

An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term
Evolution [GA: 101096456]

Deliverable 2.3

NANCY Network Information Framework

Programme: HORIZON-JU-SNS-2022-STREAM-A-01-06

Start Date: 01 January 2023

Duration: 36 Months

NANCY project has received funding from the Smart Networks and Services Joint Undertaking
(SNS JU) under the European Union's Horizon Europe research and innovation programme under
Grant Agreement No 101096456.

D2.3 – NANCY Network Information Framework

2

Document Control Page

Deliverable Name NANCY Network Information Framework

Deliverable Number D2.3

Work Package WP2 ‘Usage Scenario and B-RAN Modelling, Network Requirements, and

Research Framework’

Associated Task T2.3 ‘Network Information Framework Development’

Dissemination Level Public

Due Date 30 June 2025 (M30)

Completion Date 26 June 2025

Submission Date 30 June 2025

Deliverable Lead Partner 8BELLS

Deliverable Author(s) Ilias Theodoropoulos (8BELLS), Stratos Vamvourellis (8BELLS), Athanasios
Tziouvaras (Bi2S), Ramon Sanchez-Iborra (UMU), Rodrigo Asensio-Garriga (UMU),
Stylianos Trevlakis (INNO), Lamprini Mitsiou (INNO), Eirini Gkarnetidou (INNO),
Giorgos-Nektarios Panayotidis (CERTH), Theofanis Xifilidis (CERTH), Dimitris
Kavallieros (CERTH), Charalambos Eleftheriadis (SID), George Michoulis (SID),
George Niotis (SID), Dimitrios-Christos Asimopoulos (MINDS), Ioannis Makris
(MINDS), Nikolaos Ntampakis (MINDS), Panagiotis Sarigiannidis (UOWM), Thomas
Lagkas (UOWM), Athanasios Liatifis (UOWM), Dimitrios Pliatsios (UOWM), Sotirios
Tegos (UOWM), Nikolaos Mitsiou (UOWM), Vasiliki Koutsioumpa (UOWM), Pigi
Papanikolaou (UOWM)

Version 1.0

Document History

Version Date Change History Author(s) Organisation

0.1
04 April
2025 ToC preparation

Ilias
Theodoropoulos,
Stratos Vamvourellis

8BELLS

0.2
20 April
2025 Section 5.2

Charalambos
Eleftheriadis, George
Michoulis, George
Niotis, Dimitrios-
Christos
Asimopoulos,
Ioannis Makris,
Nikolaos Ntampakis

SID, MINDS

0.3

15 May 2025
Added text regarding the
coverage probability prediction
model

Tziouvaras
Athanasios

Bi2S

D2.3 – NANCY Network Information Framework

3

20 May 2025
Revised text regarding the
coverage probability prediction
model

Tziouvaras
Athanasios

Bi2S

23 May 2025 Section 5.1 Stratos Vamvourellis 8BELLS

0.4
28 May 2025

Added references, dataset
descriptions and refined
contributions

Tziouvaras
Athanasios

Bi2S

29 May 2025 Sections 1.2, 2.1 Ilias Theodoropoulos 8BELLS

0.5

02 June
2025

Section 6.2 Stratos Vamvourellis 8BELLS

02 June
2025

Section 3.2.2
Ramon Sanchez-
Iborra, Rodrigo
Asensio-Garriga

UMU

02 June
2025

Sections 4, 6.1.2

Giorgos-Nektarios
Panayotidis,
Theofanis Xifilidis,
Dimitris Kavallieros

CERTH

02 June
2025

Section 2.3
Stylianos Trevlakis,
Lamprini Mitsiou,
Eirini Gkarnetidou

INNO

0.6

03 June
2025

Sections 5.3, 6.1.3 Stratos Vamvourellis 8BELLS

04 June
2025

Completed Section 1 & Executive
Summary, Started Section 2.2

Ilias Theodoropoulos 8BELLS

0.7

05 June
2025

Completed Sections 2 and 7 Ilias Theodoropoulos 8BELLS

06 June
2025

Addressed comments, reviewed
contributions

Stratos Vamvourellis 8BELLS

0.8

11 June
2025

Section 6.3 Stratos Vamvourellis 8BELLS

12 June
2025

Added citations, formatting
tables, figures etc.

1st Draft Ready for Internal
Review

Stratos Vamvourellis 8BELLS

0.9
20 June
2025

Addressing internal review
comments

Ilias
Theodoropoulos,
Stratos
Vamvourellis,
Tziouvaras
Athanasios, Giorgos-
Nektarios
Panayotidis

8BELLS, Bi2S, CERTH

D2.3 – NANCY Network Information Framework

4

1.0
26 June
2025

Final version after quality
revisions

Panagiotis
Sarigiannidis,
Thomas Lagkas,
Athanasios Liatifis,
Dimitrios Pliatsios,
Sotirios Tegos,
Nikolaos Mitsiou,
Vasiliki
Koutsioumpa, Pigi
Papanikolaou

UOWM

Internal Review History

Name Organisation Date

Stylianos Trevlakis INNO 16 June 2025

Maria Belesioti OTE 17 June 2025

Quality Manager Revision

Name Organisation Date
Anna Triantafyllou, Dimitrios

Pliatsios
UOWM 26 June 2025

Legal Notice

The information in this document is subject to change without notice.
The Members of the NANCY Consortium make no warranty of any kind about this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the NANCY Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.
Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or SNS JU. Neither the European
Union nor the SNS JU can be held responsible for them.

D2.3 – NANCY Network Information Framework

5

Table of Contents
Table of Contents .. 5

List of Figures ... 7

List of Tables .. 8

List of Acronyms .. 9

Executive summary ... 11

1. Introduction ... 12

1.1. Purpose of the Deliverable .. 12

1.2. Structure of the Document ... 12

2. NIF Overview ... 13

2.1. NIF Architecture .. 13

2.1.1. Architectural components ... 13

2.1.2. Technical Implementation Details ... 14

2.1.3. NIF Hosting .. 15

2.2. NIF Graphical User Interface ... 15

2.2.1. Authentication ... 16

2.2.2. Home Dashboard ... 17

2.2.3. Data Import ... 18

2.2.4. File Management ... 19

2.2.5. Visualization Dashboard .. 20

2.2.6. User Information ... 24

2.3. NIF Placement within NANCY .. 24

3. Coverage Probability Prediction .. 26

3.1. Model Design and Methodology ... 26

3.2. Data Collection .. 30

3.2.1. Publicly available data ... 30

3.2.2. NANCY dataset .. 30

3.3. Training with Open Data and NANCY Data.. 36

4. Outage Probability Prediction ... 38

4.1. Model Design and Methodology ... 39

4.1.1. Model choice and justification .. 39

4.1.2. Model implementation ... 39

4.2. Data Collection .. 40

4.3. Training with Open Data ... 41

5. Latency Prediction ... 42

D2.3 – NANCY Network Information Framework

6

5.1. Model Design and Methodology ... 42

5.1.1. Blockchain consensus mechanisms overview ... 42

5.1.2. Model selection ... 44

5.2. Data Collection .. 46

5.2.1. Environment setup .. 46

5.2.2. Benchmark configuration .. 47

5.2.3. Workload generation setup .. 48

5.2.4. Key Performance Metrics .. 49

5.3. Training with mock Data ... 50

6. Performance Evaluation .. 54

6.1. Individual Model Evaluation .. 54

6.1.1. Coverage Probability Prediction Model .. 54

6.1.2. Outage Probability Prediction Model .. 55

6.1.3. Latency Prediction Model .. 60

6.2. Complexity vs. Security Trade-offs in Consensus Protocols .. 63

6.3. Evaluation via theory: Point Processes ... 65

6.3.1. Theoretical background: Poison Point Process ... 65

6.3.2. Pointwise Coverage per-UE ... 67

6.3.3. Improving per-UE coverage estimation: Rician Fading Model 67

6.3.4. Model vs Theory vs Reality .. 68

7. Conclusion ... 70

Bibliography ... 71

D2.3 – NANCY Network Information Framework

7

List of Figures
Figure 1: NIF’s Architecture ... 13
Figure 2: Authentication Module .. 16
Figure 3: Sign Up Page ... 16
Figure 4: Success Message .. 17
Figure 5: Forgot Password Workflow .. 17
Figure 6: Home Dashboard .. 18
Figure 7: Data Import Module ... 19
Figure 8: Successful Upload Message ... 19
Figure 9: File Management Page ... 19
Figure 10: Visualization Dashboard ... 20
Figure 11: Outage Prediction... 20
Figure 12: Coverage Prediction (1) .. 21
Figure 13: Coverage Prediction (2) .. 22
Figure 14: Coverage Prediction (3) .. 22
Figure 15: Latency Prediction .. 23
Figure 16: User Information .. 24
Figure 17: Functional and deployment view of the NANCY architecture ... 25
Figure 18: The overall architecture of an MLP model ... 26
Figure 19. The methodology employed by NANCY to design and train the MLP model 28
Figure 20: Sampling Routes Map ... 31
Figure 21: Monitoring Unit - Testing Vehicle .. 32
Figure 22. MLP training performance during the transfer learning process ... 37
Figure 23: Benchmark config file ... 47
Figure 24: Workload module ... 49
Figure 25: MAPE vs Number of input points – Quadratic data ... 52
Figure 26: MAPE vs Number of input points – Linear data ... 52
Figure 27: Real vs Predicted latency – Quadratic data .. 53
Figure 28: Real vs Predicted latency – Linear data .. 53
Figure 29. Test results of the coverage probability prediction model, over different UE-cell tower
distances .. 55
Figure 30: Confusion matrix for Average Threshold Case ... 56
Figure 31: Confusion Matrix for Quantile Threshold Case .. 57
Figure 32: Confusion matrix for URLLC service-related threshold case .. 58
Figure 33: Confusion matrix for MTC service-related threshold case ... 59
Figure 34: ROC curves for all four thresholds cases .. 59
Figure 35: Real vs Predicted latency – IBFT ... 62
Figure 36: Real vs Predicted latency – QBFT ... 62
Figure 37: Real vs Predicted latency – RAFT.. 63
Figure 38: Real vs Predicted latency – SBFT .. 63

D2.3 – NANCY Network Information Framework

8

List of Tables
Table 1. Parameter details of the MLP architecture and training process ... 28
Table 2: Dataset Features .. 33
Table 3: Blockchain Consensus Protocols Summary ... 42
Table 4: Systems Under Test (SUTs) .. 46
Table 5: Workstation specifications .. 46
Table 6: Benchmark configuration explanation .. 47
Table 7: Benchmark round parameters .. 48
Table 8: Network performance metrics .. 50
Table 9: Coverage probability prediction model evaluation results ... 54
Table 10: XG Boost Performance Metrics for Four Thresholds Applied ... 56
Table 11: MAPE per Consensus Protocol .. 60
Table 12: PPP parameters ... 66
Table 13: Predicted vs Theoretical vs Real Coverage .. 69

D2.3 – NANCY Network Information Framework

9

List of Acronyms
Acronym Explanation
AINQM Artificial Intelligence Network Quality Module

ANN Artificial Neural Network
API Application Programming Interface

ARIMA AutoRegressive Integrated Moving Average
AUC Area Under Curve
B5G Beyond 5G
BFT Byzantine Fault Tolerance

B-RANs Blockchain-based Radio Access Networks
BS Base Station

CDMA/H-DR Code Division Multiple Access / High Data Rate
CFT Crash Fault Tolerant
CQI Channel Quality Indicator
dB Decibel

dBm Decibels relative to one milliwatt
emBB Enhanced Mobile Broadband
FDD Frequency Division Duplex
GPU Graphics Processing Unit
GUI Graphical User Interface

HDOP/PDOP Horizontal/Position Dilution of Precision
IBFT Istanbul Byzantine Fault Tolerance
LoS line-of-sight
LTE Long Term Evolution

MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
Mbps Megabits per second
MGF Moment Generating Function
ML Machine Learning

MLP Multi Layered Perceptron
mmTC Massive Machine Type Communications
MSE Mean Squared Error
MTC Machine Type Communications
NCGI Network Cell Global Identity
NIF Network Information Framework

NR5G New Radio 5G
O-RAN Open Radio Access Network
ORM Object-Relational Mapping
PCI Physical Cell ID
PDF Probability Density Function

PLMN Public Land Mobile Network
PPP Poisson Point Process

QBFT Quorum-based Byzantine Fault Tolerance
QMI WDS Qualcomm MSM Interface Wireless Data Services

RAFT Reliable, Replicated, and Fault Tolerant

D2.3 – NANCY Network Information Framework

10

RAT Radio Access Technology
ROC Curve Receiver Operating Characteristic Curve

RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
SBFT Scalable Byzantine Fault Tolerance
SINR Signal to Interference plus Noise Ratio
SINR Signal to Interference and Noise Ratio
SNR Signal to Noise Ratio
SVM Support Vector Machine
TCP Transmission Control Protocol
TDD Time Division Duplex
TEEs Trusted Execution Environments
TPS Transactions Per Second / Throughput
TX Transactions

TX rate Transmission Rate
UDP User Datagram Protocol
UE User Equipment
UI User Interface

UMTS Universal Mobile Telecommunications Service
URLLC Ultra-Reliable Low Latency Communications

XGBoost eXtreme Gradient Boosting

D2.3 – NANCY Network Information Framework

11

Executive summary
This deliverable presents the development and implementation of a comprehensive Network
Information Framework (NIF) tailored specifically to help users assess and optimize Blockchain-based
Radio Access Networks (B-RANs) across diverse deployment environments. Central to this initiative
was the creation of three advanced AI-driven predictive models targeting key network performance
indicators: coverage probability, outage probability, and network latency.

The Coverage Probability Prediction Model was trained on datasets reflecting realistic urban
environments, ensuring its effectiveness in predicting the reliability and reach of network coverage
within densely populated areas. One of the datasets used by the model was produced by NANCY at
the University of Murcia’s 5G deployment. Meanwhile, the Outage Probability Prediction Model
capitalized on the established and robust urban Colosseum dataset [1], known for its precise
simulation of urban network disruptions, to enhance the accuracy of predictions regarding network
outages.

The Latency Prediction Model evaluates the performance implications of various blockchain
consensus mechanisms. It was developed and validated using datasets derived from four distinct
blockchain consensus protocols, providing comparative insights and decision-making capabilities in
selecting consensus strategies aligned with performance goals. In order to have a more complete
analysis, the trade-offs between complexity and security have also been assessed and documented.

The developed AI models have been integrated into an interactive web-based platform, enabling users
to upload datasets, execute predictions, and conduct immediate network performance evaluations.

D2.3 – NANCY Network Information Framework

12

1. Introduction
B-RANs represent a novel integration of blockchain's decentralized security and control mechanisms
into wireless network architectures. As wireless networks face increasing complexity and higher
performance demands, robust predictive frameworks are crucial for accurate and reliable
performance assessments [2]. This deliverable introduces a NIF equipped with AI-driven predictive
models designed specifically to quantify coverage probability, outage probability, and blockchain-
induced network latency in B-RAN environments.

1.1. Purpose of the Deliverable

This deliverable aims to document the development and validation of the NIF developed under T2.3
‘Network Information Framework Development’and its corresponding AI-driven predictive models,
specifically focusing on the three aforementioned key performance metrics, within B-RAN
configurations. The training of these models is demonstrated using real-world datasets that are
representative of typical urban environments and diverse blockchain consensus mechanisms. The
mathematical foundations and machine-learning workflows are detailed, and the integration of these
models into a user-friendly web platform is outlined. Through this platform, custom network
parameters can be uploaded, consensus configurations can be selected, and instant performance
assessments can be obtained by network engineers and researchers, allowing for data-driven planning
and optimization. Ultimately, both a theoretical exposition of the modelling approach and practical
guidance for employing the NIF to evaluate and enhance B-RAN deployments are provided.

