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Executive summary 
This deliverable presents the development and implementation of a comprehensive Network 
Information Framework (NIF) tailored specifically to help users assess and optimize Blockchain-based 
Radio Access Networks (B-RANs) across diverse deployment environments. Central to this initiative 
was the creation of three advanced AI-driven predictive models targeting key network performance 
indicators: coverage probability, outage probability, and network latency. 

The Coverage Probability Prediction Model was trained on datasets reflecting realistic urban 
environments, ensuring its effectiveness in predicting the reliability and reach of network coverage 
within densely populated areas. One of the datasets used by the model was produced by NANCY at 
the University of Murcia’s 5G deployment. Meanwhile, the Outage Probability Prediction Model 
capitalized on the established and robust urban Colosseum dataset [1], known for its precise 
simulation of urban network disruptions, to enhance the accuracy of predictions regarding network 
outages. 

The Latency Prediction Model evaluates the performance implications of various blockchain 
consensus mechanisms. It was developed and validated using datasets derived from four distinct 
blockchain consensus protocols, providing comparative insights and decision-making capabilities in 
selecting consensus strategies aligned with performance goals. In order to have a more complete 
analysis, the trade-offs between complexity and security have also been assessed and documented. 

The developed AI models have been integrated into an interactive web-based platform, enabling users 
to upload datasets, execute predictions, and conduct immediate network performance evaluations. 
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1. Introduction 
B-RANs represent a novel integration of blockchain's decentralized security and control mechanisms 
into wireless network architectures. As wireless networks face increasing complexity and higher 
performance demands, robust predictive frameworks are crucial for accurate and reliable 
performance assessments [2]. This deliverable introduces a NIF equipped with AI-driven predictive 
models designed specifically to quantify coverage probability, outage probability, and blockchain-
induced network latency in B-RAN environments. 

1.1. Purpose of the Deliverable 

This deliverable aims to document the development and validation of the NIF developed under T2.3 
‘Network Information Framework Development’and its corresponding AI-driven predictive models, 
specifically focusing on the three aforementioned key performance metrics, within B-RAN 
configurations. The training of these models is demonstrated using real-world datasets that are 
representative of typical urban environments and diverse blockchain consensus mechanisms. The 
mathematical foundations and machine-learning workflows are detailed, and the integration of these 
models into a user-friendly web platform is outlined. Through this platform, custom network 
parameters can be uploaded, consensus configurations can be selected, and instant performance 
assessments can be obtained by network engineers and researchers, allowing for data-driven planning 
and optimization. Ultimately, both a theoretical exposition of the modelling approach and practical 
guidance for employing the NIF to evaluate and enhance B-RAN deployments are provided. 

1.2. Structure of the Document 

This deliverable is structured in a systematic manner to provide a thorough and coherent overview of 
the work conducted throughout T2.3 ‘Network Information Framework Development’. The document 
consists of seven main sections, each focusing on a specific area of the task and collectively offering a 
complete perspective on the research, methodologies, evaluations, and outcomes. 

The deliverable structure is as follows: 

• Section 2 - NIF Overiew provides the fundamental aspects of the NIF. It explores the 
architecture of the framework, its placement within the NANCY platform, and the 
functionalities of the graphical user interface (GUI). This section establishes the technical 
foundation for understanding how the NIF integrates into the broader ecosystem and the 
significance of its design. 

• Section 3 – Coverage Probability Prediction documents the development of the coverage 
probability prediction model, along with the data collection and training approaches. 

• Section 4 – Outage Probability Predection discusses the coverage outage prediction model, 
as well as the data collection and training approaches. 

• Section 5- Latency Prediction describes the model used to predict the blockchain-induced 
latency, the data collection method, and the training approach. 

• Section 6- Performance Evaluation is devoted to evaluating the aforementioned models. It 
includes a comprehensive evaluation of the performance of individual models, which is 
conducted using both quantitative data and mathematical foundations such as point 
processes. The section also examines the trade-off between security and complexity in 
consensus mechanisms. 

• Section – 7 Conclusion provides a synthesis of the key findings and concludes the deliverable. 
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2. NIF Overview 

2.1. NIF Architecture 

2.1.1. Architectural components 

NIF’s architecture (Figure 1) is designed to be highly modular, interactive, and user-centric, ensuring 
that each component contributes meaningfully to a seamless user experience and robust analytical 
capability. The architecture integrates several interdependent modules, each having a specific role that 
supports secure access, efficient data processing, predictive modelling, and insightful visualizations. 

 

Figure 1: NIF’s Architecture 

At the foundation of the system lies the Authentication Module, which governs secure access to the 
platform. This module ensures that only verified users interact with the system’s functionalities. It acts 
like the first point of entry, employing protocols such as credentials for safeguarding data and 
preventing unauthorized access. This is particularly crucial in operational settings where data integrity 
must be preserved. 

Once authenticated, the user interacts primarily through the User Interface (UI). This interface is 
designed for accessibility and efficiency, enabling both novice and expert users to navigate the system 
with ease. Through the UI, they can perform many actions: upload datasets from testbeds, configure 
the scope of analysis, and see the output predictions of the models generated. UI plays a critical role 
in simplifying analytical workflows, offering intuitive controls and guidance that help users at each 
step. 

Data ingestion is being handled by the Data Import Module, which manages user-uploaded datasets. 
This module supports a variety of data formats, including CSVs and JSONs, making it compatible with 
experimental and simulation datasets. 

After successful uploading, the data is stored persistently in the Database, a central repository 
underpinning the whole framework. The database ensures all imported data, along with metadata and 
configurations, is stored in a structured manner. The database also serves as a source for feeding the 
data into the predictive engines. 
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At the NIF’s core lie the Predictive Models, a group of AI models developed to quantify network 
metrics. These include: 

• The Blockchain Latency Prediction Model, which estimates delays in the network under 
multiple consensus mechanisms. 

• The Coverage Probability Prediction Model, which estimates network signal coverage in urban 
areas. 

• The Outage Probability Prediction Model, which calculates the service interruptions 
probability based on real-world data. 

These predictive models' outputs are routed into the Visualization Module, which translates analytics 
into visual formats. It renders dashboards and charts that show latency, coverage or outage 
likelihoods. These visuals make results more accessible and allow users to make informed decisions. 
One can explore the effects of input parameters, compare datasets or derive insights directly from the 
UI. 

2.1.2. Technical Implementation Details 

Framework Selection 
NIF is built with Django (Python). Database access is handled entirely through Django’s Object-
Relational Mapping (ORM) with PostgreSQL, supporting migrations and avoiding raw SQL. The 
authentication system is extended with role-based permissions for different user groups. The Django 
admin interface is customized to manage user accounts and dataset metadata. The AI models are 
invoked through Django views and the visualization images are generated server-side and delivered to 
the client as static files; users interact with the system via HTML forms and JavaScript (Fetch API) 
without a front-end framework [3]. 

Authentication Protocols 
User authentication in NIF is implemented using Django’s built-in authentication system, which 
provides a secure and extensible foundation. During registration, users provide a username, first name, 
last name, email address, organization affiliation, and password. All submitted data is processed 
through validated Django forms to ensure correctness and security. The login and logout mechanisms 
rely on Django’s session-based authentication, maintaining user state through secure server-side 
sessions, with CSRF protection automatically applied to all forms and views to prevent cross-site 
request forgery attacks. Password management includes a reset process that generates unique email-
based tokens, allowing users to securely reset their passwords when necessary. The system is designed 
to support role-based access control through Django’s Groups and Permissions framework, which is 
configured to enable future differentiation of user roles, such as regular users, contributors, and 
administrators. All communications between the client and server are transmitted over HTTPS, 
ensuring encrypted and secure data exchange across the entire platform. 

Django’s authentication system follows strong security practices. Passwords are hashed using the 
PBKDF2 algorithm by default, with the option to use stronger ones like Argon2 to better protect against 
brute-force attacks. The framework also includes built-in protections against common attacks such as 
SQL injection, cross-site scripting (XSS), and cross-site request forgery (CSRF). Django regularly updates 
its authentication features to fix new security issues, helping keep applications safe and up to date [3]. 
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Data Flow Mechanisms 

Users begin by uploading CSV or JSON data files through an HTML form, which are saved to the server’s 
file system under a structured media directory. Metadata about the uploaded files is stored in the 
database. 

From the visualization dashboard, the user selects a file and requests a specific analysis (latency, 
outage, coverage). The client sends an HTTP GET request to a Django view with the selected file and 
analysis type. 

The Django view loads the requested CSV/JSON file and performs the model inference using the 
aforementioned models. The model outputs are formatted and passed to Matplotlib to generate one 
or more visualizations. The resulting plots are saved as static PNG images on the server. 

Finally, the browser receives the filename of the generated image from the server and loads the image 
into the page. All communication between the client and server is performed through Fetch API calls. 

Code Structure 
NIF follows Django’s standard project structure, organized into reusable applications (apps): 

• accounts: This is a standard Django app for user management, built on Django’s authentication 
framework. It handles login, logout, registration, session management, and role-based 
permissions. It also manages file uploads, file metadata and extends the Django admin 
interface for managing users and datasets. 

• models_app: This is a custom Django app that integrates the AI models developed specifically 
for NIF. It provides views and templates for running these models on uploaded datasets and 
generating visual output. The app handles the execution of model inference and produces 
server-side visualizations that are displayed to the user through the web interface. 

Database Schema 
The NIF database uses PostgreSQL with the following schema: 

• Users: username, first name, last name, organization, email, hashed password, account 
creation and last login timestamps. 

• Datasets: filename, upload date, file type, file size, owner (user ID) 

2.1.3. NIF Hosting  

The 8BELLS NIF hosting infrastructure provides a robust and reliable environment for managing user 
interactions and dataset storage. It features a secure backend database that supports the storage and 
retrieval of user information and experimental data efficiently. Additionally, the platform is equipped 
with sufficient computational resources to handle the AI/ML model workloads for fast inference. 

2.2. NIF Graphical User Interface 

The NIF features an intuitive and user-centric GUI designed to streamline interaction and enhance the 
efficiency of data-driven analytics. The interface promotes ease of use while supporting complex 
predictive functionalities in an accessible manner. 
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2.2.1. Authentication 

The authentication module establishes the first layer of user interaction, delivering a secure and 
intuitive process for accessing the framework. Upon accessing the application, users are greeted with 
distinct Sign Up (Figure 3) and Log In (Figure 2) portals, each crafted with clarity and ease-of-use in 
mind. Sign-up requires entering essential personal information-Username, First Name, Last Name, 
Email, Organization and a secure Password-ensuring proper user identification and future 
communication capabilities. 

 

Figure 2: Authentication Module 

 

Figure 3: Sign Up Page 

To enhance the onboarding experience, the sign-up interface integrates modern UX features such as 
real-time field validation, tooltips for password requirements, and visual indicators for input errors. 
Organization selection is facilitated through a searchable dropdown, promoting accurate user 
affiliation with minimal effort. Upon successful account creation, a confirmation message (Figure 4) 
reassures users and guides them towards logging in. The Log In screen supports password visibility 
toggling and a “Forgot Password” workflow (Figure 5), ensuring accessibility in case of credential 
issues. 
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Figure 4: Success Message 

 

Figure 5: Forgot Password Workflow 

2.2.2. Home Dashboard 

The Home Dashboard (Figure 6) serves as the central hub of the application, immediately presenting 
users with the core functionalities offered by the NIF. Designed for quick access and high-level visibility, 
the dashboard provides entry points to three principal analytical modules: Latency Prediction, 
Coverage Prediction, and Outage Prediction. Each option is visually distinct and accompanied by 
descriptive text to help users understand its purpose. 
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Figure 6: Home Dashboard 

2.2.3. Data Import 

The Data Import module (Figure 7) is a vital component of the framework, enabling integration of 
external datasets. Users can upload datasets via a clean, drag-and-drop interface or through a 
traditional file selector. Accepted file formats (such as CSVs) are clearly indicated, and users are 
prompted to name their files for easy identification. Real-time progress indicators, validation messages 
(Figure 8), and post-upload confirmations contribute to a smooth user experience. 
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Figure 7: Data Import Module 

 

Figure 8: Successful Upload Message 

2.2.4. File Management 

The File Management interface (Figure 9) provides a comprehensive and organized view of all user-
uploaded datasets. It includes a table that lists each dataset along with key metadata such as file name, 
upload date, uploader identity, file size, and data type. Users can take action on each dataset, including 
viewing its contents, deleting it, or preparing it for analysis. 

