detailed descriptions of the functional and
integration test execution specifications and results for the final set of NANCY bilateral integration
points are also provided. Finally, selected end-to-end validation workflows are described, including
their specifications and corresponding results. These workflows serve to validate the readiness of the
corresponding operations taking place among the different NANCY operational domains: Central
Management, Inter-operator and testbeds/demonstrators. As described in section 5, these workflows
are largely horizontal (i.e., replicated) across the different testbeds/demonstrators. D6.10 will extend
this work by providing a comprehensive description of the NANCY final Pilots, namely the Italian
Massive loT, Spain Outdoor, and Greek Outdoor, together with the final validation and evaluation
results. The latter will also build upon the defined evaluation methodology and the detailed planning
of the final demonstrations, as outlined in [3].

141

Y]
D6.3 — NANCY Integrated System — Final Version LS
N

Bibliography

[1] NANCY Consortium, "D6.1: B-RAN and 5G End-to-end Facilities Setup," 2024.
[2] NANCY Consortium, "D6.2: NANCY Integrated System — Initial Version".

[3] NANCY Consortium, "D6.9: Outdoor Demonstration Planning, Evaluation Methodology and
KPls," 2025.

[4] NANCY Consortium, "D5.2: NANCY Security and Privacy Distributed," 2024.

[5] NANCY Consortium, "D4.3: Trustworthy Grant/Cell-free Cooperative Access Mechanisms,"
2025.

[6] NANCY Consortium, "D5.3: Self-healing and Self-recovery Mechanisms".
[7] NANCY Consortium, "D3.1: NANCY Architecture Design," 2024.

[8] NANCY Consortium, "D3.4: NANCY Al virtualiser," 2025.

[9] NANCY Consortium, "D2.2: NANCY Experimental-Driven Modelling," 2025.

[10] NANCY Consortium, "D4.4: Semantic & goal-oriented communication schemes for beyond
Shannon performance," 2025.

[11] NANCY Consortium, "D5.1: Quantum Safety Mechanisms," 2024.
[12] NANCY Consortium, "D4.1: Computational Offloading and User-centric Caching," 2024.
[13] NANCY Consortium, "D4.5: Smart Pricing Policies," 2024.

[14] "MAESTRO Service Orchestrator," [Online]. Available: https://maestro-
mkdocs.readthedocs.io/en/latest/ . [Accessed 17 10 2025].

[15] "OpenSlice," [Online]. Available: https://osl.etsi.org/. [Accessed 17 10 2025].
[16] NANCY Consortium, "D4.2: Resource Elasticity Techniques," 2024.
[17] NANCY Consortium, "D3.2: NANCY Network Functionalities," 2024.

[18] NANCY Consortium, "D3.3: NANCY Al-based B-RAN Orchestration," 2024.

[19] "NAOMI," [Online]. Available: https://github.com/sensorlab/NAOMI. [Accessed 24 01 2025].

[20] NANCY Consortium, "D2.3: NANCY Network Information Framework," 2025.

[21] "Colosseum O-RAN COMMAG Dataset," [Online]. Available:

https://openrangym.com/datasets/colosseum-o-ran-commag-dataset. [Accessed 30 10 2025].

[22] NANCY Consortium, "D5.4: NANCY Explainable Al Toolbox," 2025.

142