1.2. Structure of the Document

This deliverable is structured in a systematic manner to provide a thorough and coherent overview of
the work conducted throughout T2.3 ‘Network Information Framework Development’. The document
consists of seven main sections, each focusing on a specific area of the task and collectively offering a
complete perspective on the research, methodologies, evaluations, and outcomes.

The deliverable structure is as follows:

• Section 2 - NIF Overiew provides the fundamental aspects of the NIF. It explores the
architecture of the framework, its placement within the NANCY platform, and the
functionalities of the graphical user interface (GUI). This section establishes the technical
foundation for understanding how the NIF integrates into the broader ecosystem and the
significance of its design.

• Section 3 – Coverage Probability Prediction documents the development of the coverage
probability prediction model, along with the data collection and training approaches.

• Section 4 – Outage Probability Predection discusses the coverage outage prediction model,
as well as the data collection and training approaches.

• Section 5- Latency Prediction describes the model used to predict the blockchain-induced
latency, the data collection method, and the training approach.

• Section 6- Performance Evaluation is devoted to evaluating the aforementioned models. It
includes a comprehensive evaluation of the performance of individual models, which is
conducted using both quantitative data and mathematical foundations such as point
processes. The section also examines the trade-off between security and complexity in
consensus mechanisms.

• Section – 7 Conclusion provides a synthesis of the key findings and concludes the deliverable.

D2.3 – NANCY Network Information Framework

13

2. NIF Overview

2.1. NIF Architecture

2.1.1. Architectural components

NIF’s architecture (Figure 1) is designed to be highly modular, interactive, and user-centric, ensuring
that each component contributes meaningfully to a seamless user experience and robust analytical
capability. The architecture integrates several interdependent modules, each having a specific role that
supports secure access, efficient data processing, predictive modelling, and insightful visualizations.

Figure 1: NIF’s Architecture

At the foundation of the system lies the Authentication Module, which governs secure access to the
platform. This module ensures that only verified users interact with the system’s functionalities. It acts
like the first point of entry, employing protocols such as credentials for safeguarding data and
preventing unauthorized access. This is particularly crucial in operational settings where data integrity
must be preserved.

Once authenticated, the user interacts primarily through the User Interface (UI). This interface is
designed for accessibility and efficiency, enabling both novice and expert users to navigate the system
with ease. Through the UI, they can perform many actions: upload datasets from testbeds, configure
the scope of analysis, and see the output predictions of the models generated. UI plays a critical role
in simplifying analytical workflows, offering intuitive controls and guidance that help users at each
step.

Data ingestion is being handled by the Data Import Module, which manages user-uploaded datasets.
This module supports a variety of data formats, including CSVs and JSONs, making it compatible with
experimental and simulation datasets.

After successful uploading, the data is stored persistently in the Database, a central repository
underpinning the whole framework. The database ensures all imported data, along with metadata and
configurations, is stored in a structured manner. The database also serves as a source for feeding the
data into the predictive engines.

D2.3 – NANCY Network Information Framework

14

At the NIF’s core lie the Predictive Models, a group of AI models developed to quantify network
metrics. These include:

• The Blockchain Latency Prediction Model, which estimates delays in the network under
multiple consensus mechanisms.

• The Coverage Probability Prediction Model, which estimates network signal coverage in urban
areas.

• The Outage Probability Prediction Model, which calculates the service interruptions
probability based on real-world data.

These predictive models' outputs are routed into the Visualization Module, which translates analytics
into visual formats. It renders dashboards and charts that show latency, coverage or outage
likelihoods. These visuals make results more accessible and allow users to make informed decisions.
One can explore the effects of input parameters, compare datasets or derive insights directly from the
UI.

2.1.2. Technical Implementation Details

Framework Selection
NIF is built with Django (Python). Database access is handled entirely through Django’s Object-
Relational Mapping (ORM) with PostgreSQL, supporting migrations and avoiding raw SQL. The
authentication system is extended with role-based permissions for different user groups. The Django
admin interface is customized to manage user accounts and dataset metadata. The AI models are
invoked through Django views and the visualization images are generated server-side and delivered to
the client as static files; users interact with the system via HTML forms and JavaScript (Fetch API)
without a front-end framework [3].

Authentication Protocols
User authentication in NIF is implemented using Django’s built-in authentication system, which
provides a secure and extensible foundation. During registration, users provide a username, first name,
last name, email address, organization affiliation, and password. All submitted data is processed
through validated Django forms to ensure correctness and security. The login and logout mechanisms
rely on Django’s session-based authentication, maintaining user state through secure server-side
sessions, with CSRF protection automatically applied to all forms and views to prevent cross-site
request forgery attacks. Password management includes a reset process that generates unique email-
based tokens, allowing users to securely reset their passwords when necessary. The system is designed
to support role-based access control through Django’s Groups and Permissions framework, which is
configured to enable future differentiation of user roles, such as regular users, contributors, and
administrators. All communications between the client and server are transmitted over HTTPS,
ensuring encrypted and secure data exchange across the entire platform.

Django’s authentication system follows strong security practices. Passwords are hashed using the
PBKDF2 algorithm by default, with the option to use stronger ones like Argon2 to better protect against
brute-force attacks. The framework also includes built-in protections against common attacks such as
SQL injection, cross-site scripting (XSS), and cross-site request forgery (CSRF). Django regularly updates
its authentication features to fix new security issues, helping keep applications safe and up to date [3].

D2.3 – NANCY Network Information Framework

15

Data Flow Mechanisms

Users begin by uploading CSV or JSON data files through an HTML form, which are saved to the server’s
file system under a structured media directory. Metadata about the uploaded files is stored in the
database.

From the visualization dashboard, the user selects a file and requests a specific analysis (latency,
outage, coverage). The client sends an HTTP GET request to a Django view with the selected file and
analysis type.

The Django view loads the requested CSV/JSON file and performs the model inference using the
aforementioned models. The model outputs are formatted and passed to Matplotlib to generate one
or more visualizations. The resulting plots are saved as static PNG images on the server.

Finally, the browser receives the filename of the generated image from the server and loads the image
into the page. All communication between the client and server is performed through Fetch API calls.

Code Structure
NIF follows Django’s standard project structure, organized into reusable applications (apps):

• accounts: This is a standard Django app for user management, built on Django’s authentication
framework. It handles login, logout, registration, session management, and role-based
permissions. It also manages file uploads, file metadata and extends the Django admin
interface for managing users and datasets.

• models_app: This is a custom Django app that integrates the AI models developed specifically
for NIF. It provides views and templates for running these models on uploaded datasets and
generating visual output. The app handles the execution of model inference and produces
server-side visualizations that are displayed to the user through the web interface.

Database Schema
The NIF database uses PostgreSQL with the following schema:

• Users: username, first name, last name, organization, email, hashed password, account
creation and last login timestamps.

• Datasets: filename, upload date, file type, file size, owner (user ID)

2.1.3. NIF Hosting

The 8BELLS NIF hosting infrastructure provides a robust and reliable environment for managing user
interactions and dataset storage. It features a secure backend database that supports the storage and
retrieval of user information and experimental data efficiently. Additionally, the platform is equipped
with sufficient computational resources to handle the AI/ML model workloads for fast inference.

2.2. NIF Graphical User Interface

The NIF features an intuitive and user-centric GUI designed to streamline interaction and enhance the
efficiency of data-driven analytics. The interface promotes ease of use while supporting complex
predictive functionalities in an accessible manner.

D2.3 – NANCY Network Information Framework

16

2.2.1. Authentication

The authentication module establishes the first layer of user interaction, delivering a secure and
intuitive process for accessing the framework. Upon accessing the application, users are greeted with
distinct Sign Up (Figure 3) and Log In (Figure 2) portals, each crafted with clarity and ease-of-use in
mind. Sign-up requires entering essential personal information-Username, First Name, Last Name,
Email, Organization and a secure Password-ensuring proper user identification and future
communication capabilities.

Figure 2: Authentication Module

Figure 3: Sign Up Page

To enhance the onboarding experience, the sign-up interface integrates modern UX features such as
real-time field validation, tooltips for password requirements, and visual indicators for input errors.
Organization selection is facilitated through a searchable dropdown, promoting accurate user
affiliation with minimal effort. Upon successful account creation, a confirmation message (Figure 4)
reassures users and guides them towards logging in. The Log In screen supports password visibility
toggling and a “Forgot Password” workflow (Figure 5), ensuring accessibility in case of credential
issues.

D2.3 – NANCY Network Information Framework

17

Figure 4: Success Message

Figure 5: Forgot Password Workflow

2.2.2. Home Dashboard

The Home Dashboard (Figure 6) serves as the central hub of the application, immediately presenting
users with the core functionalities offered by the NIF. Designed for quick access and high-level visibility,
the dashboard provides entry points to three principal analytical modules: Latency Prediction,
Coverage Prediction, and Outage Prediction. Each option is visually distinct and accompanied by
descriptive text to help users understand its purpose.

D2.3 – NANCY Network Information Framework

18

Figure 6: Home Dashboard

2.2.3. Data Import

The Data Import module (Figure 7) is a vital component of the framework, enabling integration of
external datasets. Users can upload datasets via a clean, drag-and-drop interface or through a
traditional file selector. Accepted file formats (such as CSVs) are clearly indicated, and users are
prompted to name their files for easy identification. Real-time progress indicators, validation messages
(Figure 8), and post-upload confirmations contribute to a smooth user experience.

D2.3 – NANCY Network Information Framework

19

Figure 7: Data Import Module

Figure 8: Successful Upload Message

2.2.4. File Management

The File Management interface (Figure 9) provides a comprehensive and organized view of all user-
uploaded datasets. It includes a table that lists each dataset along with key metadata such as file name,
upload date, uploader identity, file size, and data type. Users can take action on each dataset, including
viewing its contents, deleting it, or preparing it for analysis.

To enhance user control and transparency, the interface supports bulk actions and confirmation
prompts before deletions. A file versioning system may also be included to track changes over time,
allowing users to revert or compare datasets. This module is crucial for maintaining a clean and
efficient data workspace, especially when handling multiple projects or collaborative workflows across
teams.

Figure 9: File Management Page

D2.3 – NANCY Network Information Framework

20

2.2.5. Visualization Dashboard

Figure 10: Visualization Dashboard

The Visualization Dashboard (Figure 10) is the most critical component of the NIF, as it serves as the
starting point for prediction processes and generates the corresponding visual outputs. Users can
choose a specific prediction engine and apply it to a selected dataset to initiate analysis. Prediction
results are rendered in real time on the same page, enabling users to view and interpret outcomes
without navigating away from the dashboard.

Outage prediction

Figure 11: Outage Prediction

D2.3 – NANCY Network Information Framework

21

Upon generating the plot (Figure 11), the dashboard displays three time-series visualizations. The two
plots on the left represent two of the input features used by the outage prediction model, while the
plot on the right displays the model’s output, indicating predicted outage events over time.

The top-left plot shows the Requested and Granted PRBs over time. PRBs, or Physical Resource Blocks,
are fundamental units of resource allocation in 5G networks. This graph tracks how many PRBs are
requested versus how many are granted at each time point. The difference between these two metrics
can be indicative of network congestion or resource scarcity conditions that may contribute to service
outages. A significant gap between requested and granted PRBs suggests that user or system demands
are not being fully met, which could degrade service quality.

Beneath it, the bottom-left plot illustrates the “Channel Quality Indicator (CQI)” as it changes over
time. The CQI provides a measure of the communication channel's quality, which reflects signal
strength, interference, and overall link reliability. Lower CQI values denote poorer channel conditions,
which are known precursors to data transmission failures and outages. Monitoring CQI allows the
system to assess environmental and network-level conditions that affect connectivity performance.

The right-hand plot displays the output of the outage prediction model and shows the model's
prediction for whether an outage is likely to occur at each point in time. The Y-axis ranges from 0 to 1,
where a value of 1 signifies a predicted outage, and 0 signifies no outage. This binary prediction pattern
allows network operators to visualize the temporal distribution of expected service failures. Frequent
spikes to 1 suggest multiple predicted outage events across the observed timeframe.

Coverage prediction

Figure 12: Coverage Prediction (1)

D2.3 – NANCY Network Information Framework

22

Figure 13: Coverage Prediction (2)

Figure 14: Coverage Prediction (3)

The visual output consists of three distinct but interrelated plots, as shown in Figure 12.

The first visualization (Figure 13) is a 3D plot depicting coverage probability in relation to user
movement. The axes represent:

• X-axis: Longitude

D2.3 – NANCY Network Information Framework

23

• Y-axis: Latitude
• Z-axis (Color scale): Coverage probability

The color gradient, ranging from blue (low) to red (high), indicates the likelihood of maintaining
coverage at each spatial point. Areas with deep blue shades signal low coverage probability, potentially
corresponding to physical obstructions, distance from the Base Station (BS), or environmental
interference. This spatial mapping is crucial for identifying coverage blind spots or weak signal regions.
The cell tower is also marked in this plot.

The second plot (Figure 14) is a time series visualization showing the fluctuation of coverage
probability over a sequence of measurement intervals. The Y-axis reflects the estimated coverage
probability, while the X-axis represents discrete time steps or events. This chart emphasizes how
coverage conditions vary dynamically as the User Equipment (UE) moves. Sharp declines or instability
in this graph can be early indicators of potential handovers, interference zones, or network edge
transitions.

The final plot visualizes the distance of the UE from the serving cell tower over time. This graph
provides essential context for the other plots, as distance is a primary factor influencing signal quality
and coverage reliability. The Y-axis shows the physical distance (likely in meters), and the X-axis
indicates time or event count.

Latency prediction

Figure 15: Latency Prediction

The main component of the output is a single time-series graph (Figure 15), which captures the model's
estimate of latency values across a range of time-indexed events. This particular plot exhibits a clear
upward trajectory, suggesting a gradual increase in latency as the sequence progresses. This rising
pattern may imply growing congestion, potentially due to system overload. The number of orderers of
each consensus mechanism also plays a pivotal role in the system’s latency, as increasing it
corresponds to increased architectural complexity.

D2.3 – NANCY Network Information Framework

24

2.2.6. User Information

Figure 16: User Information

The User Information Management page (Figure 16) offers users complete control over their account
details. Accessible via a dedicated My Account tab, this section displays fields such as Username, First
Name, Last Name, Organization, and Email in an organized layout. Users can review their data and
update their information at any time.

2.3. NIF Placement within NANCY

This section aims to provide a clear placement of the NIF component within the functional and
deployment view of the NANCY architecture. The NIF is designed to be a highly modular, interactive,
and user-centric framework. It integrates several interdependent modules, each contributing
meaningfully to a seamless user experience and robust analytical capability. The architecture of the
NIF, depicted in Figure 1, integrates modules that support secure access, efficient data processing,
predictive modelling, and insightful visualizations. As illustrated in Figure 17, these modules function
together to provide a full toolset aimed at helping users optimize B-RAN system’s performance.