To enhance user control and transparency, the interface supports bulk actions and confirmation 
prompts before deletions. A file versioning system may also be included to track changes over time, 
allowing users to revert or compare datasets. This module is crucial for maintaining a clean and 
efficient data workspace, especially when handling multiple projects or collaborative workflows across 
teams. 

 

Figure 9: File Management Page 
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2.2.5. Visualization Dashboard 

 

Figure 10: Visualization Dashboard 

The Visualization Dashboard (Figure 10) is the most critical component of the NIF, as it serves as the 
starting point for prediction processes and generates the corresponding visual outputs. Users can 
choose a specific prediction engine and apply it to a selected dataset to initiate analysis. Prediction 
results are rendered in real time on the same page, enabling users to view and interpret outcomes 
without navigating away from the dashboard. 

Outage prediction 

 
Figure 11: Outage Prediction 
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Upon generating the plot (Figure 11), the dashboard displays three time-series visualizations. The two 
plots on the left represent two of the input features used by the outage prediction model, while the 
plot on the right displays the model’s output, indicating predicted outage events over time. 

The top-left plot shows the Requested and Granted PRBs over time. PRBs, or Physical Resource Blocks, 
are fundamental units of resource allocation in 5G networks. This graph tracks how many PRBs are 
requested versus how many are granted at each time point. The difference between these two metrics 
can be indicative of network congestion or resource scarcity conditions that may contribute to service 
outages. A significant gap between requested and granted PRBs suggests that user or system demands 
are not being fully met, which could degrade service quality. 

Beneath it, the bottom-left plot illustrates the “Channel Quality Indicator (CQI)” as it changes over 
time. The CQI provides a measure of the communication channel's quality, which reflects signal 
strength, interference, and overall link reliability. Lower CQI values denote poorer channel conditions, 
which are known precursors to data transmission failures and outages. Monitoring CQI allows the 
system to assess environmental and network-level conditions that affect connectivity performance. 

The right-hand plot displays the output of the outage prediction model and shows the model's 
prediction for whether an outage is likely to occur at each point in time. The Y-axis ranges from 0 to 1, 
where a value of 1 signifies a predicted outage, and 0 signifies no outage. This binary prediction pattern 
allows network operators to visualize the temporal distribution of expected service failures. Frequent 
spikes to 1 suggest multiple predicted outage events across the observed timeframe. 

Coverage prediction 

 
Figure 12: Coverage Prediction (1) 
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Figure 13: Coverage Prediction (2) 

 

Figure 14: Coverage Prediction (3) 

The visual output consists of three distinct but interrelated plots, as shown in Figure 12. 

The first visualization (Figure 13) is a 3D plot depicting coverage probability in relation to user 
movement. The axes represent: 

• X-axis: Longitude 
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• Y-axis: Latitude 
• Z-axis (Color scale): Coverage probability 

The color gradient, ranging from blue (low) to red (high), indicates the likelihood of maintaining 
coverage at each spatial point. Areas with deep blue shades signal low coverage probability, potentially 
corresponding to physical obstructions, distance from the Base Station (BS), or environmental 
interference. This spatial mapping is crucial for identifying coverage blind spots or weak signal regions. 
The cell tower is also marked in this plot. 

The second plot (Figure 14) is a time series visualization showing the fluctuation of coverage 
probability over a sequence of measurement intervals. The Y-axis reflects the estimated coverage 
probability, while the X-axis represents discrete time steps or events. This chart emphasizes how 
coverage conditions vary dynamically as the User Equipment (UE) moves. Sharp declines or instability 
in this graph can be early indicators of potential handovers, interference zones, or network edge 
transitions. 

The final plot visualizes the distance of the UE from the serving cell tower over time. This graph 
provides essential context for the other plots, as distance is a primary factor influencing signal quality 
and coverage reliability. The Y-axis shows the physical distance (likely in meters), and the X-axis 
indicates time or event count. 

Latency prediction 

 

Figure 15: Latency Prediction 

The main component of the output is a single time-series graph (Figure 15), which captures the model's 
estimate of latency values across a range of time-indexed events. This particular plot exhibits a clear 
upward trajectory, suggesting a gradual increase in latency as the sequence progresses. This rising 
pattern may imply growing congestion, potentially due to system overload. The number of orderers of 
each consensus mechanism also plays a pivotal role in the system’s latency, as increasing it 
corresponds to increased architectural complexity. 
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2.2.6. User Information 

 

Figure 16: User Information 

The User Information Management page (Figure 16) offers users complete control over their account 
details. Accessible via a dedicated My Account tab, this section displays fields such as Username, First 
Name, Last Name, Organization, and Email in an organized layout. Users can review their data and 
update their information at any time. 

2.3. NIF Placement within NANCY 

This section aims to provide a clear placement of the NIF component within the functional and 
deployment view of the NANCY architecture. The NIF is designed to be a highly modular, interactive, 
and user-centric framework. It integrates several interdependent modules, each contributing 
meaningfully to a seamless user experience and robust analytical capability. The architecture of the 
NIF, depicted in Figure 1, integrates modules that support secure access, efficient data processing, 
predictive modelling, and insightful visualizations. As illustrated in Figure 17, these modules function 
together to provide a full toolset aimed at helping users optimize B-RAN system’s performance.  
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Figure 17: Functional and deployment view of the NANCY architecture 

In the NANCY project, the NIF provides the necessary AI-aided analytical capabilities for understanding 
and improving network performance in Beyond 5G (B5G) environments. Its ability to predict key 
performance indicators like latency, coverage, and outage probability allows users to gain nuanced 
insights and optimize B-RAN systems. 
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3. Coverage Probability Prediction 
This component leverages an AI model to predict the Reference Signal Received Quality (RSRQ) of the 
UE. RSRQ, in turn, can be used to estimate the coverage probability of the UE. Thus, our effort focuses 
on designing, training and fine-tuning an AI model, capable of producing robust and accurate 
predictions which can be used by NANCY’s NIF to assess the coverage probability.  

In our case, the term AI is used to describe a collection of algorithms and techniques that produce a 
model capable of making predictions, given some input data. In general, the process of designing and 
implementing AI models can be compartmentalised into the following phases: (i) model design; (ii) 
model training; (iii) model testing, also known as inference. During the model design phase, the main 
goal is to find the most appropriate AI model architecture that can fit the data under investigation. For 
this reason, we have performed an assessment of existing state-of-the-art methods, while also 
considering the characteristics of the data which will be used for model training. During the model 
training operation, the model is fed with a training dataset, which is a collection of data samples, and 
tries to fine-tune its parameters (also known as weights) in order to better represent the input data. 
When the AI model’s weights are adjusted to properly represent the input data, the training process 
is completed. In the sequel, during the model testing procedure, the trained AI model is tested with 
data that stem outside of the original training dataset. This process reveals how efficiently the trained 
model generalises to other data samples. Additionally, within this operation, the trained model 
generates predictions using the new input data. In the following subsections, we present the AI model 
designed, trained and tested within the NANCY project, to predict the coverage probability of the UE. 

3.1. Model Design and Methodology 

For the aforementioned task, we opt to utilise a multi layered perceptron (MLP) model. MLPs consist 
of several layers (commonly named as “input layer”, “hidden layers” and “output layers”), each layer 
containing a set of neurons. Each neuron uses nonlinear activation functions, allowing the network to 
learn complex patterns in data. Figure 18 [3], depicts the general architecture of an MLP. We chose 
the MLP architecture to solve the RSRQ prediction problem since it provides the following advantages: 

 

Figure 18: The overall architecture of an MLP model 

1. Lightweight and fast execution: MLPs provide an advantage compared to other AI models 
since their complexity is low. This allows the model to be used in a wide range of hardware 
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devices (from Raspberry Pi devices to commercial processors) without requiring specialised 
and costly hardware (e.g. Graphics Processing Units). Our decision to design a lightweight 
model does not affect only the computational complexity, but also the amount of energy 
consumed by the model. In both training and inference operations, lightweight models 
consume less energy compared to complex ones. This is very important for NANCY, as the 
project targets green ICT goals and aims to reduce energy consumption in several key modules 
of its architecture. 

2. Generalisation with varying data sizes: The generalisation property of an Artificial Neural 
Network (ANN) is a critical one. Generalisation measures the performance of the trained 
model with real-world data during the inference operation. MLP designs can reach adequate 
levels of generalisation, if trained properly. The advantage of MLPs is that they can reach this 
stage, even when trained with lower amount of data. In contrast with other architectures, 
which require very large training datasets, MLPs (if designed correctly) can function well with 
smaller datasets. This property has a direct impact on the model overfitting phenomenon, 
which can be catastrophic in cases where a low volume of data is fed to an AI model. 

3. Flexible fine-tuning: Smaller networks also have higher flexibility when fine-tuning is 
considered. During the fine-tuning operation, which is conducted after the model training 
completes, a set of heuristic methods is deployed to nudge the model towards better 
predictions. Such methods may include layer clipping, low-rank adaptation techniques, 
transfer learning operations, layer freezing and model retraining. These processes often 
require to partially retrain the model, thus consuming energy and time. When large and 
complex models are under consideration, the computational requirements of the fine-tuning 
are large and, in most cases, forbid a detailed parameter exploration. On the other hand, 
smaller models can be retrained many times without several time or energy penalties, which 
empower designers to conduct a detailed exploration of the parameters that affect the model 
performance.  

The methodology we employed to design this module the fine-tune the model is illustrated in Figure 
19 below, and it consists of a training and an inference process. 
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Figure 19. The methodology employed by NANCY to design and train the MLP model 

During the machine learning (ML) training process, we first select publicly available data to train the 
MLP. More information about the training datasets that are used within this process can be found in 
the next subsection. The MLP model architecture along with the parameters of the training process 
are described Table 1. The number of layers and neurons of the model were chosen after conducting 
a detailed design space exploration with the training datasets. To this end, different model 
architectures were tested and their training performances were compared in order to deduce the 
optimal design that fits the training data. The current design achieved the best performance and was 
chosen for this reason. We should also note that more complex designs (e.g. with more layers or more 
neurons per layer) were prone to overfitting and thus were rejected by the consortium. On the other 
hand, less complex designs exhibited signs of underfitting and failed to achieve the required model 
quality. 

Table 1. Parameter details of the MLP architecture and training process 

Model type MLP 

Number of layers 4 

Neurons for each layer 1st layer: 70 
2nd layer: 70 
3rd layer: 70 
4th layer: 1 

Activation functions 1st layer: Relu 
2nd layer: Relu 
3rd layer: Relu 
4th layer: Linear 

Training epochs 500 

Optimizer Adam 

Loss functions Mean Absolute Error (MAE) 
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Batch size  10 

The activation function used in 1st, 2nd and 3rd layers is the Relu, which can be described using the 
following formula: 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0
0, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤  0 

where x represents the input values of the activation functions (which are also the layer neuron 
outputs). On the other hand, the 4th layer of the model utilises the linear action function which can be 
described using the following equation: 

𝑓𝑓(𝑥𝑥) = x 

The model training operation outputs a trained MLP model. In the sequel, we check if the MAE 
constraints are satisfied. MAE is a metric that measures the absolute difference between the predicted 
RSRQ value and the real one and can be calculated using the following formula: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖  −  𝑥𝑥𝑖𝑖|𝑛𝑛
1

n
 

Where 𝑦𝑦𝑖𝑖  is the actual (real) value for data point i, 𝑥𝑥𝑖𝑖 is the model output (prediction) and n is the total 
number of samples used for testing the model.  

After the first round of training finishes, we commence a transfer learning operation using the dataset 
collected through NANCY’s testbeds. More information about these data is documented in the “data 
collection” subsection below. Generally, transfer learning exploits the knowledge gained from a 
previous task to improve the model's generalisation for a new task. Transfer learning is frequently used 
to retrain a model using new data, instead of initiating a training process from the beginning. In our 
case, we leverage transfer learning to nudge the MLP’s weights to better fit the data, which is collected 
by NANCY demonstrators. We opt to use the transfer learning technique to increase the 
generalisability of the model to NANCY’s demonstrators. A different approach would be to merge the 
two training datasets (the LTE Dataset and the NANCY dataset as they are described in section 3.2 
below) into one and then train the model using this merged training set. The issue with this approach 
is that the LTE dataset is significantly larger than the NANCY dataset. This would nullify the impact of 
the data distribution of NANCY’s dataset on the model’s training process. In this sense, the data 
distribution of the merged training dataset would represent the data distribution of the LTE Dataset 
for the purposes of model training. To account for this, we first train the model only using the LTE 
Dataset and then retrain it (using the transfer learning operation) with a different data distribution, 
i.e., the NANCY dataset. This choice not only helps the model to generalise to NANCY’s demonstrators, 
but also highlights that knowledge transfer operations are fully supported in NANCY’s AI framework. 
At the end of this process, we apply fine-tuning optimisations to increase the model quality.  

While transfer learning produces a fully trained model which can be used for inference operations; 
inference utilises real-world data to perform predictions, using the trained model. The MLPs designed 
under this task support two types of outputs: (i) RSRQ prediction and (ii) Probability estimation. RSRQ 
prediction is an estimation of the RSRQ value at a given time. Probability estimation generates a range 
of possible RSRQ values, along with their corresponding probabilities. Both of those outputs can be 
used to assess the coverage probability of a UE, depending on the specifics of the application scenario. 
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3.2. Data Collection 

Our MLP methodology utilises two distinct datasets: A dataset that consists of publicly available data 
and a NANCY dataset that contains data collected from the UMU testbed. 

3.2.1. Publicly available data 

We use the “LTE Dataset” [4] which can be downloaded from Kaggle [5]. It contains 135 traces, with 
an average duration of fifteen minutes per trace, with viewable throughput ranging from 0 to 173 
Mbit/s at a granularity of one sample per second. The dataset consists of several measurements (such 
as distance from the Cell tower, UE speed, UE position, RSRP, RSRQ and SNR values) in different 
scenarios and within different mobility schemes (bus, car, pedestrian, static and train). 

3.2.2. NANCY dataset 

This dataset gathers information collected from two sampling campaigns conducted on two different 
days in the University of Murcia’s 5G deployment located at the Espinardo Campus of this institution. 
It is made publicly available by UMU in Zenodo [6] [7]. Part of this dataset was used to train the 
coverage prediction probability model, and other parts were used across the NANCY project. 

Campus and experiment description 

The experiments were conducted on two different days at the main campus of the University of Murcia 
(Espinardo Campus), which is covered by two distinct 5G private mobile‐network operators (MNOs). 
Each operator provides overlapping service via two geographically separated cells: 

• Operator Nokia 
o Cell 50 (Economicas site). Coord: 38.016969, -1.170034 
o Cell 51 (Pleiades site). Coord: 38.023726, -1.17311 

• Operator AW2S 
o Cell 501 (Ática site): Coord: 38.022561, -1.174164. 
o Cell 502 (Luis Vives site): Coord: 38.016011, -1.172289. 

During sampling Day 1, simultaneous samples from both networks were collected. In Day 2, only data 
from AW2S network were taken. The sampling routes start at the main door of the UMU’s Computer 
Science Faculty and move around the campus, ensuring that each cell’s coverage area was traversed 
multiple times (Figure 20). 
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Figure 20: Sampling Routes Map 

5G Network Configuration 

As mentioned, two different MNOs provide coverage to the UMU campus. Both networks operate at 
a bandwidth of 20 MHz and have two available cells, as depicted in Figure 20, AW2S in red and Nokia 
in blue. Nokia operates at 2586.050 MHz, while AW2S operates at 3435.00 MHz bands. Handover 
between cells is done in an intra-frequency way, which means that both cells of each operator are 
configured to work in the same frequency. Bearer used is default sst:1 and sd:1 with non-guaranteed 
bitrate mode. Nokia network is based on Frequency Division Duplex (FDD), while AW2S are based on 
Time Division Duplex (TDD). 

Hardware and Device Configuration 

A single monitoring unit was assembled as follows: 

• Host platform: Industrial‐grade embedded computer (x86) with Ubuntu 22.04 LTS, more 
concretely a LattePanda v3 

• Modems: 
o Nokia modem (USB WWAN interface wwan0) Fibocom Fibocom FM160 connected to 

Operator Nokia 
o AW2S modem (USB WWAN interface wwan1) Fibocom Fibocom FM150 Modem_SN 

connected to Operator AW2S 
• GNSS receiver (optional): USB GPS dongle, polled via gpsd for geo‐referencing measurements 
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• Power & mounting: All hardware was rack-mounted inside a testing vehicle; antennas were 
roof-mounted for optimal signal (Figure 21)  

Each modem was registered and configured using the libqmi-glib stack. The monitoring script was set 
to distinguish interfaces by name (wwan0 vs. wwan1) and tag each record with the corresponding 
operator. 

 

Figure 21: Monitoring Unit - Testing Vehicle  

Monitoring Script and Data Collection 

A Python script [8] was developed that performs concurrent polling of both modems at fixed intervals, 
capturing: 

1. Network status & serving system via QMI NAS calls 
2. Signal quality metrics (RSRP, SINR, etc.) via QMI NAS signal-info calls 
3. Packet‐data statistics (counters and instantaneous channel rates) via Qualcomm MSM 

Interface Wireless Data Services (QMI WDS) calls 
4. Throughput measurements by differencing cumulative byte‐counters (via psutil) and 

converting to kbps 
5. GPS data for spatial tagging 

Key parameters: 

• Polling interval: 1 s for all QMI calls 
• Throughput window: 1 s, aligned to the QMI loop (both cumulative‐delta and instant‐rate 

computed over the same interval) 
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• Logging format: CSV with separate columns for each metric, plus timestamp. 

Traffic characteristics  

To test the connection performance, two different experiments were conducted. One is based on 
Transmission Control Protocol (TCP) traffic and the other on User Datagram Protocol (UDP) traffic. 
Both used the iPerf tool to send as much upload traffic as possible from the UE (iPerf client) to a service 
(iPerf server) instantiated in a common cloud. No other traffic was crossing the networks during the 
experiments. 

Dataset organization 

The datasets consist of 6 data files separated into two main folders (day 1 and day 2). In the file names, 
it is clearly stated the network and for what kind of traffic correspond the data in the file. The dataset 
structure is the following: 

• Day 1: 
o tcp_aw2s_ 20240325.xlsx 
o tcp_nokia_ 20240325.xlsx 
o udp_aw2s_ 20240325.xlsx 
o udp_nokia_ 20240325.xlsx  

• Day 2: 
o tcp_aw2s_ 20250126.xlsx  
o udp_aw2s_ 20250126.xlsx 

Table 2 indicates the collected parameters and their description. 
 

Table 2: Dataset Features 

Category Parameter Value 

Serving 
System nas_value_serving_system_registration_state 

Registration state of the 
modem (e.g., not 

registered, registering, 
registered) 

Serving 
System nas_value_serving_system_cs_attach_state 

Circuit-switched (voice) 
attach state 

(attached/detached) 

Serving 
System nas_value_serving_system_ps_attach_state 

Packet-switched (data) 
attach state 

(attached/detached) 

Serving 
System nas_value_serving_system_selected_network 

Which Radio Access 
Technology (RAT) the 

device is currently 
camped on (e.g., UMTS, 

LTE, NR5G) 

Serving 
System nas_value_serving_system_radio_interfaces 

List/bitmask of available 
radio interfaces on the 

serving system 

Roaming & 
PLMN nas_value_roaming_indicator 

Indicates if the device is 
roaming (domestic vs. 

roaming) 
Roaming & 

PLMN nas_value_current_plmn_mcc Current Mobile Country 
Code (numeric) 
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Roaming & 
PLMN nas_value_current_plmn_mnc Current Mobile Network 

Code (numeric) 

Roaming & 
PLMN nas_value_current_plmn_description 

Human-readable 
operator name (PLMN 

description) 

Legacy Signal 
Strength nas_value_signal_strength_strength 

Aggregate RSSI or signal-
strength indication (unit 

depends on RAT) 
Legacy Signal 

Strength nas_value_signal_strength_radio_interface The RAT/interface this 
strength refers to 

Legacy Signal 
Strength nas_value_io Interference-over-noise 

metric (for CDMA/H-DR) 
Legacy Signal 

Strength nas_value_sinr Signal-to-interference-
plus-noise ratio (dB) 

Legacy Signal 
Strength nas_value_5g_signal_strength_rsrp 

5G Reference Signal 
Received Power (RSRP) in 

dBm 
Legacy Signal 

Strength nas_value_5g_signal_strength_snr 5G Signal-to-Noise Ratio 
(dB) 

Legacy Signal 
Strength nas_value_5g_signal_strength_extended Vendor-specific extended 

5G strength metric 
Rx-Chain 
Diversity nas_value_rx_chain_{0–3}_info_rx_power Per-chain (0–3) receive 

power 
Rx-Chain 
Diversity nas_value_rx_chain_{0–3}_info_ecio Per-chain (0–3) Ec/Io 

Rx-Chain 
Diversity nas_value_rx_chain_{0–3}_info_rscp Per-chain (0–3) RSCP 

Rx-Chain 
Diversity nas_value_rx_chain_{0–3}_info_rsrp Per-chain (0–3) RSRP 

Rx-Chain 
Diversity nas_value_rx_chain_{0–3}_info_phase Per-chain (0–3) antenna 

phase angle 
Home-

Network Info nas_value_home_network_mcc Home PLMN Mobile 
Country Code 

Home-
Network Info nas_value_home_network_mnc Home PLMN Mobile 

Network Code 
Home-

Network Info nas_value_home_network_description Home operator name 

Home-
Network Info nas_value_network_name_source How the network name 

was derived 

NR5G Cell 
Details nas_value_nr5g_arfcn 

5G Absolute Radio 
Frequency Channel 

Number 
NR5G Cell 

Details nas_value_nr5g_cell_information_global_cell_id Global Cell Identifier 
(NCGI) 

NR5G Cell 
Details nas_value_nr5g_cell_information_physical_cell_id Physical Cell ID (PCI) 

NR5G Cell 
Details nas_value_nr5g_cell_information_plmn PLMN of the serving 

NR5G cell 
NR5G Cell 

Details nas_value_nr5g_cell_information_rsrp NR5G RSRP 
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NR5G Cell 
Details nas_value_nr5g_cell_information_rsrq NR5G RSRQ 

NR5G Cell 
Details nas_value_nr5g_cell_information_snr NR5G Signal-to-Noise 

Ratio 
NR5G Cell 

Details nas_value_nr5g_cell_information_tracking_area_code Tracking Area Code (TAC) 

Radio 
Interfaces & 

Bands 

nas_list_radio_interface / 
nas_extended_list_radio_interface 

Supported/available 
radio interfaces 

Radio 
Interfaces & 

Bands 

nas_list_active_band_class / 
nas_extended_list_active_band_class Active band classes 

Radio 
Interfaces & 

Bands 

nas_list_active_channel / 
nas_extended_list_active_channel Active channel numbers 

Radio 
Interfaces & 

Bands 
nas_bandwidth_list_radio_interface Interfaces for which 

bandwidth is reported 

Radio 
Interfaces & 

Bands 
nas_bandwidth_list_bandwidth Reported bandwidth per 

interface 

Packet-Data 
Statistics 

wds_value_tx_packets_ok / 
wds_value_rx_packets_ok 

Successfully 
sent/received packet 

counts 
Packet-Data 

Statistics 
wds_value_tx_packets_error / 
wds_value_rx_packets_error Packet error counts 

Packet-Data 
Statistics wds_value_tx_overflows / wds_value_rx_overflows Overflow event counts 

Packet-Data 
Statistics wds_value_tx_bytes_ok / wds_value_rx_bytes_ok Total bytes sent/received 

Packet-Data 
Statistics 

wds_value_tx_packets_dropped / 
wds_value_rx_packets_dropped Dropped packet counts 

Packet-Data 
Statistics wds_value_channel_rates_channel_tx_rate_bps Current TX rate (bps) 

Packet-Data 
Statistics wds_value_channel_rates_channel_rx_rate_bps Current RX rate (bps) 

Packet-Data 
Statistics wds_value_channel_rates_max_channel_tx_rate_bps Max TX rate since last 

reset 
Packet-Data 

Statistics wds_value_channel_rates_max_channel_rx_rate_bps Max RX rate since last 
reset 

Packet-Data 
Statistics wds_value_connection_status Data bearer status 

Throughput throughput_upload_kb / throughput_download_kb KB transferred since last 
sample 

Throughput throughput_upload_speed_kbps / 
throughput_download_speed_kbps 

Instantaneous kbps 
up/down 

GPS Fix Data gpsd_sky_datetime / gpsd_sky_timestamp Sky-view timestamp 

GPS Fix Data gpsd_sky_hdop / gpsd_sky_pdop Sky-view dilution of 
precision (HDOP/PDOP) 

GPS Fix Data gpsd_tpv_datetime / gpsd_tpv_timestamp TPV fix timestamp 
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GPS Fix Data gpsd_tpv_lat / gpsd_tpv_lon / gpsd_tpv_alt / 
gpsd_tpv_althea 

Latitude, longitude, 
altitude, altitude error 

GPS Fix Data gpsd_tpv_epx / gpsd_tpv_epy / gpsd_tpv_epv Position error estimates 
(meters) 

GPS Fix Data gpsd_tpv_speed / gpsd_tpv_eps Speed and its error 
estimate 

 

Data preprocessing 

For training the coverage probability prediction model, NANCY opted to use the data collected during 
the first day of the sampling campaign. To this end, we cleaned the data and removed incomplete 
samples before initiating the training and transfer learning operations. More specifically, we 
performed the following operations: 

1. Data cleansing. During this process, we make sure that the dataset contains valid data values. 
To this end, we scan the whole sample space and we remove any data containing letters, 
symbols and corrupted information that is non-readable by the models. 