D2.3 – NANCY Network Information Framework

25

Figure 17: Functional and deployment view of the NANCY architecture

In the NANCY project, the NIF provides the necessary AI-aided analytical capabilities for understanding
and improving network performance in Beyond 5G (B5G) environments. Its ability to predict key
performance indicators like latency, coverage, and outage probability allows users to gain nuanced
insights and optimize B-RAN systems.

D2.3 – NANCY Network Information Framework

26

3. Coverage Probability Prediction
This component leverages an AI model to predict the Reference Signal Received Quality (RSRQ) of the
UE. RSRQ, in turn, can be used to estimate the coverage probability of the UE. Thus, our effort focuses
on designing, training and fine-tuning an AI model, capable of producing robust and accurate
predictions which can be used by NANCY’s NIF to assess the coverage probability.

In our case, the term AI is used to describe a collection of algorithms and techniques that produce a
model capable of making predictions, given some input data. In general, the process of designing and
implementing AI models can be compartmentalised into the following phases: (i) model design; (ii)
model training; (iii) model testing, also known as inference. During the model design phase, the main
goal is to find the most appropriate AI model architecture that can fit the data under investigation. For
this reason, we have performed an assessment of existing state-of-the-art methods, while also
considering the characteristics of the data which will be used for model training. During the model
training operation, the model is fed with a training dataset, which is a collection of data samples, and
tries to fine-tune its parameters (also known as weights) in order to better represent the input data.
When the AI model’s weights are adjusted to properly represent the input data, the training process
is completed. In the sequel, during the model testing procedure, the trained AI model is tested with
data that stem outside of the original training dataset. This process reveals how efficiently the trained
model generalises to other data samples. Additionally, within this operation, the trained model
generates predictions using the new input data. In the following subsections, we present the AI model
designed, trained and tested within the NANCY project, to predict the coverage probability of the UE.

3.1. Model Design and Methodology

For the aforementioned task, we opt to utilise a multi layered perceptron (MLP) model. MLPs consist
of several layers (commonly named as “input layer”, “hidden layers” and “output layers”), each layer
containing a set of neurons. Each neuron uses nonlinear activation functions, allowing the network to
learn complex patterns in data. Figure 18 [3], depicts the general architecture of an MLP. We chose
the MLP architecture to solve the RSRQ prediction problem since it provides the following advantages:

Figure 18: The overall architecture of an MLP model

1. Lightweight and fast execution: MLPs provide an advantage compared to other AI models
since their complexity is low. This allows the model to be used in a wide range of hardware

D2.3 – NANCY Network Information Framework

27

devices (from Raspberry Pi devices to commercial processors) without requiring specialised
and costly hardware (e.g. Graphics Processing Units). Our decision to design a lightweight
model does not affect only the computational complexity, but also the amount of energy
consumed by the model. In both training and inference operations, lightweight models
consume less energy compared to complex ones. This is very important for NANCY, as the
project targets green ICT goals and aims to reduce energy consumption in several key modules
of its architecture.

2. Generalisation with varying data sizes: The generalisation property of an Artificial Neural
Network (ANN) is a critical one. Generalisation measures the performance of the trained
model with real-world data during the inference operation. MLP designs can reach adequate
levels of generalisation, if trained properly. The advantage of MLPs is that they can reach this
stage, even when trained with lower amount of data. In contrast with other architectures,
which require very large training datasets, MLPs (if designed correctly) can function well with
smaller datasets. This property has a direct impact on the model overfitting phenomenon,
which can be catastrophic in cases where a low volume of data is fed to an AI model.

3. Flexible fine-tuning: Smaller networks also have higher flexibility when fine-tuning is
considered. During the fine-tuning operation, which is conducted after the model training
completes, a set of heuristic methods is deployed to nudge the model towards better
predictions. Such methods may include layer clipping, low-rank adaptation techniques,
transfer learning operations, layer freezing and model retraining. These processes often
require to partially retrain the model, thus consuming energy and time. When large and
complex models are under consideration, the computational requirements of the fine-tuning
are large and, in most cases, forbid a detailed parameter exploration. On the other hand,
smaller models can be retrained many times without several time or energy penalties, which
empower designers to conduct a detailed exploration of the parameters that affect the model
performance.

The methodology we employed to design this module the fine-tune the model is illustrated in Figure
19 below, and it consists of a training and an inference process.

D2.3 – NANCY Network Information Framework

28

Figure 19. The methodology employed by NANCY to design and train the MLP model

During the machine learning (ML) training process, we first select publicly available data to train the
MLP. More information about the training datasets that are used within this process can be found in
the next subsection. The MLP model architecture along with the parameters of the training process
are described Table 1. The number of layers and neurons of the model were chosen after conducting
a detailed design space exploration with the training datasets. To this end, different model
architectures were tested and their training performances were compared in order to deduce the
optimal design that fits the training data. The current design achieved the best performance and was
chosen for this reason. We should also note that more complex designs (e.g. with more layers or more
neurons per layer) were prone to overfitting and thus were rejected by the consortium. On the other
hand, less complex designs exhibited signs of underfitting and failed to achieve the required model
quality.

Table 1. Parameter details of the MLP architecture and training process

Model type MLP

Number of layers 4

Neurons for each layer 1st layer: 70
2nd layer: 70
3rd layer: 70
4th layer: 1

Activation functions 1st layer: Relu
2nd layer: Relu
3rd layer: Relu
4th layer: Linear

Training epochs 500

Optimizer Adam

Loss functions Mean Absolute Error (MAE)

D2.3 – NANCY Network Information Framework

29

Batch size 10

The activation function used in 1st, 2nd and 3rd layers is the Relu, which can be described using the
following formula:

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0
0, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0

where x represents the input values of the activation functions (which are also the layer neuron
outputs). On the other hand, the 4th layer of the model utilises the linear action function which can be
described using the following equation:

𝑓𝑓(𝑥𝑥) = x

The model training operation outputs a trained MLP model. In the sequel, we check if the MAE
constraints are satisfied. MAE is a metric that measures the absolute difference between the predicted
RSRQ value and the real one and can be calculated using the following formula:

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖|𝑛𝑛
1

n

Where 𝑦𝑦𝑖𝑖 is the actual (real) value for data point i, 𝑥𝑥𝑖𝑖 is the model output (prediction) and n is the total
number of samples used for testing the model.

After the first round of training finishes, we commence a transfer learning operation using the dataset
collected through NANCY’s testbeds. More information about these data is documented in the “data
collection” subsection below. Generally, transfer learning exploits the knowledge gained from a
previous task to improve the model's generalisation for a new task. Transfer learning is frequently used
to retrain a model using new data, instead of initiating a training process from the beginning. In our
case, we leverage transfer learning to nudge the MLP’s weights to better fit the data, which is collected
by NANCY demonstrators. We opt to use the transfer learning technique to increase the
generalisability of the model to NANCY’s demonstrators. A different approach would be to merge the
two training datasets (the LTE Dataset and the NANCY dataset as they are described in section 3.2
below) into one and then train the model using this merged training set. The issue with this approach
is that the LTE dataset is significantly larger than the NANCY dataset. This would nullify the impact of
the data distribution of NANCY’s dataset on the model’s training process. In this sense, the data
distribution of the merged training dataset would represent the data distribution of the LTE Dataset
for the purposes of model training. To account for this, we first train the model only using the LTE
Dataset and then retrain it (using the transfer learning operation) with a different data distribution,
i.e., the NANCY dataset. This choice not only helps the model to generalise to NANCY’s demonstrators,
but also highlights that knowledge transfer operations are fully supported in NANCY’s AI framework.
At the end of this process, we apply fine-tuning optimisations to increase the model quality.

While transfer learning produces a fully trained model which can be used for inference operations;
inference utilises real-world data to perform predictions, using the trained model. The MLPs designed
under this task support two types of outputs: (i) RSRQ prediction and (ii) Probability estimation. RSRQ
prediction is an estimation of the RSRQ value at a given time. Probability estimation generates a range
of possible RSRQ values, along with their corresponding probabilities. Both of those outputs can be
used to assess the coverage probability of a UE, depending on the specifics of the application scenario.

D2.3 – NANCY Network Information Framework

30

3.2. Data Collection

Our MLP methodology utilises two distinct datasets: A dataset that consists of publicly available data
and a NANCY dataset that contains data collected from the UMU testbed.

3.2.1. Publicly available data

We use the “LTE Dataset” [4] which can be downloaded from Kaggle [5]. It contains 135 traces, with
an average duration of fifteen minutes per trace, with viewable throughput ranging from 0 to 173
Mbit/s at a granularity of one sample per second. The dataset consists of several measurements (such
as distance from the Cell tower, UE speed, UE position, RSRP, RSRQ and SNR values) in different
scenarios and within different mobility schemes (bus, car, pedestrian, static and train).

3.2.2. NANCY dataset

This dataset gathers information collected from two sampling campaigns conducted on two different
days in the University of Murcia’s 5G deployment located at the Espinardo Campus of this institution.
It is made publicly available by UMU in Zenodo [6] [7]. Part of this dataset was used to train the
coverage prediction probability model, and other parts were used across the NANCY project.

Campus and experiment description

The experiments were conducted on two different days at the main campus of the University of Murcia
(Espinardo Campus), which is covered by two distinct 5G private mobile‐network operators (MNOs).
Each operator provides overlapping service via two geographically separated cells:

• Operator Nokia
o Cell 50 (Economicas site). Coord: 38.016969, -1.170034
o Cell 51 (Pleiades site). Coord: 38.023726, -1.17311

• Operator AW2S
o Cell 501 (Ática site): Coord: 38.022561, -1.174164.
o Cell 502 (Luis Vives site): Coord: 38.016011, -1.172289.

During sampling Day 1, simultaneous samples from both networks were collected. In Day 2, only data
from AW2S network were taken. The sampling routes start at the main door of the UMU’s Computer
Science Faculty and move around the campus, ensuring that each cell’s coverage area was traversed
multiple times (Figure 20).

D2.3 – NANCY Network Information Framework

31

Figure 20: Sampling Routes Map

5G Network Configuration

As mentioned, two different MNOs provide coverage to the UMU campus. Both networks operate at
a bandwidth of 20 MHz and have two available cells, as depicted in Figure 20, AW2S in red and Nokia
in blue. Nokia operates at 2586.050 MHz, while AW2S operates at 3435.00 MHz bands. Handover
between cells is done in an intra-frequency way, which means that both cells of each operator are
configured to work in the same frequency. Bearer used is default sst:1 and sd:1 with non-guaranteed
bitrate mode. Nokia network is based on Frequency Division Duplex (FDD), while AW2S are based on
Time Division Duplex (TDD).

Hardware and Device Configuration

A single monitoring unit was assembled as follows:

• Host platform: Industrial‐grade embedded computer (x86) with Ubuntu 22.04 LTS, more
concretely a LattePanda v3

• Modems:
o Nokia modem (USB WWAN interface wwan0) Fibocom Fibocom FM160 connected to

Operator Nokia
o AW2S modem (USB WWAN interface wwan1) Fibocom Fibocom FM150 Modem_SN

connected to Operator AW2S
• GNSS receiver (optional): USB GPS dongle, polled via gpsd for geo‐referencing measurements

D2.3 – NANCY Network Information Framework

32

• Power & mounting: All hardware was rack-mounted inside a testing vehicle; antennas were
roof-mounted for optimal signal (Figure 21)

Each modem was registered and configured using the libqmi-glib stack. The monitoring script was set
to distinguish interfaces by name (wwan0 vs. wwan1) and tag each record with the corresponding
operator.

Figure 21: Monitoring Unit - Testing Vehicle

Monitoring Script and Data Collection

A Python script [8] was developed that performs concurrent polling of both modems at fixed intervals,
capturing:

1. Network status & serving system via QMI NAS calls
2. Signal quality metrics (RSRP, SINR, etc.) via QMI NAS signal-info calls
3. Packet‐data statistics (counters and instantaneous channel rates) via Qualcomm MSM

Interface Wireless Data Services (QMI WDS) calls
4. Throughput measurements by differencing cumulative byte‐counters (via psutil) and

converting to kbps
5. GPS data for spatial tagging

Key parameters:

• Polling interval: 1 s for all QMI calls
• Throughput window: 1 s, aligned to the QMI loop (both cumulative‐delta and instant‐rate

computed over the same interval)

D2.3 – NANCY Network Information Framework

33

• Logging format: CSV with separate columns for each metric, plus timestamp.

Traffic characteristics

To test the connection performance, two different experiments were conducted. One is based on
Transmission Control Protocol (TCP) traffic and the other on User Datagram Protocol (UDP) traffic.
Both used the iPerf tool to send as much upload traffic as possible from the UE (iPerf client) to a service
(iPerf server) instantiated in a common cloud. No other traffic was crossing the networks during the
experiments.

Dataset organization

The datasets consist of 6 data files separated into two main folders (day 1 and day 2). In the file names,
it is clearly stated the network and for what kind of traffic correspond the data in the file. The dataset
structure is the following:

• Day 1:
o tcp_aw2s_ 20240325.xlsx
o tcp_nokia_ 20240325.xlsx
o udp_aw2s_ 20240325.xlsx
o udp_nokia_ 20240325.xlsx

• Day 2:
o tcp_aw2s_ 20250126.xlsx
o udp_aw2s_ 20250126.xlsx

Table 2 indicates the collected parameters and their description.