2. Outlier removal. Within this process, we remove the top 5% and the bottom 5% of the data 
samples in terms of their values.  This eliminates data points that deviate significantly from 
the rest of the data distribution, as they can negatively impact the performance of a model. 

3.3. Training with Open Data and NANCY Data 

For the implementation of the MLP and the rest of the components, we used the Python programming 
language and leveraged the functionalities of the Keras library. As mentioned in section 3.1, the model 
training process consists of two phases: (i) the model training operation, which utilises the “LTE 
Dataset” that is publicly available; and (ii) the fine-tuning phase, which utilises the NANCY dataset, 
collected through UMU’s testbed. Below, we discuss the details of each phase: 

1. The model training process utilized input from the publicly available “LTE Dataset”. More 
specifically, we formulated a training set that consisted of 32,000 data samples, with each 
sample representing a measurement in a specific time slot. Each data sample had 2 features: 
(i) the distance of the UE from the closest cell tower; and the (ii) UE’s SNR measured at the 
corresponding timeslot. We split the dataset into the 80%-10%-10% pattern, meaning that 
80% of the samples were used as the training set (25,600 samples), 10% of the samples were 
used as the validation set (3,200 samples) and 10% of the samples were used as the test set 
(3,200 samples). The model was trained to predict the RSRQ value of the UE, given the input 
data. 

2. The model fine-tuning process, which utilised the trained model (taken from phase 1) and 
conducted a transfer learning operation, as described in section 3.1. For this purpose, we 
leveraged the UMU dataset that consisted of 2,998 data samples, with each sample 
corresponding to two features. The features were the same as in phase 1 of the training 
process (i.e., distance of the UE from the cell and the UE’s SNR). We again split the dataset 
using the 80%-10%-10% pattern, as follows: The training dataset consisted of 2,398 samples, 
the validation set of 300 samples and the test set of 300 samples. 

Figure 22 illustrates the MAE loss within the transfer learning process for 500 epochs. We observe that 
the model manages to lower the MAE to 0.44, which amounts to an average 4% error rate. We consider 
this outcome a very good result, especially considering the fact that both the training and the transfer 
learning process require less than 3 minutes to complete.  
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Figure 22. MLP training performance during the transfer learning process 
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4. Outage Probability Prediction 

Network outage probability constitutes one of the most prominent performance measures for mobile 
cellular networks, as it reflects the overall network availability and its capability to provide seamless 
and ubiquitous coverage. B5G networks promise the provision of a wide range of services, each coming 
with unique requirements in terms of reliability, latency and throughput. The three main service 
categories in these networks, originally defined as Enhanced Mobile Broadband (emBB), Ultra Reliable 
and Low Latency Communications (URLLC) and Massive Machine Type Communications (mmTC) in 5G 
network services, also extend to the target performance requirements to B5G, namely xmBB, xURLLC 
and mmTC+ services. The formalization of these requirements in a more stringent manner extends 
from inheriting outage analysis models from 5G while assessing reliability variability, service ultra-low 
latency and supported extreme broadband data rate in massive deployments. Thus, next-generation 
networking services must adapt to dynamic channel conditions and steer the dynamic radio resource 
management process accordingly in decentralized architectures.  Consistently satisfying those dynamic 
and heterogeneous service requirements is both crucial and challenging for both the network 
performance and end user experience. Defining a network outage event as an episode, where one or 
more of the performance metrics (e.g., throughput over the radio network) fails to satisfy a 
predetermined service-specific threshold, the occurrence of network outage events (interchangeably, 
service disruption events) must be minimized. 

In particular, the second-order statistics of network outages, such as their frequency and duration, are 
directly related to several radio resource management tasks that aim to proactively or reactively cope 
with network outage events. These include the power allocation and the transmission rate choice 
(jointly making up what is called link adaptation), as well as other fundamental Radio Access Network 
(RAN) design choices such as the data block length that is transmitted over the air and the duration of 
transmission time slots [9]. 

Attempts to assess/predict the network outage probability in literature are related to both power-
limited and interference limited regimes [10] and are tightly coupled with fading channel models [11]. 
Outage probability evaluation proves to be an essential task in the context of multipath diversity and 
correlated fading channels in cases where traditional channel models fail to capture [12] realistic 
cellular environments and the interference-limited assumption in ultra-dense deployments, as is the 
case in B5G networks. In turn, interference in mobile cellular networks is also dependent on the higher 
frequency bands [13] to be used in B5G networks with the aim of spectral efficiency. Traditional model-
based and probabilistic [14] [15] approaches to outage probability computation call for numerical 
evaluations. Moreover, the closed-form expressions of outage probability are often too complex and 
need to be generalized to decentralized topologies and edge intelligent use cases.  

A model-based approach to outage probability prediction remains tightly coupled with the channel 
estimation stage, thereby increasing complexity as B5G dynamic topologies and time-varying channel 
conditions emerge in the model creation step. This model turns out to be an essential prerequisite for 
optimizing resource allocation and improving user experience. On the contrary, an ML-powered model 
can circumvent the above series of steps, drastically reducing the complexity of prediction. The model 
can cater for diverse network features and leverage data to efficiently learn which of those are relevant 
and to what extent for predicting rate outages according to derived probability [16] [17]. 
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4.1. Model Design and Methodology 

4.1.1. Model choice and justification 

In the NANCY context, the Outage Probability Prediction module is based on XGBoost (eXtreme 
Gradient Boosting), a distributed, open-source ML library that uses gradient-boosted decision trees. 
Decision trees [18] are primarily used for classification or regression tasks in ML. They exhibit a 
hierarchical structure: an internal node represents a feature, a branch represents a decision rule, and 
each leaf node represents the outcome of the dataset. 

Boosting is an instance of so-called ensemble methods, which are used to create models with higher 
robustness to overfitting. Boosting [19] combines multiple individual weak trees, i.e. models that 
perform slightly better than random chance, to form a strong learner. Each such weak model is 
sequentially trained to correct the errors made by the previous models. After hundreds of iterations, 
weak learners are converted into strong learners.  

XGBoost is known to exhibit certain advantages that make it one of the most popular ML algorithms, 
especially for structured/tabular data: 

• Good predictive performance: XGBoost consistently wins or places highly in ML competitions 
(e.g., Kaggle), often outperforming other algorithms like random forests, Support Vector 
Machines (SVMs), and traditional gradient boosting. 

• Built-in  regularization capabilities: it includes L1-regularization (Lasso) and L2- regularization 
(Ridge) in the objective function, which help prevent overfitting, a common issue in traditional 
boosting methods. 

• Built-in handling of missing values: the algorithm automatically learns how to handle missing 
data during its training process. 

• Flexibility: it supports custom loss functions and evaluation metrics and can be adapted to be 
used for classification, regression, and ranking tasks with controllable time complexity 

• Good scalability properties: the algorithm lends to efficient implementations leveraging data 
structures and parallel processing capabilities in the generation of trees and the parsing of 
features. 

In addition to these generic advantages, when compared to logistic regression, SVMs, K-Nearest 
Neighbors, Random Forests, and Gradient Boosting, XGBoost has emerged as the model with the best 
performance overall, in terms of metrics considered in our module, in respect to similar classification 
tasks provided publicly available datasets, as in [20], [21], [22]. 

 
4.1.2. Model implementation 

The model was implemented using the Python statistical and ML library scikit-learn. The input feature 
set included the following variables: 

• dl_buffer [Amount of data in the downlink buffer]  
• tx_pkts  downlink [Number of packets transmitted in the downlink]  
• dl_cqi [Downlink channel quality index]  
• sum_requested_prbs [Total number of Physical Resource Blocks (PRBs) requested by UE] 
• sum_granted_prbs [Total number of Physical Resource Blocks (PRBs) granted to UE]  
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Moreover, being directly related to throughput, these features, which are taken from Colosseum ORAN 
COMMAG dataset, can be categorized into two groups: the one, comprising dl_cqi, which constitutes 
a channel quality indicator, and tx_pkts_downlink, reflects radio link quality, which in turn can lead to 
rate outage events; whereas, the second category, including dl_buffer, sum_requested_prbs and 
sum_granted_prbs, captures the level of traffic demand in the network. Both delineate the interplay 
of environment and networking parameters influencing throughput that is achieved and can capture 
the complexity of the rate outage events' occurrence conditions in the network, from both of the 
aforementioned perspectives. In this context, the XGBoost model was applied for predicting rate 
outage events, utilizing these features, which were defined above. 

The variable used for determining rate outages was the downlink throughput (tx_brate downlink) from 
the BS to the UE. As part of the model pre-processing, the continuous throughout values are converted 
to binary values, 0 or 1, denoting network availability or outage, respectively. In this respect, two types 
of thresholds Rthr were considered: 

• Network service-related thresholds: the outage threshold for URLLC is considered equal to 
0.01 Megabits per second (Mbps) and for MTC (Machine Type Communications) equal to 0.03 
Mbps. These service-related thresholds were derived from the Colosseum ORAN COMMAG 
[23]. 

• The statistical and/or experimental-based thresholds: these are statistics computed directly 
out of the throughput values in the datasets themselves, namely the average threshold equal 
to 0.014 Mbps and 25th percentile threshold equal to 0.006 Mbps.  

As part of the post-processing phase, the output values of the model (probability values in [0,1]) were 
converted to binary variables, using a threshold p. Experimenting with different p values in [0.1, 0.5], 
we found the best scores with p = 0.2. Namely, we term an event an outage if the output probability 
generated by the model (i.e., the probability that the rate falls below Rthr) exceeds the threshold 
probability value of 0.2. This choice makes the model more pessimistic (or conservative) as to when 
outage events are declared, i.e., the model will maybe declare more outage events, reducing false 
negative events (a non-detected outage) at the expense of more false positives (declare outage events 
that do not actually qualify as outages).   

 
4.2. Data Collection 

The data for the training of the AI Network Quality Module (AINQM) came from the publicly available 
Colosseum dataset (Colosseum O-RAN COMMAG Dataset) [23], a dataset that has been widely 
acclaimed for its significant size as well as its variety of features. Its name stems from the ancient 
stadium in Rome, where a massive 5G experiment took place, involving 40 pieces of UEs and 4 BSs. 
The whole Colosseum dataset is organized hierarchically according to how UEs are divided into traffic-
dependent slices, their mobility speeds, their distribution around the BS, as well as the algorithm used 
by the RAN scheduler to serve them. The dataset used in these experiments contains 1824 tuples (X, 
y), each carrying values for the feature set X used as input to the model and the target variable y (i.e., 
the probability that the downlink throughput will fall below Rthr).   

The types of model features and their range of values are as follows: 

• the dl_buffer is an integer number ranging from 0 to 459 bytes  
• the tx_pkts is an integer value ranging from 0 to 103 packets  
• the dl_cqi is a float number varying in [0.1..15]  
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• the sum_requested_prbs is an integer value varying from 0 to 605  
• the sum_granted_prbs is an integer value that varies from 0 to 568 

 

4.3. Training with Open Data 

For the model training process, the dataset was split into a training data part (90% of the dataset) and 
a testing data part (the other 10%). 

As formerly indicated, the Outage Probability Prediction model is firmly based on the definition of 
network downlink rate outage. As stated above, four threshold values were considered, two values 
per threshold type mentioned in section 4.1.2. Among those, our experimentation-based quantile 
threshold generated the best results when one jointly considers the standard metrics listed below:   

• Pr 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

; a measure of XGBoost model predicting positive 
instances. This metric is defined as the ratio of true positive predictions to the number of both 
true and false positive predictions. 

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠

; it assesses the performance of the classifier to identify 

positive instances from the actual positive instances contained in the dataset. 
• 𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Pr𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⋅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Pr𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
; this metric assesses how well the Xgboost model in terms of 

balancing precision and recall and is indicative of how efficiently false positives and false 
negatives are reduced. 

•  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

; it is defined as the 

ratio of correct predictions to the total number of predictions and is a measure of outage 
probability prediction performance 
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5. Latency Prediction 
In the context of B-RAN environments, the latency of the network is directly correlated with the latency 
experienced during blockchain operations. This is influenced by both network conditions and the 
internal complexity of the consensus protocol. Different blockchain consensus protocols have varying 
complexities that directly impact their operational latency.   

Understanding and predicting the latency behaviour of these protocols is essential for optimizing 
network performance and resource allocation in B-RAN systems. In this work, we apply an 
AutoRegressive Integrated Moving Average (ARIMA) model to forecast blockchain operation latency, 
providing a lightweight yet effective approach to predictive performance management across varying 
protocol complexities. 
5.1. Model Design and Methodology 

5.1.1. Blockchain consensus mechanisms overview 

In this section, we briefly explore several consensus mechanisms used in blockchain systems, focusing 
on their communication complexity and security characteristics. These protocols form the backbone 
of distributed agreement in fault-prone environments, and understanding their trade-offs is essential 
for evaluating the impact they will have on the network latency. 

Table 3 summarizes key properties of four consensus protocols, Reliable, Replicated, and Fault 
Tolerant (RAFT) consensus algorithm  [24], Quorum-based Byzantine Fault Tolerance (QBFT) [25], 
Istanbul Byzantine Fault Tolerance (IBFT) [26] and Scalable Byzantine Fault Tolerance (SBFT) [27], used 
in blockchain systems, comparing their message complexity and resilience to attacks (in terms of the 
number and type of faulty nodes tolerated). 

Table 3: Blockchain Consensus Protocols Summary 

Protocol Type Message 
Complexity 

Fault Tolerance 

RAFT Crash Fault Tolerant (CFT) 𝑂𝑂(𝑛𝑛) Tolerates up to ⌊(𝑛𝑛 − 1)/2⌋ 
 crash faults 

QBFT Byzantine Fault Tolerant (BFT) 𝑂𝑂(𝑛𝑛2) Tolerates up to ⌊(𝑛𝑛 − 1)/3⌋ 
Byzantine faults 

IBFT BFT 𝑂𝑂(𝑛𝑛2) Tolerates up to ⌊(𝑛𝑛 − 1)/3⌋ 
Byzantine faults 

SBFT Scalable BFT 𝑂𝑂(𝑛𝑛) Tolerates up to ⌊(𝑛𝑛 − 1)/3⌋ 
Byzantine faults 

The variable 𝑛𝑛  refers to the number of nodes (or validators) participating in the protocol. These nodes 
are responsible for proposing, validating, and agreeing upon transactions or blocks in the network. The 
performance and fault tolerance of a protocol are analyzed in terms of 𝑛𝑛 , as it directly influences the 
communication overhead and the number of faults the system can withstand. 

Fault tolerance in consensus protocols refers to the system's ability to continue operating correctly 
despite failures. These failures may be: 

• Crash faults, where a node simply stops responding. 
• Byzantine faults, where a node behaves arbitrarily or maliciously, potentially sending false or 

contradictory messages. 
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RAFT is designed to handle only crash faults. It assumes that nodes either operate correctly or fail by 
becoming unresponsive. If the majority of nodes remain honest and available, the system continues to 
function. 

QBFT, IBFT, and SBFT are all designed to handle Byzantine faults, which include both crashes and 
malicious actions. They rely on strict quorum sizes, typically requiring agreement from at least two-
thirds of nodes, to ensure that honest nodes overlap and prevent conflicting decisions. Combined with 
cryptographic techniques, these quorum requirements enable consensus even in the presence of 
faulty or adversarial nodes. This higher level of assurance comes with increased communication 
complexity. 

BFT 
Byzantine Fault Tolerance is a foundational concept in distributed systems, especially in adversarial 
environments like blockchains. A BFT system can reach agreement among distributed nodes even 
when some of those nodes are malicious or compromised. The name originates from the "Byzantine 
Generals Problem" [28], where actors must agree on a common strategy despite some of them being 
traitors. 

BFT protocols typically work by requiring multiple rounds of message exchange to ensure that all non-
faulty nodes agree on the same values. These rounds include stages like proposal, prepare, commit, 
and sometimes view change. To withstand 𝑓𝑓  Byzantine faults, the protocol needs at least𝑛𝑛 = 3𝑓𝑓 +
1 nodes. This ensures that the number of honest nodes is always greater than the potential coalition 
of malicious actors. 

Modern adaptations of BFT, like QBFT and SBFT, introduce optimizations such as partial signature 
aggregation, collectors, and threshold cryptography to reduce the message complexity while 
maintaining the same level of security. These improvements are essential for deploying BFT systems 
in large-scale, performance-sensitive blockchain environments. 

QBFT 
QBFT is a variant of classical BFT consensus protocols that emphasizes strong safety and liveness 
guarantees in adversarial environments. QBFT proceeds through multiple communication rounds, 
typically pre-prepare, prepare, and commit, where each node communicates with every other node to 
achieve consensus. 

This communication pattern results in a message complexity of 𝑂𝑂(𝑛𝑛2), as every node must exchange 
messages with all others during each phase of the protocol. While it includes some optimizations, such 
as batched signatures and quorum-based agreement, these measures help with practical performance 
but do not reduce the theoretical communication complexity. 

IBFT 
IBFT is a practical BFT consensus algorithm. It follows a three-phase commit protocol: pre-prepare, 
prepare, and commit. In each phase, every node must communicate with all other nodes to exchange 
and verify messages. 

Due to this all-to-all communication pattern in every round, the message complexity of IBFT is 𝑂𝑂(𝑛𝑛2). 
This redundancy provides strong fault tolerance and safety guarantees even in the presence of 
Byzantine nodes, but it also limits scalability and increases latency as the number of nodes grows. 

SBFT 
SBFT is designed to address the scalability limitations of traditional BFT protocols. SBFT introduces 
mechanisms like collectors and threshold cryptography, which allow subsets of nodes to aggregate 



D2.3 – NANCY Network Information Framework 
 

 
44 

messages and signatures efficiently. These features reduce the number of messages each node must 
send and receive. 

As a result, SBFT achieves amortized 𝑂𝑂(𝑛𝑛) message complexity. Although individual operations may 
sometimes require more communication, the average per-operation cost remains linear. This makes 
SBFT especially suitable for high-throughput applications where maintaining low latency and 
communication overhead is crucial. 

RAFT 
RAFT is a consensus algorithm built for simplicity and fault tolerance in distributed systems where 
nodes may crash but are not malicious. The protocol elects a leader node which handles all client 
interactions and coordinates the replication of log entries to follower nodes. When a majority of 
followers acknowledge an entry, it is considered committed. 

The protocol achieves its consensus with a message complexity of 𝑂𝑂(𝑛𝑛) because each operation 
involves the leader sending messages to all other nodes (followers) and receiving acknowledgements. 
The simplicity and centralization around a leader reduce overhead but also mean the system is only 
resilient to crash faults, not Byzantine behaviours. 

5.1.2. Model selection 

Before diving into the mechanics of the ARIMA model, it's important to highlight one of its key 
advantages in the context of B-RAN systems: it requires no explicit training phase. Instead, the ARIMA 
model adapts dynamically to incoming data, making it highly suitable for real-time forecasting tasks in 
changing network environments [29]. This adaptability allows the model to be applied flexibly across 
different B-RAN configurations, regardless of the network's architecture. 

Furthermore, we can leverage theoretical insights into the complexity of consensus algorithms used 
by protocols such as RAFT, QBFT, IBFT, and SBFT. These algorithms often impose computational or 
communication costs that grow linearly, quadratically, or even cubically with the number of orderers. 
While ARIMA itself is agnostic to the exact functional form of the latency growth, its differencing and 
autoregressive structure can adapt to these changes, effectively capturing and predicting the 
underlying trend [30]. Furthermore, we can create dummy data that follow those specific trends to 
predict our model's performance.  

It is also worth noting that in the relatively short and constrained timeframes, ranging from ms to a 
few seconds, typically relevant to operational B-RAN scenarios, latency timeseries do not generally 
exhibit seasonality. As such, a non-seasonal ARIMA model is appropriate, simplifying the modelling 
process without sacrificing accuracy. 

Understanding the ARIMA(p, 1, 5) Model 
The ARIMA model we use is defined by three parameters: the order of autoregression (p), the degree 
of differencing (d = 1), and the order of the moving average (q = 5). 

Differencing is a preprocessing step designed to remove trends and make the data more stationary. A 
time series is said to be stationary if its statistical properties, like mean and variance, are constant over 
time. Stationarity is a desirable property because most time series models, including ARIMA, perform 
best when the input series does not have trends or seasonality. 

Given an original time series 𝑦𝑦𝑡𝑡, we compute the first-order differenced series 𝑧𝑧𝑡𝑡 as: 

𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 
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This operation effectively removes linear trends from the original series. We then model the 
differenced series 𝑧𝑧𝑡𝑡 using a combination of past values of 𝑧𝑧  (the autoregressive component) and past 
forecast errors (the moving average component). 

Mathematically, the model is expressed as: 

𝑧𝑧𝑡𝑡 = �Φ𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑧𝑧𝑡𝑡−1 + �𝜃𝜃𝑗𝑗

5

𝑗𝑗=𝑖𝑖

𝜀𝜀𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑡𝑡 

Here, Φ𝑖𝑖 are the autoregressive coefficients, 𝜃𝜃𝑖𝑖 are the moving average coefficients, and 𝜀𝜀𝑡𝑡 is the 
white noise error at time 𝑡𝑡 . The goal of the model is to estimate the next differenced value 𝑧𝑧𝑡𝑡+1 
using a weighted sum of previous values and residuals. 

Once we have predicted 𝑧𝑧𝑡𝑡+1, we return to the original scale of the time series by inverting the 
differencing operation: 

𝑦𝑦𝑡𝑡+1 = 𝑦𝑦𝑡𝑡 + 𝑧𝑧𝑡𝑡+1 

This gives us a forecast of the next actual value in the original series. 

To estimate the autoregressive coefficients Φ1, … ,Φ𝑝𝑝, we must solve a system of equations derived 
from the autocorrelation function of the differenced series 𝑧𝑧𝑡𝑡. These are known as the Yule–Walker 
equations and can be expressed in matrix form as: 

𝑅𝑅Φ = 𝑟𝑟  

Where 𝑅𝑅 is a symmetric Toeplitz matrix composed of autocorrelation values 𝑟𝑟𝑘𝑘 = 𝐸𝐸[𝑧𝑧𝑡𝑡𝑧𝑧𝑡𝑡−𝑘𝑘], Φ  is the 
vector of autoregressive coefficients, and 𝑟𝑟  is the autocorrelation vector. 