Table 2: Dataset Features

Category Parameter Value

Serving
System nas_value_serving_system_registration_state

Registration state of the
modem (e.g., not

registered, registering,
registered)

Serving
System nas_value_serving_system_cs_attach_state

Circuit-switched (voice)
attach state

(attached/detached)

Serving
System nas_value_serving_system_ps_attach_state

Packet-switched (data)
attach state

(attached/detached)

Serving
System nas_value_serving_system_selected_network

Which Radio Access
Technology (RAT) the

device is currently
camped on (e.g., UMTS,

LTE, NR5G)

Serving
System nas_value_serving_system_radio_interfaces

List/bitmask of available
radio interfaces on the

serving system

Roaming &
PLMN nas_value_roaming_indicator

Indicates if the device is
roaming (domestic vs.

roaming)
Roaming &

PLMN nas_value_current_plmn_mcc Current Mobile Country
Code (numeric)

D2.3 – NANCY Network Information Framework

34

Roaming &
PLMN nas_value_current_plmn_mnc Current Mobile Network

Code (numeric)

Roaming &
PLMN nas_value_current_plmn_description

Human-readable
operator name (PLMN

description)

Legacy Signal
Strength nas_value_signal_strength_strength

Aggregate RSSI or signal-
strength indication (unit

depends on RAT)
Legacy Signal

Strength nas_value_signal_strength_radio_interface The RAT/interface this
strength refers to

Legacy Signal
Strength nas_value_io Interference-over-noise

metric (for CDMA/H-DR)
Legacy Signal

Strength nas_value_sinr Signal-to-interference-
plus-noise ratio (dB)

Legacy Signal
Strength nas_value_5g_signal_strength_rsrp

5G Reference Signal
Received Power (RSRP) in

dBm
Legacy Signal

Strength nas_value_5g_signal_strength_snr 5G Signal-to-Noise Ratio
(dB)

Legacy Signal
Strength nas_value_5g_signal_strength_extended Vendor-specific extended

5G strength metric
Rx-Chain
Diversity nas_value_rx_chain_{0–3}_info_rx_power Per-chain (0–3) receive

power
Rx-Chain
Diversity nas_value_rx_chain_{0–3}_info_ecio Per-chain (0–3) Ec/Io

Rx-Chain
Diversity nas_value_rx_chain_{0–3}_info_rscp Per-chain (0–3) RSCP

Rx-Chain
Diversity nas_value_rx_chain_{0–3}_info_rsrp Per-chain (0–3) RSRP

Rx-Chain
Diversity nas_value_rx_chain_{0–3}_info_phase Per-chain (0–3) antenna

phase angle
Home-

Network Info nas_value_home_network_mcc Home PLMN Mobile
Country Code

Home-
Network Info nas_value_home_network_mnc Home PLMN Mobile

Network Code
Home-

Network Info nas_value_home_network_description Home operator name

Home-
Network Info nas_value_network_name_source How the network name

was derived

NR5G Cell
Details nas_value_nr5g_arfcn

5G Absolute Radio
Frequency Channel

Number
NR5G Cell

Details nas_value_nr5g_cell_information_global_cell_id Global Cell Identifier
(NCGI)

NR5G Cell
Details nas_value_nr5g_cell_information_physical_cell_id Physical Cell ID (PCI)

NR5G Cell
Details nas_value_nr5g_cell_information_plmn PLMN of the serving

NR5G cell
NR5G Cell

Details nas_value_nr5g_cell_information_rsrp NR5G RSRP

D2.3 – NANCY Network Information Framework

35

NR5G Cell
Details nas_value_nr5g_cell_information_rsrq NR5G RSRQ

NR5G Cell
Details nas_value_nr5g_cell_information_snr NR5G Signal-to-Noise

Ratio
NR5G Cell

Details nas_value_nr5g_cell_information_tracking_area_code Tracking Area Code (TAC)

Radio
Interfaces &

Bands

nas_list_radio_interface /
nas_extended_list_radio_interface

Supported/available
radio interfaces

Radio
Interfaces &

Bands

nas_list_active_band_class /
nas_extended_list_active_band_class Active band classes

Radio
Interfaces &

Bands

nas_list_active_channel /
nas_extended_list_active_channel Active channel numbers

Radio
Interfaces &

Bands
nas_bandwidth_list_radio_interface Interfaces for which

bandwidth is reported

Radio
Interfaces &

Bands
nas_bandwidth_list_bandwidth Reported bandwidth per

interface

Packet-Data
Statistics

wds_value_tx_packets_ok /
wds_value_rx_packets_ok

Successfully
sent/received packet

counts
Packet-Data

Statistics
wds_value_tx_packets_error /
wds_value_rx_packets_error Packet error counts

Packet-Data
Statistics wds_value_tx_overflows / wds_value_rx_overflows Overflow event counts

Packet-Data
Statistics wds_value_tx_bytes_ok / wds_value_rx_bytes_ok Total bytes sent/received

Packet-Data
Statistics

wds_value_tx_packets_dropped /
wds_value_rx_packets_dropped Dropped packet counts

Packet-Data
Statistics wds_value_channel_rates_channel_tx_rate_bps Current TX rate (bps)

Packet-Data
Statistics wds_value_channel_rates_channel_rx_rate_bps Current RX rate (bps)

Packet-Data
Statistics wds_value_channel_rates_max_channel_tx_rate_bps Max TX rate since last

reset
Packet-Data

Statistics wds_value_channel_rates_max_channel_rx_rate_bps Max RX rate since last
reset

Packet-Data
Statistics wds_value_connection_status Data bearer status

Throughput throughput_upload_kb / throughput_download_kb KB transferred since last
sample

Throughput throughput_upload_speed_kbps /
throughput_download_speed_kbps

Instantaneous kbps
up/down

GPS Fix Data gpsd_sky_datetime / gpsd_sky_timestamp Sky-view timestamp

GPS Fix Data gpsd_sky_hdop / gpsd_sky_pdop Sky-view dilution of
precision (HDOP/PDOP)

GPS Fix Data gpsd_tpv_datetime / gpsd_tpv_timestamp TPV fix timestamp

D2.3 – NANCY Network Information Framework

36

GPS Fix Data gpsd_tpv_lat / gpsd_tpv_lon / gpsd_tpv_alt /
gpsd_tpv_althea

Latitude, longitude,
altitude, altitude error

GPS Fix Data gpsd_tpv_epx / gpsd_tpv_epy / gpsd_tpv_epv Position error estimates
(meters)

GPS Fix Data gpsd_tpv_speed / gpsd_tpv_eps Speed and its error
estimate

Data preprocessing

For training the coverage probability prediction model, NANCY opted to use the data collected during
the first day of the sampling campaign. To this end, we cleaned the data and removed incomplete
samples before initiating the training and transfer learning operations. More specifically, we
performed the following operations:

1. Data cleansing. During this process, we make sure that the dataset contains valid data values.
To this end, we scan the whole sample space and we remove any data containing letters,
symbols and corrupted information that is non-readable by the models.

2. Outlier removal. Within this process, we remove the top 5% and the bottom 5% of the data
samples in terms of their values. This eliminates data points that deviate significantly from
the rest of the data distribution, as they can negatively impact the performance of a model.

3.3. Training with Open Data and NANCY Data

For the implementation of the MLP and the rest of the components, we used the Python programming
language and leveraged the functionalities of the Keras library. As mentioned in section 3.1, the model
training process consists of two phases: (i) the model training operation, which utilises the “LTE
Dataset” that is publicly available; and (ii) the fine-tuning phase, which utilises the NANCY dataset,
collected through UMU’s testbed. Below, we discuss the details of each phase:

1. The model training process utilized input from the publicly available “LTE Dataset”. More
specifically, we formulated a training set that consisted of 32,000 data samples, with each
sample representing a measurement in a specific time slot. Each data sample had 2 features:
(i) the distance of the UE from the closest cell tower; and the (ii) UE’s SNR measured at the
corresponding timeslot. We split the dataset into the 80%-10%-10% pattern, meaning that
80% of the samples were used as the training set (25,600 samples), 10% of the samples were
used as the validation set (3,200 samples) and 10% of the samples were used as the test set
(3,200 samples). The model was trained to predict the RSRQ value of the UE, given the input
data.

2. The model fine-tuning process, which utilised the trained model (taken from phase 1) and
conducted a transfer learning operation, as described in section 3.1. For this purpose, we
leveraged the UMU dataset that consisted of 2,998 data samples, with each sample
corresponding to two features. The features were the same as in phase 1 of the training
process (i.e., distance of the UE from the cell and the UE’s SNR). We again split the dataset
using the 80%-10%-10% pattern, as follows: The training dataset consisted of 2,398 samples,
the validation set of 300 samples and the test set of 300 samples.

Figure 22 illustrates the MAE loss within the transfer learning process for 500 epochs. We observe that
the model manages to lower the MAE to 0.44, which amounts to an average 4% error rate. We consider
this outcome a very good result, especially considering the fact that both the training and the transfer
learning process require less than 3 minutes to complete.

D2.3 – NANCY Network Information Framework

37

Figure 22. MLP training performance during the transfer learning process

D2.3 – NANCY Network Information Framework

38

4. Outage Probability Prediction

Network outage probability constitutes one of the most prominent performance measures for mobile
cellular networks, as it reflects the overall network availability and its capability to provide seamless
and ubiquitous coverage. B5G networks promise the provision of a wide range of services, each coming
with unique requirements in terms of reliability, latency and throughput. The three main service
categories in these networks, originally defined as Enhanced Mobile Broadband (emBB), Ultra Reliable
and Low Latency Communications (URLLC) and Massive Machine Type Communications (mmTC) in 5G
network services, also extend to the target performance requirements to B5G, namely xmBB, xURLLC
and mmTC+ services. The formalization of these requirements in a more stringent manner extends
from inheriting outage analysis models from 5G while assessing reliability variability, service ultra-low
latency and supported extreme broadband data rate in massive deployments. Thus, next-generation
networking services must adapt to dynamic channel conditions and steer the dynamic radio resource
management process accordingly in decentralized architectures. Consistently satisfying those dynamic
and heterogeneous service requirements is both crucial and challenging for both the network
performance and end user experience. Defining a network outage event as an episode, where one or
more of the performance metrics (e.g., throughput over the radio network) fails to satisfy a
predetermined service-specific threshold, the occurrence of network outage events (interchangeably,
service disruption events) must be minimized.

In particular, the second-order statistics of network outages, such as their frequency and duration, are
directly related to several radio resource management tasks that aim to proactively or reactively cope
with network outage events. These include the power allocation and the transmission rate choice
(jointly making up what is called link adaptation), as well as other fundamental Radio Access Network
(RAN) design choices such as the data block length that is transmitted over the air and the duration of
transmission time slots [9].

Attempts to assess/predict the network outage probability in literature are related to both power-
limited and interference limited regimes [10] and are tightly coupled with fading channel models [11].
Outage probability evaluation proves to be an essential task in the context of multipath diversity and
correlated fading channels in cases where traditional channel models fail to capture [12] realistic
cellular environments and the interference-limited assumption in ultra-dense deployments, as is the
case in B5G networks. In turn, interference in mobile cellular networks is also dependent on the higher
frequency bands [13] to be used in B5G networks with the aim of spectral efficiency. Traditional model-
based and probabilistic [14] [15] approaches to outage probability computation call for numerical
evaluations. Moreover, the closed-form expressions of outage probability are often too complex and
need to be generalized to decentralized topologies and edge intelligent use cases.

A model-based approach to outage probability prediction remains tightly coupled with the channel
estimation stage, thereby increasing complexity as B5G dynamic topologies and time-varying channel
conditions emerge in the model creation step. This model turns out to be an essential prerequisite for
optimizing resource allocation and improving user experience. On the contrary, an ML-powered model
can circumvent the above series of steps, drastically reducing the complexity of prediction. The model
can cater for diverse network features and leverage data to efficiently learn which of those are relevant
and to what extent for predicting rate outages according to derived probability [16] [17].

D2.3 – NANCY Network Information Framework

39

4.1. Model Design and Methodology

4.1.1. Model choice and justification

In the NANCY context, the Outage Probability Prediction module is based on XGBoost (eXtreme
Gradient Boosting), a distributed, open-source ML library that uses gradient-boosted decision trees.
Decision trees [18] are primarily used for classification or regression tasks in ML. They exhibit a
hierarchical structure: an internal node represents a feature, a branch represents a decision rule, and
each leaf node represents the outcome of the dataset.

Boosting is an instance of so-called ensemble methods, which are used to create models with higher
robustness to overfitting. Boosting [19] combines multiple individual weak trees, i.e. models that
perform slightly better than random chance, to form a strong learner. Each such weak model is
sequentially trained to correct the errors made by the previous models. After hundreds of iterations,
weak learners are converted into strong learners.

XGBoost is known to exhibit certain advantages that make it one of the most popular ML algorithms,
especially for structured/tabular data:

• Good predictive performance: XGBoost consistently wins or places highly in ML competitions
(e.g., Kaggle), often outperforming other algorithms like random forests, Support Vector
Machines (SVMs), and traditional gradient boosting.

• Built-in regularization capabilities: it includes L1-regularization (Lasso) and L2- regularization
(Ridge) in the objective function, which help prevent overfitting, a common issue in traditional
boosting methods.

• Built-in handling of missing values: the algorithm automatically learns how to handle missing
data during its training process.

• Flexibility: it supports custom loss functions and evaluation metrics and can be adapted to be
used for classification, regression, and ranking tasks with controllable time complexity

• Good scalability properties: the algorithm lends to efficient implementations leveraging data
structures and parallel processing capabilities in the generation of trees and the parsing of
features.

In addition to these generic advantages, when compared to logistic regression, SVMs, K-Nearest
Neighbors, Random Forests, and Gradient Boosting, XGBoost has emerged as the model with the best
performance overall, in terms of metrics considered in our module, in respect to similar classification
tasks provided publicly available datasets, as in [20], [21], [22].

4.1.2. Model implementation

The model was implemented using the Python statistical and ML library scikit-learn. The input feature
set included the following variables:

• dl_buffer [Amount of data in the downlink buffer]
• tx_pkts downlink [Number of packets transmitted in the downlink]
• dl_cqi [Downlink channel quality index]
• sum_requested_prbs [Total number of Physical Resource Blocks (PRBs) requested by UE]
• sum_granted_prbs [Total number of Physical Resource Blocks (PRBs) granted to UE]

D2.3 – NANCY Network Information Framework

40

Moreover, being directly related to throughput, these features, which are taken from Colosseum ORAN
COMMAG dataset, can be categorized into two groups: the one, comprising dl_cqi, which constitutes
a channel quality indicator, and tx_pkts_downlink, reflects radio link quality, which in turn can lead to
rate outage events; whereas, the second category, including dl_buffer, sum_requested_prbs and
sum_granted_prbs, captures the level of traffic demand in the network. Both delineate the interplay
of environment and networking parameters influencing throughput that is achieved and can capture
the complexity of the rate outage events' occurrence conditions in the network, from both of the
aforementioned perspectives. In this context, the XGBoost model was applied for predicting rate
outage events, utilizing these features, which were defined above.

The variable used for determining rate outages was the downlink throughput (tx_brate downlink) from
the BS to the UE. As part of the model pre-processing, the continuous throughout values are converted
to binary values, 0 or 1, denoting network availability or outage, respectively. In this respect, two types
of thresholds Rthr were considered:

• Network service-related thresholds: the outage threshold for URLLC is considered equal to
0.01 Megabits per second (Mbps) and for MTC (Machine Type Communications) equal to 0.03
Mbps. These service-related thresholds were derived from the Colosseum ORAN COMMAG
[23].

• The statistical and/or experimental-based thresholds: these are statistics computed directly
out of the throughput values in the datasets themselves, namely the average threshold equal
to 0.014 Mbps and 25th percentile threshold equal to 0.006 Mbps.

As part of the post-processing phase, the output values of the model (probability values in [0,1]) were
converted to binary variables, using a threshold p. Experimenting with different p values in [0.1, 0.5],
we found the best scores with p = 0.2. Namely, we term an event an outage if the output probability
generated by the model (i.e., the probability that the rate falls below Rthr) exceeds the threshold
probability value of 0.2. This choice makes the model more pessimistic (or conservative) as to when
outage events are declared, i.e., the model will maybe declare more outage events, reducing false
negative events (a non-detected outage) at the expense of more false positives (declare outage events
that do not actually qualify as outages).

4.2. Data Collection

The data for the training of the AI Network Quality Module (AINQM) came from the publicly available
Colosseum dataset (Colosseum O-RAN COMMAG Dataset) [23], a dataset that has been widely
acclaimed for its significant size as well as its variety of features. Its name stems from the ancient
stadium in Rome, where a massive 5G experiment took place, involving 40 pieces of UEs and 4 BSs.
The whole Colosseum dataset is organized hierarchically according to how UEs are divided into traffic-
dependent slices, their mobility speeds, their distribution around the BS, as well as the algorithm used
by the RAN scheduler to serve them. The dataset used in these experiments contains 1824 tuples (X,
y), each carrying values for the feature set X used as input to the model and the target variable y (i.e.,
the probability that the downlink throughput will fall below Rthr).

The types of model features and their range of values are as follows:

• the dl_buffer is an integer number ranging from 0 to 459 bytes
• the tx_pkts is an integer value ranging from 0 to 103 packets
• the dl_cqi is a float number varying in [0.1..15]

D2.3 – NANCY Network Information Framework

41

• the sum_requested_prbs is an integer value varying from 0 to 605
• the sum_granted_prbs is an integer value that varies from 0 to 568

4.3. Training with Open Data

For the model training process, the dataset was split into a training data part (90% of the dataset) and
a testing data part (the other 10%).

As formerly indicated, the Outage Probability Prediction model is firmly based on the definition of
network downlink rate outage. As stated above, four threshold values were considered, two values
per threshold type mentioned in section 4.1.2. Among those, our experimentation-based quantile
threshold generated the best results when one jointly considers the standard metrics listed below:

• Pr 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

; a measure of XGBoost model predicting positive
instances. This metric is defined as the ratio of true positive predictions to the number of both
true and false positive predictions.

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠

; it assesses the performance of the classifier to identify

positive instances from the actual positive instances contained in the dataset.
• 𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = Pr𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⋅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Pr𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
; this metric assesses how well the Xgboost model in terms of

balancing precision and recall and is indicative of how efficiently false positives and false
negatives are reduced.

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

; it is defined as the

ratio of correct predictions to the total number of predictions and is a measure of outage
probability prediction performance

D2.3 – NANCY Network Information Framework

42

5. Latency Prediction
In the context of B-RAN environments, the latency of the network is directly correlated with the latency
experienced during blockchain operations. This is influenced by both network conditions and the
internal complexity of the consensus protocol. Different blockchain consensus protocols have varying
complexities that directly impact their operational latency.

Understanding and predicting the latency behaviour of these protocols is essential for optimizing
network performance and resource allocation in B-RAN systems. In this work, we apply an
AutoRegressive Integrated Moving Average (ARIMA) model to forecast blockchain operation latency,
providing a lightweight yet effective approach to predictive performance management across varying
protocol complexities.
5.1. Model Design and Methodology

5.1.1. Blockchain consensus mechanisms overview

In this section, we briefly explore several consensus mechanisms used in blockchain systems, focusing
on their communication complexity and security characteristics. These protocols form the backbone
of distributed agreement in fault-prone environments, and understanding their trade-offs is essential
for evaluating the impact they will have on the network latency.

Table 3 summarizes key properties of four consensus protocols, Reliable, Replicated, and Fault
Tolerant (RAFT) consensus algorithm [24], Quorum-based Byzantine Fault Tolerance (QBFT) [25],
Istanbul Byzantine Fault Tolerance (IBFT) [26] and Scalable Byzantine Fault Tolerance (SBFT) [27], used
in blockchain systems, comparing their message complexity and resilience to attacks (in terms of the
number and type of faulty nodes tolerated).

Table 3: Blockchain Consensus Protocols Summary

Protocol Type Message
Complexity

Fault Tolerance

RAFT Crash Fault Tolerant (CFT) 𝑂𝑂(𝑛𝑛) Tolerates up to ⌊(𝑛𝑛 − 1)/2⌋
 crash faults

QBFT Byzantine Fault Tolerant (BFT) 𝑂𝑂(𝑛𝑛2) Tolerates up to ⌊(𝑛𝑛 − 1)/3⌋
Byzantine faults

IBFT BFT 𝑂𝑂(𝑛𝑛2) Tolerates up to ⌊(𝑛𝑛 − 1)/3⌋
Byzantine faults

SBFT Scalable BFT 𝑂𝑂(𝑛𝑛) Tolerates up to ⌊(𝑛𝑛 − 1)/3⌋
Byzantine faults

The variable 𝑛𝑛 refers to the number of nodes (or validators) participating in the protocol. These nodes
are responsible for proposing, validating, and agreeing upon transactions or blocks in the network. The
performance and fault tolerance of a protocol are analyzed in terms of 𝑛𝑛 , as it directly influences the
communication overhead and the number of faults the system can withstand.

Fault tolerance in consensus protocols refers to the system's ability to continue operating correctly
despite failures. These failures may be:

• Crash faults, where a node simply stops responding.
• Byzantine faults, where a node behaves arbitrarily or maliciously, potentially sending false or

contradictory messages.

D2.3 – NANCY Network Information Framework

43

RAFT is designed to handle only crash faults. It assumes that nodes either operate correctly or fail by
becoming unresponsive. If the majority of nodes remain honest and available, the system continues to
function.

QBFT, IBFT, and SBFT are all designed to handle Byzantine faults, which include both crashes and
malicious actions. They rely on strict quorum sizes, typically requiring agreement from at least two-
thirds of nodes, to ensure that honest nodes overlap and prevent conflicting decisions. Combined with
cryptographic techniques, these quorum requirements enable consensus even in the presence of
faulty or adversarial nodes. This higher level of assurance comes with increased communication
complexity.

BFT
Byzantine Fault Tolerance is a foundational concept in distributed systems, especially in adversarial
environments like blockchains. A BFT system can reach agreement among distributed nodes even
when some of those nodes are malicious or compromised. The name originates from the "Byzantine
Generals Problem" [28], where actors must agree on a common strategy despite some of them being
traitors.

BFT protocols typically work by requiring multiple rounds of message exchange to ensure that all non-
faulty nodes agree on the same values. These rounds include stages like proposal, prepare, commit,
and sometimes view change. To withstand 𝑓𝑓 Byzantine faults, the protocol needs at least𝑛𝑛 = 3𝑓𝑓 +
1 nodes. This ensures that the number of honest nodes is always greater than the potential coalition
of malicious actors.

Modern adaptations of BFT, like QBFT and SBFT, introduce optimizations such as partial signature
aggregation, collectors, and threshold cryptography to reduce the message complexity while
maintaining the same level of security. These improvements are essential for deploying BFT systems
in large-scale, performance-sensitive blockchain environments.

QBFT
QBFT is a variant of classical BFT consensus protocols that emphasizes strong safety and liveness
guarantees in adversarial environments. QBFT proceeds through multiple communication rounds,
typically pre-prepare, prepare, and commit, where each node communicates with every other node to
achieve consensus.

This communication pattern results in a message complexity of 𝑂𝑂(𝑛𝑛2), as every node must exchange
messages with all others during each phase of the protocol. While it includes some optimizations, such
as batched signatures and quorum-based agreement, these measures help with practical performance
but do not reduce the theoretical communication complexity.

IBFT
IBFT is a practical BFT consensus algorithm. It follows a three-phase commit protocol: pre-prepare,
prepare, and commit. In each phase, every node must communicate with all other nodes to exchange
and verify messages.

Due to this all-to-all communication pattern in every round, the message complexity of IBFT is 𝑂𝑂(𝑛𝑛2).
This redundancy provides strong fault tolerance and safety guarantees even in the presence of
Byzantine nodes, but it also limits scalability and increases latency as the number of nodes grows.

SBFT
SBFT is designed to address the scalability limitations of traditional BFT protocols. SBFT introduces
mechanisms like collectors and threshold cryptography, which allow subsets of nodes to aggregate

D2.3 – NANCY Network Information Framework

44

messages and signatures efficiently. These features reduce the number of messages each node must
send and receive.

As a result, SBFT achieves amortized 𝑂𝑂(𝑛𝑛) message complexity. Although individual operations may
sometimes require more communication, the average per-operation cost remains linear. This makes
SBFT especially suitable for high-throughput applications where maintaining low latency and
communication overhead is crucial.

RAFT
RAFT is a consensus algorithm built for simplicity and fault tolerance in distributed systems where
nodes may crash but are not malicious. The protocol elects a leader node which handles all client
interactions and coordinates the replication of log entries to follower nodes. When a majority of
followers acknowledge an entry, it is considered committed.

The protocol achieves its consensus with a message complexity of 𝑂𝑂(𝑛𝑛) because each operation
involves the leader sending messages to all other nodes (followers) and receiving acknowledgements.
The simplicity and centralization around a leader reduce overhead but also mean the system is only
resilient to crash faults, not Byzantine behaviours.

5.1.2. Model selection

Before diving into the mechanics of the ARIMA model, it's important to highlight one of its key
advantages in the context of B-RAN systems: it requires no explicit training phase. Instead, the ARIMA
model adapts dynamically to incoming data, making it highly suitable for real-time forecasting tasks in
changing network environments [29]. This adaptability allows the model to be applied flexibly across
different B-RAN configurations, regardless of the network's architecture.

Furthermore, we can leverage theoretical insights into the complexity of consensus algorithms used
by protocols such as RAFT, QBFT, IBFT, and SBFT. These algorithms often impose computational or
communication costs that grow linearly, quadratically, or even cubically with the number of orderers.
While ARIMA itself is agnostic to the exact functional form of the latency growth, its differencing and
autoregressive structure can adapt to these changes, effectively capturing and predicting the
underlying trend [30]. Furthermore, we can create dummy data that follow those specific trends to
predict our model's performance.

It is also worth noting that in the relatively short and constrained timeframes, ranging from ms to a
few seconds, typically relevant to operational B-RAN scenarios, latency timeseries do not generally
exhibit seasonality. As such, a non-seasonal ARIMA model is appropriate, simplifying the modelling
process without sacrificing accuracy.

Understanding the ARIMA(p, 1, 5) Model
The ARIMA model we use is defined by three parameters: the order of autoregression (p), the degree
of differencing (d = 1), and the order of the moving average (q = 5).

Differencing is a preprocessing step designed to remove trends and make the data more stationary. A
time series is said to be stationary if its statistical properties, like mean and variance, are constant over
time. Stationarity is a desirable property because most time series models, including ARIMA, perform
best when the input series does not have trends or seasonality.

Given an original time series 𝑦𝑦𝑡𝑡, we compute the first-order differenced series 𝑧𝑧𝑡𝑡 as:

𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1

D2.3 – NANCY Network Information Framework

45

This operation effectively removes linear trends from the original series. We then model the
differenced series 𝑧𝑧𝑡𝑡 using a combination of past values of 𝑧𝑧 (the autoregressive component) and past
forecast errors (the moving average component).

Mathematically, the model is expressed as:

𝑧𝑧𝑡𝑡 = �Φ𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝑧𝑧𝑡𝑡−1 + �𝜃𝜃𝑗𝑗

5

𝑗𝑗=𝑖𝑖

𝜀𝜀𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑡𝑡

Here, Φ𝑖𝑖 are the autoregressive coefficients, 𝜃𝜃𝑖𝑖 are the moving average coefficients, and 𝜀𝜀𝑡𝑡 is the
white noise error at time 𝑡𝑡 . The goal of the model is to estimate the next differenced value 𝑧𝑧𝑡𝑡+1
using a weighted sum of previous values and residuals.

Once we have predicted 𝑧𝑧𝑡𝑡+1, we return to the original scale of the time series by inverting the
differencing operation:

𝑦𝑦𝑡𝑡+1 = 𝑦𝑦𝑡𝑡 + 𝑧𝑧𝑡𝑡+1

This gives us a forecast of the next actual value in the original series.

To estimate the autoregressive coefficients Φ1, … ,Φ𝑝𝑝, we must solve a system of equations derived
from the autocorrelation function of the differenced series 𝑧𝑧𝑡𝑡. These are known as the Yule–Walker
equations and can be expressed in matrix form as:

𝑅𝑅Φ = 𝑟𝑟

Where 𝑅𝑅 is a symmetric Toeplitz matrix composed of autocorrelation values 𝑟𝑟𝑘𝑘 = 𝐸𝐸[𝑧𝑧𝑡𝑡𝑧𝑧𝑡𝑡−𝑘𝑘], Φ is the
vector of autoregressive coefficients, and 𝑟𝑟 is the autocorrelation vector.

Instead of directly solving this system using computationally expensive matrix inversion, we apply the
Levinson-Durbin recursion. This is a recursive algorithm that builds the solution incrementally from
order 1 up to order 𝑝𝑝 . At each step, it computes a reflection coefficient (also called the partial
autocorrelation) and updates the prediction coefficients based on this value.

The key intuition behind Levinson-Durbin is that it efficiently finds the best linear predictor for a
stationary process using its autocorrelation structure. By avoiding explicit matrix inversion and instead
leveraging the structure of the Toeplitz matrix, the algorithm achieves a much lower computational
cost,𝑂𝑂(𝑝𝑝2) , which is important for real-time or embedded applications.

In the context of ARIMA, Levinson-Durbin is used after differencing has been applied. At this stage, the
series 𝑧𝑧𝑡𝑡 is assumed to be stationary, and we aim to model it using an autoregressive process. Levinson-
Durbin takes the autocorrelation structure of 𝑧𝑧𝑡𝑡 and computes the coefficients Φ𝑖𝑖 that describe how
each value of 𝑧𝑧𝑡𝑡 depends on its previous values. These coefficients are essential in generating the AR
component of the ARIMA model. Once these are known, they can be used to forecast the next value
in the differenced series, which is then integrated to produce a forecast in the original scale.

This integration of Levinson-Durbin into ARIMA provides both theoretical robustness and
computational efficiency. It ensures that the ARIMA model has a strong foundation in statistical theory
while remaining practical for application to real-world datasets, especially when computational
resources are limited or when quick forecasting is required.

This approach combines simplicity and flexibility. Differencing removes persistent trends, making the
modelling problem easier. The autoregressive part captures longer-term dependencies in the data.

D2.3 – NANCY Network Information Framework

46

The moving average component helps smooth out short-term noise or unexpected fluctuations,
improving robustness and prediction stability. By estimating the autoregressive part using Levinson-
Durbin, we gain numerical efficiency and stability, especially when the number of observations is small
or when the autocorrelation matrix is ill-conditioned. This method is best suited for univariate time
series data that exhibit both trend and irregular noise but do not have complex seasonal patterns.

5.2. Data Collection

5.2.1. Environment setup

The data creation process includes a combination of internally generated experimental data and
simulated workloads designed to emulate real-world blockchain environments. The primary focus was
to analyse the latency and throughput characteristics of various blockchain systems and consensus
protocols, specifically the ones mentioned in Table 4:

Table 4: Systems Under Test (SUTs)

Platform Version Consensus Protocol

Hyperledger fabric [31] V2.5 Raft (CFT) [32]

V3.0 SBFT [33]

Hyperledger Besu [34] V25.0
QBFT [35]

IBFT2.0 [36]
These decentralised networks were deployed in a controlled environment that allowed to monitor,
record, and extract key performance metrics under different configurations and workloads. The data
collection focused on network latency, block propagation times, transaction finality and overall system
responsiveness under various stress levels. The experiment was conducted on blockchain solutions
that are appropriate for industrial use cases and are in close comparison with the one used by NEC’s
proposed architecture within NANCY. The tool that was used for conducting the tests was Hyperledger
Caliper [37], an open-source benchmarking tool designed to evaluate the performance of blockchain
networks. It allows users to run predefined or custom test workloads on various blockchain platforms
and generates detailed reports on key performance metrics such as transaction latency, throughput
(TPS), and success/failure rates.

The characteristics of the workstation that was used for the benchmarking process is described in Table
5.

Table 5: Workstation specifications

Component Specification
Operating System Ubuntu 24.04.2 LTS

Motherboard Gigabyte Z790 AORUS ELITE AX

CPU Intel® Core™ i7-14700KF (20-core: 8 P-cores + 12
E-cores, up to 5.5 GHz)

Memory 64 GiB DDR5 RAM (2×32 GiB @ 5600 MHz)

D2.3 – NANCY Network Information Framework

47

5.2.2. Benchmark configuration

Figure 23 is an example of a benchmark configuration file that was used for the tests.

Figure 23: Benchmark config file

Each key parameter corresponds to a specific value parameter, with the key - value pairs explained
Table 6.