Instead of directly solving this system using computationally expensive matrix inversion, we apply the 
Levinson-Durbin recursion. This is a recursive algorithm that builds the solution incrementally from 
order 1 up to order 𝑝𝑝 . At each step, it computes a reflection coefficient (also called the partial 
autocorrelation) and updates the prediction coefficients based on this value. 

The key intuition behind Levinson-Durbin is that it efficiently finds the best linear predictor for a 
stationary process using its autocorrelation structure. By avoiding explicit matrix inversion and instead 
leveraging the structure of the Toeplitz matrix, the algorithm achieves a much lower computational 
cost,𝑂𝑂(𝑝𝑝2) , which is important for real-time or embedded applications. 

In the context of ARIMA, Levinson-Durbin is used after differencing has been applied. At this stage, the 
series 𝑧𝑧𝑡𝑡 is assumed to be stationary, and we aim to model it using an autoregressive process. Levinson-
Durbin takes the autocorrelation structure of 𝑧𝑧𝑡𝑡 and computes the coefficients Φ𝑖𝑖 that describe how 
each value of 𝑧𝑧𝑡𝑡 depends on its previous values. These coefficients are essential in generating the AR 
component of the ARIMA model. Once these are known, they can be used to forecast the next value 
in the differenced series, which is then integrated to produce a forecast in the original scale. 

This integration of Levinson-Durbin into ARIMA provides both theoretical robustness and 
computational efficiency. It ensures that the ARIMA model has a strong foundation in statistical theory 
while remaining practical for application to real-world datasets, especially when computational 
resources are limited or when quick forecasting is required. 

This approach combines simplicity and flexibility. Differencing removes persistent trends, making the 
modelling problem easier. The autoregressive part captures longer-term dependencies in the data. 
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The moving average component helps smooth out short-term noise or unexpected fluctuations, 
improving robustness and prediction stability. By estimating the autoregressive part using Levinson-
Durbin, we gain numerical efficiency and stability, especially when the number of observations is small 
or when the autocorrelation matrix is ill-conditioned. This method is best suited for univariate time 
series data that exhibit both trend and irregular noise but do not have complex seasonal patterns. 

5.2. Data Collection 

5.2.1. Environment setup 

The data creation process includes a combination of internally generated experimental data and 
simulated workloads designed to emulate real-world blockchain environments. The primary focus was 
to analyse the latency and throughput characteristics of various blockchain systems and consensus 
protocols, specifically the ones mentioned in Table 4: 

Table 4: Systems Under Test (SUTs) 

Platform Version Consensus Protocol 

Hyperledger fabric [31] V2.5 Raft (CFT) [32] 

V3.0 SBFT [33] 

Hyperledger Besu [34] V25.0 
QBFT [35] 

IBFT2.0 [36] 
These decentralised networks were deployed in a controlled environment that allowed to monitor, 
record, and extract key performance metrics under different configurations and workloads. The data 
collection focused on network latency, block propagation times, transaction finality and overall system 
responsiveness under various stress levels. The experiment was conducted on blockchain solutions 
that are appropriate for industrial use cases and are in close comparison with the one used by NEC’s 
proposed architecture within NANCY. The tool that was used for conducting the tests was Hyperledger 
Caliper [37], an open-source benchmarking tool designed to evaluate the performance of blockchain 
networks. It allows users to run predefined or custom test workloads on various blockchain platforms 
and generates detailed reports on key performance metrics such as transaction latency, throughput 
(TPS), and success/failure rates. 

The characteristics of the workstation that was used for the benchmarking process is described in Table 
5. 

Table 5: Workstation specifications 

Component Specification 
Operating System Ubuntu 24.04.2 LTS 

Motherboard Gigabyte Z790 AORUS ELITE AX 

CPU Intel® Core™ i7-14700KF (20-core: 8 P-cores + 12 
E-cores, up to 5.5 GHz) 

Memory 64 GiB DDR5 RAM (2×32 GiB @ 5600 MHz) 
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5.2.2. Benchmark configuration 

Figure 23 is an example of a benchmark configuration file that was used for the tests. 

 

Figure 23: Benchmark config file 

Each key parameter corresponds to a specific value parameter, with the key - value pairs explained 
Table 6. 

Table 6: Benchmark configuration explanation 

Parameter Description 

test.workers Configuration for how transaction load is 
generated 

test.workers.number Specifies the number of worker processes to use 
for executing the workload 

test.rounds Array of objects, each describing the settings of a 
round 

test.rounds[i].label A short name of the rounds, usually 
corresponding to the types of submitted TXs. 

test.rounds[i].txDuration The length of the round in seconds during which 
Caliper will submit TXs. 

test.rounds[i].rateControl The object describing the rate controller to use 
for the round 

test.rounds[].rateControl.type The rate control strategy. fixed-rate means 
transactions are sent at a steady, constant rate. 

test.rounds[].rateControl.opts.tps 
TPS to send. Here, Caliper will attempt to submit 
100 transactions per second throughout the 60-

second test 

test.rounds[i].workload The object describing the workload module used 
for the round 

test.rounds[i].workload.module 
The path to the benchmark workload module 
implementation that will construct the TXs to 

submit 
A configuration with the above structure will define a benchmark run that consists of multiple rounds. 
Each round is associated with a rate controller that is responsible for the scheduling of transactions 
(TXs) and a workload module that will generate the actual content of the scheduled TXs. 

The benchmarking included various transaction rates, ranging from 100 to 1300 TPS in fixed steps 
(Table 7). Each test round lasted 60 seconds, with 10 local worker threads generating load. The same 
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application workload was used across all tests. The standard FabCar smart contract was used, 
simulating realistic asset creation scenarios. Also, different network configurations have been used 
with different numbers of orderers and validators ranging from 3 to 20 for the end results to be 
comparable with the NEC’s proposed consensus algorithm and their testing results. The controller of 
choice was fixed rate to simulate a stable transaction load and to mimic a high but stable demand of 
transaction executions. The fixed-rate controller sends transactions at a constant, pre-defined rate 
(i.e., a fixed number of TPS). 

Table 7: Benchmark round parameters 

Parameter Description 

Benchmarking tool Hyperledger Calieper v0.6 

Transaction Rates (TPS) 100 to 1300TPS (in fixed steps of 100) 

Test duration 60 seconds per round 

Load Generation 10 local workers 

Workload createCar transaction for the FabCar smart contract 

Network configuration Varying number of orderers/validators depending on protocol 
(ranging 3 to 20) 

  

5.2.3. Workload generation setup 

A sample of the workload module used for the testing is provided in Figure 24: 
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Figure 24: Workload module 

Workload modules are implemented as Node.JS [38] modules that expose a certain Application 
Programming Interface (API). There are no further restrictions on the implementation, allowing 
developers to implement arbitrary logic (using further arbitrary components). 

These modules are loaded through factory functions, just like other pluggable modules in Hyperledger 
Caliper. Accordingly, a workload module implementation must export a single factory function, named 
“createWorkloadModule”. The factory function must return an instance that implements the 
[WorkloadModuleInterface]. The “submitTransaction” function is the backbone of the workload 
generation. The worker process calls this function every time the rate controller enables the next TX 
and is its responsibility to submit the TX through the connector API. 

5.2.4. Key Performance Metrics 

Hyperledger Caliper provides a detailed set of performance metrics after each benchmarking test, 
helping you evaluate how well a blockchain system performs under load. Table 8 summarizes the key 
metrics Caliper returns and their corresponding descriptions. 
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Table 8: Network performance metrics 

Metric Description 

Success Number of transactions that were successfully submitted and 
confirmed on the blockchain 

Failed Number of transactions that were submitted but failed due to errors 
like timeouts, endorsement issues, or network problems 

Send Rate (TPS) The average number of transactions sent per second during the test. 

Throughput (TPS) The number of successful transactions per second (i.e., how many 
were confirmed on-chain). 

Latency (min/avg/max) 
Time taken for a transaction to go from submission to confirmation. 
Caliper reports the minimum, average, and maximum latency 
values. 

 

5.3. Training with mock Data 

Although ARIMA requires no training in the traditional sense, we validated and fine-tuned its 
performance using mock data designed to replicate expected latency trends under different blockchain 
consensus complexities. Specifically, we generated synthetic datasets, consisting of 500 data points 
with linear and quadratic growth patterns, each affected by random noise relative to the signal 
strength (2%-5%). These datasets emulate how the number of transactions handled by the blockchain 
influences the latency over time. 

In shorter time windows, the number of participating nodes is relatively stable, resulting in latency 
that aligns with a consistent linear-like computational pattern. However, over longer durations, 
network reconfigurations or load variations can cause this complexity to shift, reflecting the distinct 
scalability behavior of each consensus algorithm, either linear or quadratic, depending on the 
blockchain protocol (e.g. RAFT vs. IBFT). 

To evaluate our ARIMA implementation, we applied it to these mock datasets and observed how its 
forecasting accuracy responded to different numbers of input points. As demonstrated in the MAPE 
(Mean Absolute Percentage Error) plots (Figure 25 & Figure 26), the model maintains reliable accuracy 
across increasing input sizes (input window) from 3-70, with error decreasing as more historical points 
are made available. We selected 60 input points (window size) as an effective balance between model 
performance and real-time feasibility. At this range, we observed from Figure 25 that increasing the 
window size beyond 60 points does not significantly reduce the error. A similar plateauing effect is 
visible in Figure 26 as well. This suggests that 60 input points represent a pragmatic compromise 
between the two trends, offering sufficient context for accurate forecasting without overfitting the 
data. As a result, the model is capable of generalizing effectively across both linear and nonlinear 
latency patterns while maintaining robustness against noise. 

The accuracy of the ARIMA model at 60 input points is further confirmed by the predicted vs actual 
latency plots (Figure 27 & Figure 28) for both linear and quadratic mock datasets. In the linear case, 
the model closely tracks the increasing latency with a near-linear slope, achieving a MAPE of 0.029. 
The prediction line almost perfectly overlays the actual values, highlighting ARIMA's capacity to adapt 
to deterministic trends even in the presence of noise. 

In the quadratic case, which emulates longer prediction timeframes and more complex consensus 
mechanisms like IBFT and SBFT, the model also performs well. The predicted curve adheres closely to 
the ground truth across a wide range of transaction counts, resulting in MAPE of 0.013. This shows 
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that the model is capable of capturing curvature in latency growth. These results collectively support 
the robustness and adaptability of ARIMA when used with a 60-point input window. 

The dataset collected using the Hyperledger Caliper framework, as described in the previous section, 
will be used to test our model in 6.1.3, since it represents measurements taken from a simulation and 
are closer to a real-world scenario. 
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Figure 25: MAPE vs Number of input points – Quadratic data 

 

Figure 26: MAPE vs Number of input points – Linear data 
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Figure 27: Real vs Predicted latency – Quadratic data 

 

Figure 28: Real vs Predicted latency – Linear data 
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6. Performance Evaluation 

6.1. Individual Model Evaluation 

6.1.1.  Coverage Probability Prediction Model 

In order to properly evaluate the model for coverage probability prediction (see section 3), we utilise 
the real-world dataset collected by UMU’s testbed. The dataset contains more than 7,300 data 
samples, collected over a 20-minute period that contain over 60 features. Our goal is to utilise the 
trained to model to predict the RSRQ value at any given time, which can then be used to assess the 
coverage probability of the UE. To accomplish this, we formulate a “test dataset” that consists of the 
data collected during the second day of the sampling Campaign. We prepare the dataset for inference 
by performing a data cleansing operation thus, removing invalid values but we refrain from removing 
outliers. 

In order to evaluate our model’s performance, we employ the MAE and MSE metrics. The MAE formula 
is given in section “3.1 Model Design and Methodology”, while the MSE formula is calculated using the 
following equation: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑦𝑦𝑖𝑖  −  𝑥𝑥𝑖𝑖)2𝑛𝑛
1

n
 

Where (similar to MAE formula) 𝑦𝑦𝑖𝑖  is the actual (real) value for data point i, 𝑥𝑥𝑖𝑖  is the model output 
(prediction) and n is the total number of samples used for testing the model. Table 9 depicts the 
evaluation results. The model achieves 0.218 MSE and 0.137 MAE scores, meaning that its predictions 
diverge only by 0.137 (on average) from the real RSRQ values of the UE. This high accuracy is also 
accompanied by a very fast execution time (0.00054 seconds per prediction) which was expected due 
to the lightweight nature of the design. 