Table 6: Benchmark configuration explanation

Parameter Description

test.workers Configuration for how transaction load is
generated

test.workers.number Specifies the number of worker processes to use
for executing the workload

test.rounds Array of objects, each describing the settings of a
round

test.rounds[i].label A short name of the rounds, usually
corresponding to the types of submitted TXs.

test.rounds[i].txDuration The length of the round in seconds during which
Caliper will submit TXs.

test.rounds[i].rateControl The object describing the rate controller to use
for the round

test.rounds[].rateControl.type The rate control strategy. fixed-rate means
transactions are sent at a steady, constant rate.

test.rounds[].rateControl.opts.tps
TPS to send. Here, Caliper will attempt to submit
100 transactions per second throughout the 60-

second test

test.rounds[i].workload The object describing the workload module used
for the round

test.rounds[i].workload.module
The path to the benchmark workload module
implementation that will construct the TXs to

submit
A configuration with the above structure will define a benchmark run that consists of multiple rounds.
Each round is associated with a rate controller that is responsible for the scheduling of transactions
(TXs) and a workload module that will generate the actual content of the scheduled TXs.

The benchmarking included various transaction rates, ranging from 100 to 1300 TPS in fixed steps
(Table 7). Each test round lasted 60 seconds, with 10 local worker threads generating load. The same

D2.3 – NANCY Network Information Framework

48

application workload was used across all tests. The standard FabCar smart contract was used,
simulating realistic asset creation scenarios. Also, different network configurations have been used
with different numbers of orderers and validators ranging from 3 to 20 for the end results to be
comparable with the NEC’s proposed consensus algorithm and their testing results. The controller of
choice was fixed rate to simulate a stable transaction load and to mimic a high but stable demand of
transaction executions. The fixed-rate controller sends transactions at a constant, pre-defined rate
(i.e., a fixed number of TPS).

Table 7: Benchmark round parameters

Parameter Description

Benchmarking tool Hyperledger Calieper v0.6

Transaction Rates (TPS) 100 to 1300TPS (in fixed steps of 100)

Test duration 60 seconds per round

Load Generation 10 local workers

Workload createCar transaction for the FabCar smart contract

Network configuration Varying number of orderers/validators depending on protocol
(ranging 3 to 20)

5.2.3. Workload generation setup

A sample of the workload module used for the testing is provided in Figure 24:

D2.3 – NANCY Network Information Framework

49

Figure 24: Workload module

Workload modules are implemented as Node.JS [38] modules that expose a certain Application
Programming Interface (API). There are no further restrictions on the implementation, allowing
developers to implement arbitrary logic (using further arbitrary components).

These modules are loaded through factory functions, just like other pluggable modules in Hyperledger
Caliper. Accordingly, a workload module implementation must export a single factory function, named
“createWorkloadModule”. The factory function must return an instance that implements the
[WorkloadModuleInterface]. The “submitTransaction” function is the backbone of the workload
generation. The worker process calls this function every time the rate controller enables the next TX
and is its responsibility to submit the TX through the connector API.

5.2.4. Key Performance Metrics

Hyperledger Caliper provides a detailed set of performance metrics after each benchmarking test,
helping you evaluate how well a blockchain system performs under load. Table 8 summarizes the key
metrics Caliper returns and their corresponding descriptions.

D2.3 – NANCY Network Information Framework

50

Table 8: Network performance metrics

Metric Description

Success Number of transactions that were successfully submitted and
confirmed on the blockchain

Failed Number of transactions that were submitted but failed due to errors
like timeouts, endorsement issues, or network problems

Send Rate (TPS) The average number of transactions sent per second during the test.

Throughput (TPS) The number of successful transactions per second (i.e., how many
were confirmed on-chain).

Latency (min/avg/max)
Time taken for a transaction to go from submission to confirmation.
Caliper reports the minimum, average, and maximum latency
values.

5.3. Training with mock Data

Although ARIMA requires no training in the traditional sense, we validated and fine-tuned its
performance using mock data designed to replicate expected latency trends under different blockchain
consensus complexities. Specifically, we generated synthetic datasets, consisting of 500 data points
with linear and quadratic growth patterns, each affected by random noise relative to the signal
strength (2%-5%). These datasets emulate how the number of transactions handled by the blockchain
influences the latency over time.

In shorter time windows, the number of participating nodes is relatively stable, resulting in latency
that aligns with a consistent linear-like computational pattern. However, over longer durations,
network reconfigurations or load variations can cause this complexity to shift, reflecting the distinct
scalability behavior of each consensus algorithm, either linear or quadratic, depending on the
blockchain protocol (e.g. RAFT vs. IBFT).

To evaluate our ARIMA implementation, we applied it to these mock datasets and observed how its
forecasting accuracy responded to different numbers of input points. As demonstrated in the MAPE
(Mean Absolute Percentage Error) plots (Figure 25 & Figure 26), the model maintains reliable accuracy
across increasing input sizes (input window) from 3-70, with error decreasing as more historical points
are made available. We selected 60 input points (window size) as an effective balance between model
performance and real-time feasibility. At this range, we observed from Figure 25 that increasing the
window size beyond 60 points does not significantly reduce the error. A similar plateauing effect is
visible in Figure 26 as well. This suggests that 60 input points represent a pragmatic compromise
between the two trends, offering sufficient context for accurate forecasting without overfitting the
data. As a result, the model is capable of generalizing effectively across both linear and nonlinear
latency patterns while maintaining robustness against noise.

The accuracy of the ARIMA model at 60 input points is further confirmed by the predicted vs actual
latency plots (Figure 27 & Figure 28) for both linear and quadratic mock datasets. In the linear case,
the model closely tracks the increasing latency with a near-linear slope, achieving a MAPE of 0.029.
The prediction line almost perfectly overlays the actual values, highlighting ARIMA's capacity to adapt
to deterministic trends even in the presence of noise.

In the quadratic case, which emulates longer prediction timeframes and more complex consensus
mechanisms like IBFT and SBFT, the model also performs well. The predicted curve adheres closely to
the ground truth across a wide range of transaction counts, resulting in MAPE of 0.013. This shows

D2.3 – NANCY Network Information Framework

51

that the model is capable of capturing curvature in latency growth. These results collectively support
the robustness and adaptability of ARIMA when used with a 60-point input window.

The dataset collected using the Hyperledger Caliper framework, as described in the previous section,
will be used to test our model in 6.1.3, since it represents measurements taken from a simulation and
are closer to a real-world scenario.

D2.3 – NANCY Network Information Framework

52

Figure 25: MAPE vs Number of input points – Quadratic data

Figure 26: MAPE vs Number of input points – Linear data

D2.3 – NANCY Network Information Framework

53

Figure 27: Real vs Predicted latency – Quadratic data

Figure 28: Real vs Predicted latency – Linear data

D2.3 – NANCY Network Information Framework

54

6. Performance Evaluation

6.1. Individual Model Evaluation

6.1.1. Coverage Probability Prediction Model

In order to properly evaluate the model for coverage probability prediction (see section 3), we utilise
the real-world dataset collected by UMU’s testbed. The dataset contains more than 7,300 data
samples, collected over a 20-minute period that contain over 60 features. Our goal is to utilise the
trained to model to predict the RSRQ value at any given time, which can then be used to assess the
coverage probability of the UE. To accomplish this, we formulate a “test dataset” that consists of the
data collected during the second day of the sampling Campaign. We prepare the dataset for inference
by performing a data cleansing operation thus, removing invalid values but we refrain from removing
outliers.

In order to evaluate our model’s performance, we employ the MAE and MSE metrics. The MAE formula
is given in section “3.1 Model Design and Methodology”, while the MSE formula is calculated using the
following equation:

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
1

n

Where (similar to MAE formula) 𝑦𝑦𝑖𝑖 is the actual (real) value for data point i, 𝑥𝑥𝑖𝑖 is the model output
(prediction) and n is the total number of samples used for testing the model. Table 9 depicts the
evaluation results. The model achieves 0.218 MSE and 0.137 MAE scores, meaning that its predictions
diverge only by 0.137 (on average) from the real RSRQ values of the UE. This high accuracy is also
accompanied by a very fast execution time (0.00054 seconds per prediction) which was expected due
to the lightweight nature of the design.

Table 9: Coverage probability prediction model evaluation results

Evaluation metric Score

MSE 0.218

MAE 0.137

Execution time 5.4 ∗ 10−4 seconds per prediction

Figure 29 illustrates the test predictions of the coverage probability prediction model along with the
ground truth values for different distances (depicted in meters) between the UE and the Cell tower. As
the UE moves away from the cell tower, its RSRQ values drop and thus its coverage probability also
lowers. The model managed to capture this pattern and produced outputs that closely resemble the
actual RSRQ levels of the UE.

D2.3 – NANCY Network Information Framework

55

Figure 29. Test results of the coverage probability prediction model, over different UE-cell tower distances

6.1.2. Outage Probability Prediction Model

As formerly indicated, the Outage Probability Prediction model is strongly dependent on the definition
of the network downlink rate outage. As described in section 4.1.2, four thresholds were considered
to this end, and the model quality was assessed for each of these thresholds, jointly considering the
standard metrics:

• Precision: A measure of XGBoost model predicting positive instances. This metric is defined as
the ratio of true positive predictions to the number of both true and false positive predictions.

• Recall: It assesses the performance of the classifier to identify positive instances from the
actual positive instances contained in the dataset.

• F1-score: It is defined as the ratio of correct predictions to the total number of predictions and
is a measure of outage probability prediction performance; this metric assesses how well the
XGBoost model performs in terms of balancing precision and recall and is indicative of how
efficiently false positives and false negatives are reduced.

• Accuracy: It is defined as the ratio of correct predictions to the total number of predictions and
is a measure of outage probability prediction performance.

Table 10 sumamrizes the various threshold values utilized for each one of the testing sessions for the
AINQM module, along with the metrics that were derived from these sessions. It is quite apparent
that the quantile experimental threshold outperforms, notwithstanding the solid performance of
every other model, the rest of the models.

D2.3 – NANCY Network Information Framework

56

Table 10: XG Boost Performance Metrics for Four Thresholds Applied

Threshold Accuracy ROC-AUC Precision Recall F1
0.014 (mean) 0.961 0.984 0.959 0.963 0.960

0.006
(quantile) 0.972 0.987 0.966 0.970 0.968

0.01 (URLLC) 0.95 0.972 0.945 0.942 0.943
0.03 (MTC) 0.987 0.988 0.872 0.872 0.872

The confusion matrices for each of the aforementioned four thresholds applied to determine outage
events, along with the ROC curves, are provided in Figure 30, Figure 31, Figure 32 and Figure 33,
clearly depicting XGBoost model performance for each of the four rate thresholds considered.

Figure 30: Confusion matrix for Average Threshold Case

D2.3 – NANCY Network Information Framework

57

Figure 31: Confusion Matrix for Quantile Threshold Case

D2.3 – NANCY Network Information Framework

58

Figure 32: Confusion matrix for URLLC service-related threshold case

D2.3 – NANCY Network Information Framework

59

Figure 33: Confusion matrix for MTC service-related threshold case

Figure 34: ROC curves for all four thresholds cases

D2.3 – NANCY Network Information Framework

60

Let it be noted here that the receiver operating characteristic curves (ROC Curves) plot (Figure 34) has
the true positive rate (TPR or recall) versus the false positive rate for each of the thresholds considered.
The diagonal curve represents a random classifier not being able to distinguish between the outage
and availability classes, and the aim is to train a model that is represented above this diagonal. The
area under the curve (AUC) indicates how many correct positive classifications can be achieved. The
ROC curve is a probability curve and the AUC measures the separability, that is, the ability of the model
to distinguish between the two categories. The higher the AUC, the better the model performs in
classification.

Of particular importance it is to declare that the metrics that are taken into consideration are the total
number of them. This is the final criterion for the selection of the optimum model, which is the quantile
threshold-related model. Of particular interest and merit is F1-score, as the harmonic mean of
precision and recall. This is due to the fact that both false positives and false negatives bear a special
significance for the Outage Probability Prediction Model. The quantile model that we've finally picked
did excel overall and particularly when it comes to these particular metrics.

6.1.3. Latency Prediction Model

To validate the ARIMA model under more realistic conditions, we applied it to the dataset generated
via the Hyperledger Caliper framework, described in Section 5.2. This dataset captures the latency of
blockchain operations for four consensus mechanisms RAFT, QBFT, IBFT, and SBFT, under simulated
transaction loads.

Using a 60-point input window (as established in our mock data experiments), we forecasted latency
values and compared them against actual measurements for each protocol. The following plots
illustrate the alignment between predicted and observed values.

• IBFT and QBFT: Both consensus algorithms exhibit a consistent upward latency trend with
increasing transaction load (Figure 35 & Figure 36). The ARIMA model demonstrates excellent
fit, with MAPE values of 0.011 for IBFT and 0.007 for QBFT. These low errors confirm that
ARIMA effectively captures their structured, gradually increasing latency behavior.

• RAFT and SBFT: The ARIMA model maintains solid performance on these protocols, showing
a good fit to the overall latency behavior across the majority of the time series (Figure 37 &
Figure 38). Notably, the initial segments for both RAFT and SBFT exhibit abrupt spikes in
latency. These anomalies are due to system startup dynamics, events such as leader election,
consensus initialization, and synchronization overhead, which occur only at the beginning of
the measurement process. While the outliers could be removed from the dataset to reduce
noise and improve MAPE, we chose to retain them to demonstrate the model’s robustness.
Despite their presence, the model quickly adapts and aligns with the stabilized behavior,
achieving respectable MAPE values of 0.082 for RAFT and 0.080 for SBFT.

Table 11 reports the MAPE for each blockchain protocol.

Table 11: MAPE per Consensus Protocol

Consensus Protocol MAPE
IBFT 0.011
QBFT 0.007
RAFT 0.082
SBFT 0.080

D2.3 – NANCY Network Information Framework

61

These results confirm that the ARIMA model, is able to generalize across diverse blockchain latency
behaviors when provided with a modest historical context. Despite the noise and variability in real
workloads, the model remains robust.

D2.3 – NANCY Network Information Framework

62

Figure 35: Real vs Predicted latency – IBFT

Figure 36: Real vs Predicted latency – QBFT

D2.3 – NANCY Network Information Framework

63

Figure 37: Real vs Predicted latency – RAFT

Figure 38: Real vs Predicted latency – SBFT

6.2. Complexity vs. Security Trade-offs in Consensus Protocols

Evaluating consensus protocols involves more than comparing metrics like latency or throughput; it
requires a clear understanding of the assumptions they make, the environments they are designed for,
and the nature of the faults they are built to tolerate [39]. In this section, we contrast several consensus
mechanisms RAFT, QBFT, IBFT, SBFT and FastBFT [40], across the axes of communication complexity,

D2.3 – NANCY Network Information Framework

64

fault tolerance, and suitability for real-world deployment. This analysis builds upon the overview of
section 5.1.1, providing a more detailed comparison.

RAFT: Simplicity for Trusted Environments

RAFT is a CFT protocol, meaning it assumes that faulty nodes simply stop responding rather than
behaving maliciously. This makes RAFT ideal for environments where nodes are managed centrally or
are otherwise trusted to behave correctly. The protocol is straightforward, leader-based, and involves
only 𝑂𝑂(𝑛𝑛) message complexity, as the leader communicates directly with all followers and awaits
acknowledgments from a majority.

The benefit of RAFT lies in its simplicity and performance. Because it does not attempt to protect
against arbitrary or Byzantine behavior, it avoids the overhead associated with complex verification or
quorum intersection logic. This makes it highly scalable and low-latency in practice.