Table 9: Coverage probability prediction model evaluation results 

Evaluation metric Score 

MSE 0.218 

MAE 0.137 

Execution time 5.4 ∗ 10−4 seconds per prediction 

Figure 29 illustrates the test predictions of the coverage probability prediction model along with the 
ground truth values for different distances (depicted in meters) between the UE and the Cell tower. As 
the UE moves away from the cell tower, its RSRQ values drop and thus its coverage probability also 
lowers. The model managed to capture this pattern and produced outputs that closely resemble the 
actual RSRQ levels of the UE. 
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Figure 29. Test results of the coverage probability prediction model, over different UE-cell tower distances 

 

6.1.2. Outage Probability Prediction Model 

As formerly indicated, the Outage Probability Prediction model is strongly dependent on the definition 
of the network downlink rate outage. As described in section 4.1.2, four thresholds were considered 
to this end, and the model quality was assessed for each of these thresholds, jointly considering the 
standard metrics:   

• Precision: A measure of XGBoost model predicting positive instances. This metric is defined as 
the ratio of true positive predictions to the number of both true and false positive predictions. 

• Recall: It assesses the performance of the classifier to identify positive instances from the 
actual positive instances contained in the dataset. 

• F1-score: It is defined as the ratio of correct predictions to the total number of predictions and 
is a measure of outage probability prediction performance; this metric assesses how well the 
XGBoost model performs in terms of balancing precision and recall and is indicative of how 
efficiently false positives and false negatives are reduced. 

• Accuracy: It is defined as the ratio of correct predictions to the total number of predictions and 
is a measure of outage probability prediction performance. 

Table 10 sumamrizes the various threshold values utilized for each one of the testing sessions for the 
AINQM module, along with the metrics that were derived from these sessions. It is quite apparent 
that the quantile experimental threshold outperforms, notwithstanding the solid performance of 
every other model, the rest of the models. 
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Table 10: XG Boost Performance Metrics for Four Thresholds Applied 

Threshold Accuracy ROC-AUC Precision Recall F1 
0.014 (mean) 0.961 0.984 0.959 0.963 0.960 

0.006 
(quantile) 0.972 0.987 0.966 0.970 0.968 

0.01 (URLLC) 0.95 0.972 0.945 0.942 0.943 
0.03 (MTC) 0.987 0.988 0.872 0.872 0.872 

The confusion matrices for each of the aforementioned four thresholds applied to determine outage 
events, along with the ROC curves, are provided in Figure 30, Figure 31, Figure 32 and Figure 33, 
clearly depicting XGBoost model performance for each of the four rate thresholds considered. 
 

 

Figure 30: Confusion matrix for Average Threshold Case 
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Figure 31: Confusion Matrix for Quantile Threshold Case 
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Figure 32: Confusion matrix for URLLC service-related threshold case 
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Figure 33: Confusion matrix for MTC service-related threshold case 

 
Figure 34: ROC curves for all four thresholds cases 
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Let it be noted here that the receiver operating characteristic curves (ROC Curves) plot (Figure 34) has 
the true positive rate (TPR or recall) versus the false positive rate for each of the thresholds considered. 
The diagonal curve represents a random classifier not being able to distinguish between the outage 
and availability classes, and the aim is to train a model that is represented above this diagonal. The 
area under the curve (AUC) indicates how many correct positive classifications can be achieved. The 
ROC curve is a probability curve and the AUC measures the separability, that is, the ability of the model 
to distinguish between the two categories. The higher the AUC, the better the model performs in 
classification.  

Of particular importance it is to declare that the metrics that are taken into consideration are the total 
number of them. This is the final criterion for the selection of the optimum model, which is the quantile 
threshold-related model. Of particular interest and merit is F1-score, as the harmonic mean of 
precision and recall. This is due to the fact that both false positives and false negatives bear a special 
significance for the Outage Probability Prediction Model. The quantile model that we've finally picked 
did excel overall and particularly when it comes to these particular metrics. 

 

6.1.3. Latency Prediction Model 

To validate the ARIMA model under more realistic conditions, we applied it to the dataset generated 
via the Hyperledger Caliper framework, described in Section 5.2. This dataset captures the latency of 
blockchain operations for four consensus mechanisms RAFT, QBFT, IBFT, and SBFT, under simulated 
transaction loads. 

Using a 60-point input window (as established in our mock data experiments), we forecasted latency 
values and compared them against actual measurements for each protocol. The following plots 
illustrate the alignment between predicted and observed values. 

• IBFT and QBFT: Both consensus algorithms exhibit a consistent upward latency trend with 
increasing transaction load (Figure 35 & Figure 36). The ARIMA model demonstrates excellent 
fit, with MAPE values of 0.011 for IBFT and 0.007 for QBFT. These low errors confirm that 
ARIMA effectively captures their structured, gradually increasing latency behavior. 

• RAFT and SBFT: The ARIMA model maintains solid performance on these protocols, showing 
a good fit to the overall latency behavior across the majority of the time series (Figure 37 & 
Figure 38). Notably, the initial segments for both RAFT and SBFT exhibit abrupt spikes in 
latency. These anomalies are due to system startup dynamics, events such as leader election, 
consensus initialization, and synchronization overhead, which occur only at the beginning of 
the measurement process. While the outliers could be removed from the dataset to reduce 
noise and improve MAPE, we chose to retain them to demonstrate the model’s robustness. 
Despite their presence, the model quickly adapts and aligns with the stabilized behavior, 
achieving respectable MAPE values of 0.082 for RAFT and 0.080 for SBFT. 

Table 11 reports the MAPE for each blockchain protocol. 

Table 11: MAPE per Consensus Protocol 

Consensus Protocol MAPE 
IBFT 0.011 
QBFT 0.007 
RAFT 0.082 
SBFT 0.080 
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These results confirm that the ARIMA model, is able to generalize across diverse blockchain latency 
behaviors when provided with a modest historical context. Despite the noise and variability in real 
workloads, the model remains robust. 
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Figure 35: Real vs Predicted latency – IBFT 

 

Figure 36: Real vs Predicted latency – QBFT 
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Figure 37: Real vs Predicted latency – RAFT 

 

Figure 38: Real vs Predicted latency – SBFT  

6.2. Complexity vs. Security Trade-offs in Consensus Protocols 

Evaluating consensus protocols involves more than comparing metrics like latency or throughput; it 
requires a clear understanding of the assumptions they make, the environments they are designed for, 
and the nature of the faults they are built to tolerate [39]. In this section, we contrast several consensus 
mechanisms RAFT, QBFT, IBFT, SBFT and FastBFT [40], across the axes of communication complexity, 
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fault tolerance, and suitability for real-world deployment. This analysis builds upon the overview of 
section 5.1.1, providing a more detailed comparison. 

RAFT: Simplicity for Trusted Environments 

RAFT is a CFT protocol, meaning it assumes that faulty nodes simply stop responding rather than 
behaving maliciously. This makes RAFT ideal for environments where nodes are managed centrally or 
are otherwise trusted to behave correctly. The protocol is straightforward, leader-based, and involves 
only 𝑂𝑂(𝑛𝑛) message complexity, as the leader communicates directly with all followers and awaits 
acknowledgments from a majority. 

The benefit of RAFT lies in its simplicity and performance. Because it does not attempt to protect 
against arbitrary or Byzantine behavior, it avoids the overhead associated with complex verification or 
quorum intersection logic. This makes it highly scalable and low-latency in practice. 

However, this same simplicity is its primary limitation. RAFT cannot function correctly if nodes behave 
maliciously for example, sending conflicting messages or selectively withholding data. In adversarial 
settings or consortium blockchains where participants may not fully trust one another, RAFT's 
guarantees are insufficient. 

QBFT and IBFT: Strong Guarantees at a Cost 

Both QBFT and IBFT are designed to tolerate Byzantine faults, where nodes can behave arbitrarily, 
including maliciously. They achieve this by relying on multiple rounds of all-to-all communication to 
establish consensus through majority agreement among a supermajority of nodes (typically 
approximately 2/3). 

The major strength of these protocols lies in their robustness, as they can continue to operate securely 
even when some nodes attempt to subvert the system. This is essential in decentralized settings where 
full trust among participants cannot be assumed. 

The cost of this robustness, however, is their quadratic message complexity: 𝑂𝑂(𝑛𝑛2). As the number of 
participants grows, so does the number of messages that must be sent and validated, leading to 
increasing latency and decreased throughput. These limitations have historically constrained their 
scalability, making them best suited for smaller permissioned networks or environments where 
security is prioritized over raw performance. 

SBFT: Balancing Robustness and Efficiency 

SBFT was introduced to address the scalability issues of traditional BFT protocols while maintaining 
their strong fault tolerance properties. It uses techniques like threshold cryptography and collector 
nodes to reduce the communication complexity to 𝑂𝑂(𝑛𝑛), even under Byzantine conditions. 

This innovation allows SBFT to scale better than classical BFT protocols while still withstanding up to 
⌊(𝑛𝑛 − 1)/3⌋ Byzantine faults. In practical terms, SBFT can deliver higher throughput and lower latency 
than QBFT or IBFT in larger networks, without compromising on security. 

Despite its advantages, SBFT remains relatively complex to implement and tune, especially due to its 
reliance on advanced cryptographic techniques. Moreover, while its message complexity is improved, 
the computational cost of threshold signature operations may become a bottleneck in resource-
constrained environments. 
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FastBFT: Hardware-Accelerated Consensus for High Performance 

FastBFT, described in detail in NANCY D5.2 ‘NANCY Security and Privacy Distributed Blockchain-based 
Mechanisms’, represents a newer class of Byzantine fault-tolerant protocols that combine 
cryptographic message aggregation with trusted hardware. Unlike traditional approaches that rely 
heavily on cryptographic signatures for quorum verification, FastBFT uses Trusted Execution 
Environments (TEEs) to perform lightweight secret sharing and aggregation operations in a secure 
enclave. 

FastBFT achieves linear message complexity 𝑂𝑂(𝑛𝑛), while preserving Byzantine fault tolerance. This 
makes it particularly attractive for high-throughput blockchain systems where both performance and 
security are essential. FastBFT further organizes its nodes in a tree topology to minimize bottlenecks 
during aggregation phases and employs an optimistic execution model in the common case, falling 
back to a classical BFT mode only under failure. 

The inclusion of hardware-assisted security is both its strength and its caveat. FastBFT can deliver 
performance comparable to CFT protocols like RAFT, but it assumes the presence of trustworthy TEEs 
and depends on their correct functioning. 

Summary of Trade-offs 

Each protocol embodies a different set of trade-offs between scalability, fault tolerance, and 
implementation complexity: 

• RAFT is optimal when simplicity and CFT are sufficient, but breaks down in the face of malicious 
behavior. 

• QBFT/IBFT provide robust Byzantine protection but suffer from scalability limits due to their 
quadratic communication patterns. 

• SBFT introduces optimizations that reduce message complexity, making Byzantine protection 
more viable at scale, though with higher computational overhead. 

• FastBFT achieves the most favorable balance by leveraging hardware to offload cryptographic 
costs, delivering low latency and high throughput under Byzantine assumptions, but at the cost 
of relying on secure hardware infrastructure. 

6.3. Evaluation via theory: Point Processes 

6.3.1. Theoretical background: Poison Point Process 

The Poisson Point Process (PPP)-based model [41] is a widely used theoretical framework in wireless 
network analysis. It stems from stochastic geometry, a field of applied mathematics that models spatial 
configurations of random objects. In the context of wireless communication, PPP is used to model the 
spatial distribution of BSs, assuming they are deployed at random positions over an infinite plane [42] 
[43]. 

The PPP-based model offers a powerful compromise, compared to real-world conditions: 

• Tractability: It leads to elegant, often closed-form expressions for critical network 
performance metrics. 

• Averaged Performance: It provides statistical averages over many possible network 
topologies, useful for macro-level planning. 