However, this same simplicity is its primary limitation. RAFT cannot function correctly if nodes behave
maliciously for example, sending conflicting messages or selectively withholding data. In adversarial
settings or consortium blockchains where participants may not fully trust one another, RAFT's
guarantees are insufficient.

QBFT and IBFT: Strong Guarantees at a Cost

Both QBFT and IBFT are designed to tolerate Byzantine faults, where nodes can behave arbitrarily,
including maliciously. They achieve this by relying on multiple rounds of all-to-all communication to
establish consensus through majority agreement among a supermajority of nodes (typically
approximately 2/3).

The major strength of these protocols lies in their robustness, as they can continue to operate securely
even when some nodes attempt to subvert the system. This is essential in decentralized settings where
full trust among participants cannot be assumed.

The cost of this robustness, however, is their quadratic message complexity: 𝑂𝑂(𝑛𝑛2). As the number of
participants grows, so does the number of messages that must be sent and validated, leading to
increasing latency and decreased throughput. These limitations have historically constrained their
scalability, making them best suited for smaller permissioned networks or environments where
security is prioritized over raw performance.

SBFT: Balancing Robustness and Efficiency

SBFT was introduced to address the scalability issues of traditional BFT protocols while maintaining
their strong fault tolerance properties. It uses techniques like threshold cryptography and collector
nodes to reduce the communication complexity to 𝑂𝑂(𝑛𝑛), even under Byzantine conditions.

This innovation allows SBFT to scale better than classical BFT protocols while still withstanding up to
⌊(𝑛𝑛 − 1)/3⌋ Byzantine faults. In practical terms, SBFT can deliver higher throughput and lower latency
than QBFT or IBFT in larger networks, without compromising on security.

Despite its advantages, SBFT remains relatively complex to implement and tune, especially due to its
reliance on advanced cryptographic techniques. Moreover, while its message complexity is improved,
the computational cost of threshold signature operations may become a bottleneck in resource-
constrained environments.

D2.3 – NANCY Network Information Framework

65

FastBFT: Hardware-Accelerated Consensus for High Performance

FastBFT, described in detail in NANCY D5.2 ‘NANCY Security and Privacy Distributed Blockchain-based
Mechanisms’, represents a newer class of Byzantine fault-tolerant protocols that combine
cryptographic message aggregation with trusted hardware. Unlike traditional approaches that rely
heavily on cryptographic signatures for quorum verification, FastBFT uses Trusted Execution
Environments (TEEs) to perform lightweight secret sharing and aggregation operations in a secure
enclave.

FastBFT achieves linear message complexity 𝑂𝑂(𝑛𝑛), while preserving Byzantine fault tolerance. This
makes it particularly attractive for high-throughput blockchain systems where both performance and
security are essential. FastBFT further organizes its nodes in a tree topology to minimize bottlenecks
during aggregation phases and employs an optimistic execution model in the common case, falling
back to a classical BFT mode only under failure.

The inclusion of hardware-assisted security is both its strength and its caveat. FastBFT can deliver
performance comparable to CFT protocols like RAFT, but it assumes the presence of trustworthy TEEs
and depends on their correct functioning.

Summary of Trade-offs

Each protocol embodies a different set of trade-offs between scalability, fault tolerance, and
implementation complexity:

• RAFT is optimal when simplicity and CFT are sufficient, but breaks down in the face of malicious
behavior.

• QBFT/IBFT provide robust Byzantine protection but suffer from scalability limits due to their
quadratic communication patterns.

• SBFT introduces optimizations that reduce message complexity, making Byzantine protection
more viable at scale, though with higher computational overhead.

• FastBFT achieves the most favorable balance by leveraging hardware to offload cryptographic
costs, delivering low latency and high throughput under Byzantine assumptions, but at the cost
of relying on secure hardware infrastructure.

6.3. Evaluation via theory: Point Processes

6.3.1. Theoretical background: Poison Point Process

The Poisson Point Process (PPP)-based model [41] is a widely used theoretical framework in wireless
network analysis. It stems from stochastic geometry, a field of applied mathematics that models spatial
configurations of random objects. In the context of wireless communication, PPP is used to model the
spatial distribution of BSs, assuming they are deployed at random positions over an infinite plane [42]
[43].

The PPP-based model offers a powerful compromise, compared to real-world conditions:

• Tractability: It leads to elegant, often closed-form expressions for critical network
performance metrics.

• Averaged Performance: It provides statistical averages over many possible network
topologies, useful for macro-level planning.

• Baseline Comparisons: PPP models serve as a theoretical benchmark to compare against
practical deployments or simulations.

D2.3 – NANCY Network Information Framework

66

In a PPP-based cellular network model:

• BSs are distributed according to a homogeneous PPP with density 𝜆𝜆 (units: BSs/m).
• Users are also randomly located and connect to their nearest BS.
• Signal propagation follows a path loss law, where 𝑟𝑟−𝛼𝛼 is the distance and 𝑟𝑟 the path loss

exponent.
• Interference comes from all other BSs, modelled as a Poisson shot noise process.
• Rayleigh fading [44]
• is typically assumed, meaning received power follows an exponential distribution.

Given this setup, the coverage probability 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) is defined as:

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 > 𝜃𝜃)

Where 𝜃𝜃 is the Signal to Interference and Noise Ratio (SINR) threshold.

The coverage probability under PPP with Rayleigh fading and path loss exponent 𝛼𝛼 is given by:

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) =   � 𝑒𝑒−
𝜃𝜃𝜎𝜎2𝑟𝑟𝛼𝛼
𝑃𝑃 −𝜋𝜋𝜋𝜋𝑟𝑟2𝛽𝛽(𝜃𝜃,𝛼𝛼)

∞

 0
2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑

Where:

• 𝜆𝜆 : density of BSs
• 𝑃𝑃 : transmit power
• 𝜎𝜎2 : noise power

• 𝛽𝛽(𝜃𝜃,𝛼𝛼) = 𝜃𝜃
2
𝛼𝛼  ∫ 1

1+𝑢𝑢
𝑎𝑎
2

∞

𝜃𝜃−
2
𝛼𝛼

 𝑑𝑑𝑑𝑑

This integral sometimes simplifies further in special cases (specific path loss exponent 𝛼𝛼).

In this task, we used the PPP model to derive a theoretical coverage probability given our real-world
parameters (density, power, noise, threshold). It will serve as a ground truth benchmark to compare
against predictions from ML models and field measurements.

To this end, we computed the following parameters (Table 12) based on the setup in the UMU campus
dataset (please refer to section 3.2.2).

Table 12: PPP parameters

Parameter Value Source/Explanation
𝝀𝝀 (BS density) ~1.29e-5 BS/m² From 4 towers within the campus

bounding box area (≈310,568 m²)
𝑷𝑷 (Transmit power) ≈1.29e-5 BS/m² Provided network specification
𝝈𝝈𝟐𝟐(Noise power) ≈ 8.004e-14 W Computed from thermal noise

formula: 𝜅𝜅𝜅𝜅𝜅𝜅 with 20 MHz
bandwidth

𝜶𝜶 (Path loss exponent) 3.0
Standard for urban environments
[45]

𝜽𝜽 (SINR threshold) 1.0 (linear scale, 0 dB) Chosen as a typical minimum
viable SINR for coverage [46]

D2.3 – NANCY Network Information Framework

67

6.3.2. Pointwise Coverage per-UE

While the PPP model gives a statistical average over a large region, real-world measurements and
predictions often require location-specific predictions. Thus, we moved from a global integral to a
per-user analytical approximation that computes the coverage probability for each UE individually
based on its distance to nearby towers.

For each UE, a typical way of achieving this is using a conditional SINR coverage probability under
Rayleigh fading [47], where the distance to the serving BSs and the distances to interfering towers
are known or approximated.

The expression used is:

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑒𝑒−
𝜃𝜃𝜎𝜎2𝑟𝑟𝛼𝛼
𝑃𝑃 ∙�

1

1 + 𝜃𝜃 � 𝑟𝑟𝑑𝑑𝑖𝑖
�
𝛼𝛼

𝑁𝑁

𝑖𝑖=1

Where:

• 𝑟𝑟 : Distance to serving BS
• 𝑑𝑑𝑖𝑖: Distance to each interfering BS
• 𝜃𝜃 : SINR threshold
• 𝑃𝑃 : Transmit power
• 𝜎𝜎2: Noise power
• 𝛼𝛼 : Path loss exponent

This equation assumes Rayleigh fading and independent interference from other towers.

These values (Table 12) plus the distance to each tower were substituted into the formula and yielded
an average 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 36% per UE. Compared to the global PPP integral, this per-UE method offers a more
fine-grained and tailored view of performance at specific user locations. It remains theoretically
grounded through the use of Rayleigh fading assumptions but incorporates actual or estimated
distances to interfering towers, making it adaptable to real-world deployment geometry. However,
even with this added realism, the resulting theoretical coverage probabilities were still significantly
below reality. In practice, all UE instances experienced successful coverage, often with high SINR
values. This discrepancy is largely due to the conservative assumptions of Rayleigh fading and the
model's inability to account for practical interference mitigation techniques like scheduling,
beamforming, and network optimization. Thus, while theoretically valuable, per-UE analytical
coverage remains an approximation and should be interpreted with caution in high-quality
deployment scenarios.

6.3.3. Improving per-UE coverage estimation: Rician Fading Model

To improve upon the limitations inherent in Rayleigh fading assumptions, we extended our analysis
using the Rician fading model [48]. Unlike Rayleigh, which assumes purely non-line-of-sight conditions
and models the signal amplitude as an exponentially distributed variable, Rician fading introduces a
deterministic line-of-sight (LoS) component in addition to the random scattered paths. This makes it
more suitable for real-world urban deployments where dominant paths from base stations to users
often exist.

The move to Rician fading directly addresses the underestimation of coverage observed in the
Rayleigh-based per-UE computations. Since Rayleigh assumes the worst-case signal variability, it is

D2.3 – NANCY Network Information Framework

68

overly pessimistic in environments where the propagation conditions are more stable. By
incorporating Rician fading, our theoretical model more accurately captured the higher SINR values
observed in the dataset.

Mathematically, if ℎ is the channel gain, the Rician fading distribution describes the amplitude |ℎ| of
the received signal as a combination of a constant LoS component and a circularly symmetric complex
Gaussian (Rayleigh) component. The probability density function (PDF) of the Rician-distributed
amplitude is:

|ℎ| ∼ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾)

With PDF:

𝑓𝑓 |ℎ|(𝑥𝑥) =
𝑥𝑥
𝜎𝜎2

𝑒𝑒
𝑥𝑥2+𝑠𝑠2
2𝜎𝜎2 𝐼𝐼0

𝑥𝑥𝑥𝑥
𝜎𝜎2

Where:

• 𝑠𝑠 : Amplitude of the deterministic LoS component
• 𝜎𝜎2: Noise power

• 𝐾𝐾 = 𝑠𝑠2

2𝜎𝜎2
: is the Rician K-factor, representing the ratio of the power in the LoS component to

the power in the scattered components

• 𝐼𝐼0(𝑧𝑧) = ∑
�14𝑧𝑧

2�
𝑘𝑘

(𝑘𝑘!)2
∞
𝑘𝑘=0

A higher K-factor implies a stronger LoS presence, and when 𝐾𝐾 → 0 , the distribution reduces to
Rayleigh. In contrast, as 𝐾𝐾 → ∞ , the distribution becomes more deterministic, approaching an AWGN-
like behavior.

When computing coverage probability under Rician fading, the key mathematical tool is the moment
generating function (MGF) of the fading distribution. For a given path loss and SINR threshold 𝜃𝜃 , and
assuming a path loss of 𝑟𝑟−𝛼𝛼, the Laplace transform of the interference term under Rician fading
includes [49]:

𝑀𝑀ℎ(𝑠𝑠) =
(1 + 𝐾𝐾)𝑒𝑒−𝐾𝐾

1 + 𝑠𝑠
𝑒𝑒

𝐾𝐾
1+𝑠𝑠

Where 𝑠𝑠 = 𝜃𝜃𝑟𝑟2𝜎𝜎2

𝑃𝑃
. This expression replaces the simpler exponential decay 𝑒𝑒−𝑠𝑠 used in Rayleigh-based

analysis, reflecting the more stable received power due to the LoS path.

This MGF is then integrated similarly to the PPP-based expressions, or applied in conditional SINR
probability formulas, to compute per-UE coverage probability. The result is a model that more
faithfully represents environments with semi-predictable signal behavior, like urban streets,
campuses, or open areas with tower LoS.

By incorporating Rician fading, our theoretical model more accurately captured the higher SINR values
observed in the dataset. Consequently, the coverage probabilities predicted using Rician fading will
align much more closely with reality.

6.3.4. Model vs Theory vs Reality

In this section, we perform a direct comparison between our trained machine learning-based coverage
prediction model, the theoretical predictions from the Rician fading model, and the actual coverage

D2.3 – NANCY Network Information Framework

69

conditions recorded in UMU dataset. Our goal is to evaluate how well theory aligns with reality, and
how effectively our model bridges that gap.

For this analysis, we rely on the per-UE, distance-based coverage predictions calculated using the
Rician fading model. This theoretical framework, as described in the previous section, is based on point
process theory but incorporates a deterministic LoS component, making it more reflective of real-
world urban deployments.

To determine whether a UE was in coverage or not according to the real measurements, we applied a
simple thresholding rule to the recorded RSRQ values. Specifically, any user with a recorded real_rsrq
greater than -15 dB [50] was considered to be in coverage. This binary labelling provided the ground
truth for comparison. This binary labelling provided the ground truth for comparison.

We then compared this empirical coverage outcome to two other indicators:

1. The predicted coverage label from our machine learning model.
2. The theoretical coverage probability is computed using the Rician fading model.

By aligning these three sources of coverage information, we were able to quantitatively assess the
accuracy of both our predictive model and the theoretical approximation, relative to the actual
behavior of the 5G network in the field.

The results of our comparison are summarized in Table 13. We measured the accuracy of the model
predictions and theoretical Rician fading-based estimates against the real-world coverage outcomes,
defined via the RSRQ threshold. The machine learning model achieved an accuracy of 98%, while the
Rician fading model achieved an accuracy of approximately 92.3%. This performance confirms that the
ML-based approach aligns better with real-world measurements than the theoretical mathematical
model based on point process theory.

Table 13: Predicted vs Theoretical vs Real Coverage

Comparison Accuracy
Predicted Coverage vs Real Measurement 98.0%
Theoretical vs Real Measurement 92.3%

D2.3 – NANCY Network Information Framework

70

7. Conclusion

This deliverable presented a detailed and practical NIF that helps the users study and improve B-RANs
in different types of real-world setups. Using smart AI models, the system makes it easier to look at
how networks perform and make better choices based on real data.

Three AI prediction models were developed that focus on three main network metrics: coverage,
outage, and Blockchain-induced latency. Each model was trained and tested using either open data or
the NANCY testbeds, making sure they work well in practice and not just in theory.

The Coverage Prediction Model was trained using transfer learning with data from the University of
Murcia’s NANCY testbed. It showed good performance by predicting RSRQ values with a low error.
More specifically, a MAE of 0.137 and a MSE of 0.218 were achieved. Furthermore, it has very low
execution time, as it takes less than 1 millisecond per prediction. This makes it highly suitable for real-
time network assessments.

The Outage Prediction Model used data from the Colosseum dataset. Different threshold levels were
tested, and it was found that the quantile threshold gives the best results, especially on the F1-score.
This is a metric of major importance, given the need to minimize both false positives and false
negatives in outage detection. The high ROC-AUC values across configurations underscore the
reliability of this model in identifying network disruptions under varying service quality requirements.

The Latency Prediction Model, grounded in ARIMA time series forecasting, addresses a unique
challenge: assessing the latency impact of diverse blockchain consensus protocols. Applied to
transaction data generated via Hyperledger Caliper, the model successfully generalized across IBFT,
QBFT, RAFT, and SBFT protocols, with MAPEs as low as 0.07 for QBFT and 0.011 for IBFT. We also
explored the trade-off between security and latency in consensus protocols, highlighting the
performance implications of various design choices.

Finally, we evaluated the coverage prediction model using theoretical point process modelling,
specifically incorporating both Rayleigh and Rician fading assumptions. This allowed us to establish a
principled baseline grounded in wireless communication and point process theory. By comparing these
theoretical estimates to the machine learning model's predictions and to real-world measurement
data, we were able to assess the fidelity of each approach. The trained model demonstrated alignment
with the measured data, validating its effectiveness in practical deployments.

All these features come together in an easy-to-use web platform where users can upload data, run
tests, and see network performance results. It's not just a tool, but a helpful system for better planning
and decision-making in B-RANs.

D2.3 – NANCY Network Information Framework

71

Bibliography

[1] L. Bonati, S. D'oro, M. Polese, S. Basagni and T. Melodia, "Intelligence and Learning in O-RAN for
Data-Driven NextG Cellular Networks," IEEE Communications Magazine, vol. 59, no. 10, Oct.
2021.

[2] X. Ling, Y. Le, J. Wang, Z. Ding and X. Gao, "Practical Modeling and Analysis of Blockchain Radio
Access Network," IEEE Transactions on Communications, vol. 69, no. 2, pp. 1021-1037, Feb. 2021.

[3] C. Bento, "Multilayer Perceptron Explained with a Real-Life Example and Python Code: Sentiment
Analysis," 21 Sep. 2021. [Online]. Available: https://medium.com/data-science/multilayer-
perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-
cb408ee93141

[4] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan, “Beyond throughput, the next generation,”
11th ACM Multimedia Systems Conference, 2020, pp. 303–308.

[5] “4G LTE Speed Dataset and Bandwidth.” [Online]. Available:
https://www.kaggle.com/datasets/aeryss/lte-dataset/data

[6] J. Gallego-Madrid, L. Bernal-Escobedo, R. Asensio, A. Hermosilla, A. Zarca, J. Ortiz, R. Sanchez-
Iborra and A. Skarmeta, "GAIA 5G: A Multi-access Smart-Campus Architecture," Lecture Notes in
Computer Science, Springer International Publishing, 2022, pp. 363-374.

[7] R. Asensio-Garriga, A. Pogo Medina, G. Alarcon-Hellin, L. Escobedo, R. Sanchez-Iborraand and A.
Skarmeta Gómez, "University of Murcia 5G Dataset 1," May 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.15516876.

[8] “QMI-Supervisor - a 5G QMI modem controller," 2024. [Online]. Available:
https://github.com/ANTS-research-group/qmi-supervisor

[9] Z. Mo, W. Su, S. Batalama and J. Matyjas, "Cooperative Communication Protocol Designs Based
on Optimum Power and Time Allocation," IEEE Transactions on Wireless Communications, vol.
13, pp. 4283-4296, Aug. 2014.

[10] Z. Shi, H. Wang, Y. Fu, G. Yang, S. Ma and X. Ye, "Outage performance and optimal design of
MIMO-NOMA enhanced small cell networks with imperfect channel-state information," China
Communications, vol. 18, pp. 107-128, Oct. 2021.

[11] A. Traßl, E. Schmitt, T. Hößler, L. Scheuvens, N. Franchi, N. Schwarzenberg and G. Fettweis,
"Outage prediction for ultra-reliable low-latency communications in fast fading channels,"
EURASIP Journal on Wireless Communications and Networking, vol. 2021, p. 1–25, Apr. 2021.

[12] V. Mordachev and S. Loyka, "On node density - outage probability tradeoff in wireless networks,"
IEEE International Symposium on Information Theory, 2008, pp. 191-195.

https://medium.com/data-science/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://medium.com/data-science/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://medium.com/data-science/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://www.kaggle.com/datasets/aeryss/lte-dataset/data
https://github.com/ANTS-research-group/qmi-supervisor

D2.3 – NANCY Network Information Framework

72

[13] C. Kourogiorgas, A. Panagopoulos and J. Kanellopoulos, "A New Method for the Prediction of
Outage Probability of LOS Terrestrial Links Operating Above 10 GHz," IEEE Antennas and Wireless
Propagation Letters, vol. 12, pp. 516-519, Apr. 2013.

[14] T. Routtenberg and J. Tabrikian, "A General Class of Outage Error Probability Lower Bounds in
Bayesian Parameter Estimation," IEEE Transactions on Signal Processing, vol. 60, pp. 2152-2166,
May 2012.

[15] M. Alias, N. Saxena and A. Roy, "Efficient Cell Outage Detection in 5G HetNets Using Hidden
Markov Model," IEEE Communications Letters, vol. 20, pp. 562-565, Mar. 2016.

[16] H. Wang, L. Xu, Y. Tao and X. Wang, "OP Performance Prediction for Complex Mobile Multiuser
Networks Based on Extreme Learning Machine," IEEE Access, vol. 8, pp. 14557-14564, Jan. 2020.

[17] N. Simmons, D. Simmons and M. Yacoub, "Outage Performance and Novel Loss Function for an
ML-Assisted Resource Allocation: An Exact Analytical Framework," IEEE Transactions on Machine
Learning in Communications and Networking, vol. 2, pp. 335-350, Feb. 2024.

[18] IBM, “What is a decision tree?” [Online]. Available: https://www.ibm.com/think/topics/decision-
trees

[19] IBM, “What is boosting?” [Online]. Available: https://www.ibm.com/topics/boosting

[20] R. Fekadu, A. Getachew, Y. Tadele, N. Ali, and I. Goytom, “Machine Learning Models Evaluation
and Feature Importance Analysis on NPL Dataset,” 2022, arXiv. doi: 10.48550/ARXIV.2209.09638.

[21] X. Niu, L. Wang, and X. Yang, “A Comparison Study of Credit Card Fraud Detection: Supervised
versus Unsupervised,” 2019, arXiv. doi: 10.48550/ARXIV.1904.10604

[22] M. Saleh and N. Abd-Alsabour, "Improved Decision Tree, Random Forest, and XGBoost
Algorithms for Predicting Client Churn in the Telecommunications Industry," International
Journal of Advanced Computer Science and Applications, vol. 15, p. 2024, 2024.

[23] "Colosseum O-RAN COMMAG Dataset," [Online]. Available:
https://github.com/wineslab/colosseum-oran-commag-dataset

[24] D. Ongaro and J. Ousterhout, "In search of an understandable consensus algorithm," USENIX
Annual Technical Conference (ATC’14), 2014, pp. 305 - 320.

[25] R. Saltini, Enterprise Ethereum Alliance. “QBFT Blockchain Consensus Protocol Specification v1”,
Nov. 2022. [Online]. Available: https://entethalliance.github.io/client-spec/qbft_spec.html

[26] H. Moniz, “The Istanbul BFT Consensus Algorithm,” 2020, arXiv. doi:
10.48550/ARXIV.2002.03613.

[27] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K. Reiter, D.-A. Seredinschi, O.
Tamir and A. Tomescu, "SBFT: a Scalable and Decentralized Trust Infrastructure," 2019, pp. 568-
580.

[28] L. Lamport, R. Shostak and M. Pease, "The Byzantine Generals Problem," International ACM
Transactions on Programming Languages and Systems, vol. 4, p. 382–401, July 1982.

https://www.ibm.com/think/topics/decision-trees
https://www.ibm.com/think/topics/decision-trees
https://www.ibm.com/topics/boosting
https://github.com/wineslab/colosseum-oran-commag-dataset
https://entethalliance.github.io/client-spec/qbft_spec.html

D2.3 – NANCY Network Information Framework

73

[29] B. Gulnara, A. Ahmad, Mirzakulova and Ж. Sharafat & Ибраева, "Time Series Forecasting By The
ARIMA Method," Scientific Journal of Astana IT University, p. 14–23, 2022.

[30] S. Siami-Namini and A. S. Namin, “Forecasting Economics and Financial Time Series: ARIMA vs.
LSTM,” 2018, arXiv. doi: 10.48550/ARXIV.1803.06386.

[31] “Hyperledger Fabric.“ [Online]. Available: https://www.lfdecentralizedtrust.org/projects/fabric

[32] “The Raft Consensus Algorithm.” [Online]. Available: https://raft.github.io/

[33] Y. Manevich, Y. Tock, and H. Meir, “Hyperledger Fabric v3: Delivering Smart Byzantine Fault
Tolerant consensus,” Sep. 2024. [Online]. Available:
https://www.lfdecentralizedtrust.org/blog/hyperledger-fabric-v3-delivering-smart-byzantine-
fault-tolerant-consensus.

[34] “Besu,” [Online]. Available: https://www.lfdecentralizedtrust.org/projects/besu .

[35] “Configure QBFT consensus,” Apr. 2025. [Online]. Available:
https://besu.hyperledger.org/private-networks/how-to/configure/consensus/qbft

[36] “Configure IBFT 2.0 consensus,” Apr 2025. [Online]. Available:
https://besu.hyperledger.org/private-networks/how-to/configure/consensus/ibft

[37] “Caliper,” [Online]. Available: https://www.lfdecentralizedtrust.org/projects/caliper .

[38] “Node.js — Run JavaScript Everywhere,” [Online]. Available: https://nodejs.org/

[39] G. Zhang, F. Pan, Y. Mao, S. Tijanic, M. Dang'ana, S. Motepalli, S. Zhang and H.-A. Jacobsen,
“Reaching Consensus in the Byzantine Empire: A Comprehensive Review of BFT Consensus
Algorithms,” 2022, arXiv. doi: 10.48550/ARXIV.2204.03181

[40] J. Liu, W. Li, G. O. Karame and N. Asokan, "Scalable Byzantine Consensus via Hardware-assisted
Secret Sharing," IEEE Transactions on Computers, vol. 68, p. 139–151, Jan. 2016.

[41] S. N. Chiu, D. Stoyan, W. S. Kendall and J. Mecke, Stochastic Geometry and Its Applications, Wiley,
2013.

[42] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks: Volume I Theory,
2010.

[43] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse and M. Franceschetti, "Stochastic geometry and
random graphs for the analysis and design of wireless networks," IEEE Journal on Selected Areas
in Communications, vol. 27, no. 7, pp. 1029-1046, Aug. 2009.

[44] B. Sklar, "Rayleigh fading channels in mobile digital communication systems. I. Characterization,"
IEEE Communications Magazine, vol. 35, pp. 136-146, Sep. 1997.

[45] A. Imoize and A. Oseni, "Investigation and pathloss modeling of fourth generation long term
evolution network along major highways in Lagos Nigeria," Ife Journal of Science, vol. 21, p. 39,
Apr. 2019.

https://www.lfdecentralizedtrust.org/projects/fabric
https://raft.github.io/
https://www.lfdecentralizedtrust.org/blog/hyperledger-fabric-v3-delivering-smart-byzantine-fault-tolerant-consensus
https://www.lfdecentralizedtrust.org/blog/hyperledger-fabric-v3-delivering-smart-byzantine-fault-tolerant-consensus
https://www.lfdecentralizedtrust.org/projects/besu
https://besu.hyperledger.org/private-networks/how-to/configure/consensus/qbft
https://besu.hyperledger.org/private-networks/how-to/configure/consensus/ibft
https://www.lfdecentralizedtrust.org/projects/caliper
https://nodejs.org/

D2.3 – NANCY Network Information Framework

74

[46] "SINR - Teltonika Networks Wiki" [Online]. Available: https://wiki.teltonika-
networks.com/view/SINR

[47] H. P. Keeler, B. Blaszczyszyn and M. K. Karray, "SINR-based k-coverage probability in cellular
networks with arbitrary shadowing," IEEE International Symposium on Information Theory, 2013,
pp. 1167-1171.

[48] A. Abdi, C. Tepedelenlioglu, M. Kaveh and G. Giannakis, "On the estimation of the K parameter
for the Rice fading distribution," IEEE Communications Letters, vol. 5, no. 3, pp. 92-94, Mar. 2001.

[49] S. O. Rice, "Statistical properties of a sine wave plus random noise," The Bell System Technical
Journal, vol. 27, pp. 109-157, 1948.

[50] "RSRP and RSRQ - Teltonika Networks Wiki," [Online]. Available: https://wiki.teltonika-
networks.com/view/RSRP_and_RSRQ

https://wiki.teltonika-networks.com/view/SINR
https://wiki.teltonika-networks.com/view/SINR
https://wiki.teltonika-networks.com/view/RSRP_and_RSRQ
https://wiki.teltonika-networks.com/view/RSRP_and_RSRQ

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Executive summary
	1. Introduction
	1.1. Purpose of the Deliverable
	1.2. Structure of the Document

	2. NIF Overview
	2.1. NIF Architecture
	2.1.1. Architectural components
	2.1.2. Technical Implementation Details
	Framework Selection
	Authentication Protocols
	Data Flow Mechanisms
	Code Structure
	NIF follows Django’s standard project structure, organized into reusable applications (apps):
	Database Schema
	The NIF database uses PostgreSQL with the following schema:

	2.1.3. NIF Hosting

	2.2. NIF Graphical User Interface
	2.2.1. Authentication
	2.2.2. Home Dashboard
	2.2.3. Data Import
	2.2.4. File Management
	2.2.5. Visualization Dashboard
	Outage prediction
	Coverage prediction
	Latency prediction

	2.2.6. User Information

	2.3. NIF Placement within NANCY

	3. Coverage Probability Prediction
	3.1. Model Design and Methodology
	3.2. Data Collection
	3.2.1. Publicly available data
	3.2.2. NANCY dataset

	3.3. Training with Open Data and NANCY Data

	4. Outage Probability Prediction
	4.1. Model Design and Methodology
	4.1.1. Model choice and justification
	4.1.2. Model implementation

	4.2. Data Collection
	4.3. Training with Open Data

	5. Latency Prediction
	5.1. Model Design and Methodology
	5.1.1. Blockchain consensus mechanisms overview
	BFT
	QBFT
	IBFT
	SBFT
	RAFT

	5.1.2. Model selection
	Understanding the ARIMA(p, 1, 5) Model

	5.2. Data Collection
	5.2.1. Environment setup
	5.2.2. Benchmark configuration
	5.2.3. Workload generation setup
	5.2.4. Key Performance Metrics

	5.3. Training with mock Data

	6. Performance Evaluation
	6.1. Individual Model Evaluation
	6.1.1. Coverage Probability Prediction Model
	6.1.2. Outage Probability Prediction Model
	6.1.3. Latency Prediction Model

	6.2. Complexity vs. Security Trade-offs in Consensus Protocols
	6.3. Evaluation via theory: Point Processes
	6.3.1. Theoretical background: Poison Point Process
	6.3.2. Pointwise Coverage per-UE
	6.3.3. Improving per-UE coverage estimation: Rician Fading Model
	6.3.4. Model vs Theory vs Reality

	7. Conclusion
	Bibliography