• Baseline Comparisons: PPP models serve as a theoretical benchmark to compare against 
practical deployments or simulations. 
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In a PPP-based cellular network model: 

• BSs are distributed according to a homogeneous PPP with density 𝜆𝜆 (units: BSs/m). 
• Users are also randomly located and connect to their nearest BS. 
• Signal propagation follows a path loss law, where 𝑟𝑟−𝛼𝛼 is the distance and 𝑟𝑟 the path loss 

exponent. 
• Interference comes from all other BSs, modelled as a Poisson shot noise process. 
• Rayleigh fading [44] 
•  is typically assumed, meaning received power follows an exponential distribution. 

Given this setup, the coverage probability 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) is defined as: 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 > 𝜃𝜃) 

Where 𝜃𝜃  is the Signal to Interference and Noise Ratio (SINR) threshold. 

The coverage probability under PPP with Rayleigh fading and path loss exponent 𝛼𝛼  is given by: 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) =   � 𝑒𝑒−
𝜃𝜃𝜎𝜎2𝑟𝑟𝛼𝛼
𝑃𝑃 −𝜋𝜋𝜋𝜋𝑟𝑟2𝛽𝛽(𝜃𝜃,𝛼𝛼)

∞

 0
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Where: 

• 𝜆𝜆 : density of BSs 
• 𝑃𝑃 : transmit power 
• 𝜎𝜎2 : noise power 

• 𝛽𝛽(𝜃𝜃,𝛼𝛼) = 𝜃𝜃
2
𝛼𝛼  ∫ 1

1+𝑢𝑢
𝑎𝑎
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This integral sometimes simplifies further in special cases (specific path loss exponent 𝛼𝛼 ). 

In this task, we used the PPP model to derive a theoretical coverage probability given our real-world 
parameters (density, power, noise, threshold). It will serve as a ground truth benchmark to compare 
against predictions from ML models and field measurements. 

To this end, we computed the following parameters (Table 12) based on the setup in the UMU campus 
dataset (please refer to section 3.2.2). 

Table 12: PPP parameters 

Parameter Value Source/Explanation 
𝝀𝝀 (BS density) ~1.29e-5 BS/m² From 4 towers within the campus 

bounding box area (≈310,568 m²) 
𝑷𝑷 (Transmit power) ≈1.29e-5 BS/m² Provided network specification 
𝝈𝝈𝟐𝟐(Noise power) ≈ 8.004e-14 W Computed from thermal noise 

formula:  𝜅𝜅𝜅𝜅𝜅𝜅 with 20 MHz 
bandwidth 

𝜶𝜶 (Path loss exponent) 3.0 
Standard for urban environments 
[45] 

𝜽𝜽 (SINR threshold) 1.0 (linear scale, 0 dB) Chosen as a typical minimum 
viable SINR for coverage [46] 
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6.3.2. Pointwise Coverage per-UE 

While the PPP model gives a statistical average over a large region, real-world measurements and 
predictions often require location-specific predictions. Thus, we moved from a global integral to a 
per-user analytical approximation that computes the coverage probability for each UE individually 
based on its distance to nearby towers. 

For each UE, a typical way of achieving this is using a conditional SINR coverage probability under 
Rayleigh fading [47], where the distance to the serving BSs and the distances to interfering towers 
are known or approximated. 

The expression used is: 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−
𝜃𝜃𝜎𝜎2𝑟𝑟𝛼𝛼
𝑃𝑃 ∙�

1

1 + 𝜃𝜃 � 𝑟𝑟𝑑𝑑𝑖𝑖
�
𝛼𝛼

𝑁𝑁

𝑖𝑖=1

 

Where: 

• 𝑟𝑟 : Distance to serving BS 
• 𝑑𝑑𝑖𝑖: Distance to each interfering BS 
• 𝜃𝜃 : SINR threshold 
• 𝑃𝑃 : Transmit power 
• 𝜎𝜎2: Noise power 
• 𝛼𝛼 : Path loss exponent 

This equation assumes Rayleigh fading and independent interference from other towers. 

These values (Table 12) plus the distance to each tower were substituted into the formula and yielded 
an average 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 36% per UE. Compared to the global PPP integral, this per-UE method offers a more 
fine-grained and tailored view of performance at specific user locations. It remains theoretically 
grounded through the use of Rayleigh fading assumptions but incorporates actual or estimated 
distances to interfering towers, making it adaptable to real-world deployment geometry. However, 
even with this added realism, the resulting theoretical coverage probabilities were still significantly 
below reality. In practice, all UE instances experienced successful coverage, often with high SINR 
values. This discrepancy is largely due to the conservative assumptions of Rayleigh fading and the 
model's inability to account for practical interference mitigation techniques like scheduling, 
beamforming, and network optimization. Thus, while theoretically valuable, per-UE analytical 
coverage remains an approximation and should be interpreted with caution in high-quality 
deployment scenarios. 

6.3.3. Improving per-UE coverage estimation: Rician Fading Model 

To improve upon the limitations inherent in Rayleigh fading assumptions, we extended our analysis 
using the Rician fading model [48]. Unlike Rayleigh, which assumes purely non-line-of-sight conditions 
and models the signal amplitude as an exponentially distributed variable, Rician fading introduces a 
deterministic line-of-sight (LoS) component in addition to the random scattered paths. This makes it 
more suitable for real-world urban deployments where dominant paths from base stations to users 
often exist. 

The move to Rician fading directly addresses the underestimation of coverage observed in the 
Rayleigh-based per-UE computations. Since Rayleigh assumes the worst-case signal variability, it is 
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overly pessimistic in environments where the propagation conditions are more stable. By 
incorporating Rician fading, our theoretical model more accurately captured the higher SINR values 
observed in the dataset. 

Mathematically, if ℎ  is the channel gain, the Rician fading distribution describes the amplitude |ℎ| of 
the received signal as a combination of a constant LoS component and a circularly symmetric complex 
Gaussian (Rayleigh) component. The probability density function (PDF) of the Rician-distributed 
amplitude is: 

|ℎ| ∼ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾) 

With PDF: 

𝑓𝑓 |ℎ|(𝑥𝑥) =
𝑥𝑥
𝜎𝜎2

𝑒𝑒
𝑥𝑥2+𝑠𝑠2
2𝜎𝜎2 𝐼𝐼0

𝑥𝑥𝑥𝑥
𝜎𝜎2

 

Where: 

• 𝑠𝑠 : Amplitude of the deterministic LoS component 
• 𝜎𝜎2: Noise power 

• 𝐾𝐾 = 𝑠𝑠2

2𝜎𝜎2
: is the Rician K-factor, representing the ratio of the power in the LoS component to 

the power in the scattered components 

• 𝐼𝐼0(𝑧𝑧) = ∑
�14𝑧𝑧

2�
𝑘𝑘

(𝑘𝑘!)2
∞
𝑘𝑘=0  

A higher K-factor implies a stronger LoS presence, and when 𝐾𝐾 → 0 , the distribution reduces to 
Rayleigh. In contrast, as 𝐾𝐾 → ∞ , the distribution becomes more deterministic, approaching an AWGN-
like behavior. 

When computing coverage probability under Rician fading, the key mathematical tool is the moment 
generating function (MGF) of the fading distribution. For a given path loss and SINR threshold 𝜃𝜃 , and 
assuming a path loss of 𝑟𝑟−𝛼𝛼, the Laplace transform of the interference term under Rician fading 
includes [49]: 

𝑀𝑀ℎ(𝑠𝑠) =
(1 + 𝐾𝐾)𝑒𝑒−𝐾𝐾

1 + 𝑠𝑠
𝑒𝑒

𝐾𝐾
1+𝑠𝑠 

Where 𝑠𝑠 = 𝜃𝜃𝑟𝑟2𝜎𝜎2

𝑃𝑃
. This expression replaces the simpler exponential decay 𝑒𝑒−𝑠𝑠 used in Rayleigh-based 

analysis, reflecting the more stable received power due to the LoS path. 

This MGF is then integrated similarly to the PPP-based expressions, or applied in conditional SINR 
probability formulas, to compute per-UE coverage probability. The result is a model that more 
faithfully represents environments with semi-predictable signal behavior, like urban streets, 
campuses, or open areas with tower LoS. 

By incorporating Rician fading, our theoretical model more accurately captured the higher SINR values 
observed in the dataset. Consequently, the coverage probabilities predicted using Rician fading will 
align much more closely with reality. 

6.3.4. Model vs Theory vs Reality 

In this section, we perform a direct comparison between our trained machine learning-based coverage 
prediction model, the theoretical predictions from the Rician fading model, and the actual coverage 
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conditions recorded in UMU dataset. Our goal is to evaluate how well theory aligns with reality, and 
how effectively our model bridges that gap. 

For this analysis, we rely on the per-UE, distance-based coverage predictions calculated using the 
Rician fading model. This theoretical framework, as described in the previous section, is based on point 
process theory but incorporates a deterministic LoS component, making it more reflective of real-
world urban deployments. 

To determine whether a UE was in coverage or not according to the real measurements, we applied a 
simple thresholding rule to the recorded RSRQ values. Specifically, any user with a recorded real_rsrq 
greater than -15 dB [50] was considered to be in coverage. This binary labelling provided the ground 
truth for comparison. This binary labelling provided the ground truth for comparison. 

We then compared this empirical coverage outcome to two other indicators: 

1. The predicted coverage label from our machine learning model. 
2. The theoretical coverage probability is computed using the Rician fading model. 

By aligning these three sources of coverage information, we were able to quantitatively assess the 
accuracy of both our predictive model and the theoretical approximation, relative to the actual 
behavior of the 5G network in the field. 

The results of our comparison are summarized in Table 13. We measured the accuracy of the model 
predictions and theoretical Rician fading-based estimates against the real-world coverage outcomes, 
defined via the RSRQ threshold. The machine learning model achieved an accuracy of 98%, while the 
Rician fading model achieved an accuracy of approximately 92.3%. This performance confirms that the 
ML-based approach aligns better with real-world measurements than the theoretical mathematical 
model based on point process theory. 

Table 13: Predicted vs Theoretical vs Real Coverage 

Comparison Accuracy 
Predicted Coverage vs Real Measurement 98.0% 
Theoretical vs Real Measurement 92.3% 
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7. Conclusion 

This deliverable presented a detailed and practical NIF that helps the users study and improve B-RANs 
in different types of real-world setups. Using smart AI models, the system makes it easier to look at 
how networks perform and make better choices based on real data. 

Three AI prediction models were developed that focus on three main network metrics: coverage, 
outage, and Blockchain-induced latency. Each model was trained and tested using either open data or 
the NANCY testbeds, making sure they work well in practice and not just in theory. 

The Coverage Prediction Model was trained using transfer learning with data from the University of 
Murcia’s NANCY testbed. It showed good performance by predicting RSRQ values with a low error. 
More specifically, a MAE of 0.137 and a MSE of 0.218 were achieved. Furthermore, it has very low 
execution time, as it takes less than 1 millisecond per prediction. This makes it highly suitable for real-
time network assessments. 

The Outage Prediction Model used data from the Colosseum dataset. Different threshold levels were 
tested, and it was found that the quantile threshold gives the best results, especially on the F1-score. 
This is a metric of major importance, given the need to minimize both false positives and false 
negatives in outage detection. The high ROC-AUC values across configurations underscore the 
reliability of this model in identifying network disruptions under varying service quality requirements. 

The Latency Prediction Model, grounded in ARIMA time series forecasting, addresses a unique 
challenge: assessing the latency impact of diverse blockchain consensus protocols. Applied to 
transaction data generated via Hyperledger Caliper, the model successfully generalized across IBFT, 
QBFT, RAFT, and SBFT protocols, with MAPEs as low as 0.07 for QBFT and 0.011 for IBFT. We also 
explored the trade-off between security and latency in consensus protocols, highlighting the 
performance implications of various design choices. 

Finally, we evaluated the coverage prediction model using theoretical point process modelling, 
specifically incorporating both Rayleigh and Rician fading assumptions. This allowed us to establish a 
principled baseline grounded in wireless communication and point process theory. By comparing these 
theoretical estimates to the machine learning model's predictions and to real-world measurement 
data, we were able to assess the fidelity of each approach. The trained model demonstrated alignment 
with the measured data, validating its effectiveness in practical deployments. 

All these features come together in an easy-to-use web platform where users can upload data, run 
tests, and see network performance results. It's not just a tool, but a helpful system for better planning 
and decision-making in B-RANs. 
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