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Executive summary 
D5.4 "NANCY Explainable AI Toolbox" presents the overall architecture, functionalities and 
components of the explainable Artificial Intelligence (XAI) Toolbox. It provides an overview of the 
methodologies and tools that support transparency and interpretability for decision-making beyond 
5G (B5G) network functions. The main components of the NANCY XAI Toolbox 
(https://github.com/Sidroco-Holdings-Ltd/NANCY_Explainable_AI_Toolbox) are (i) the anomaly 
detection XAI Component, (ii) the outage prediction XAI Component and (iii) the semantic 
communications XAI Component. Furthermore, the deliverable presents the implementation of the 
centralized XAI dashboard, which provides access to global and local model explanations through visual 
and interactive interfaces.  

The integration of a Large Language Model (LLM)-Powered Analysis Component is introduced, as a 
Dashboard’s sub-component, which facilitates the transformation of technical outputs into natural 
language for better usability by non-experts. Additionally, the deliverable provides a comprehensive 
description of the optimization strategies that support stability and scalability. Overall, this deliverable 
contributes towards a trustworthy and understandable AI, addressing the needs of end-users in 
network management.  

https://github.com/Sidroco-Holdings-Ltd/NANCY_Explainable_AI_Toolbox
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1. Introduction 

1.1. Purpose of this Deliverable 

The main scope of D5.4 “NANCY Explainable AI Toolbox” is the demonstration of results from Task 5.5 
“Enabling Explainable AI Functionalities”. Specifically, D5.4 aims to present the architecture, 
implementation and integration of the NANCY Explainable Artificial Intelligence (XAI) Toolbox. Our 
explainable AI Toolbox will enable the overall transparency and trustworthiness of AI-driven network 
management in NANCY.  

In this direction, through the principles of explainable AI, the AI-enabled self-healing and self-recovery 
processes will become simpler and understandable to network operators. As AI models are 
progressively adopted for tasks such as anomaly detection, outage prediction, and semantic 
communication optimization, the need for more understandable explanations of models' decisions 
arises. That need is vital in terms of interpretability in modern network systems management, 
particularly in the context of 5G and beyond.  

D5.4 “NANCY Explainable AI Toolbox” demonstrates several key objectives of the NANCY Explainable 
AI Toolbox. In D5.4, a modular, scalable and interoperable architecture for the XAI Toolbox, ensuring 
seamless integration with existing network management systems and other components, is defined. 
Moreover, the three specialized XAI components in NANCY are documented, namely: (1) Anomaly 
Detection, (2) Outage Prediction and (3) Semantic Communications. The NANCY XAI Dashboard, a web-
based application that stands as a comprehensive and interactive platform for visualizing and analyzing 
Explainable AI (XAI) outputs, is presented. Additionally, a more Human-Centric Interpretability 
approach is achieved through the integration of a Large Language Model (LLM)-powered explanation 
layer that transforms complex numerical outputs from SHAP into natural language insights. That way, 
outputs are accessible to non-expert users such as network technicians and business stakeholders. The 
integration of the XAI Toolbox with Federated Learning Intrusion Detection Systems (FL-IDS) and AI-
based Network Quality Management (AINQM) systems is outlined.  

The deliverable supports that the network management through the NANCY project is transparent, 
auditable, and actionable and that it aligns with ethical AI principles and regulatory requirements such 
as EU’s GDPR. 

1.2. Relation with other Work Packages and Deliverables 

D5.4 “Explainable AI Toolbox” is included in WP5 “Security, Privacy, and Trust Mechanisms”, which 
focuses on developing advanced security, privacy and trust mechanisms for beyond-5G networks. 
Specifically, D5.4 is the output of Task 5.5 and contributes by enabling explainability in AI-based 
decision systems supporting network management.  

D5.4 is complementary to other deliverables such as D5.2 “NANCY Security and Privacy Distributed 
Blockchain-based Mechanisms” and D5.3 “Self-healing and Self-recovery Mechanisms”. Additionally, 
Task 5.5 is aligned with WP2, which defines the project’s use cases and system requirements. The 
requirements expressed in WP2 ensure that the tools designed in D5.4 are practical and relevant to 
real-world operators’ needs and use cases. 

D5.4 “Explainable AI Toolbox” also takes into account the AI infrastructure and orchestration 
mechanisms developed in WP3 and builds on the architecture design of WP3. The XAI toolbox aligns 
with WP3's goals by explaining the outputs of AI models used for anomaly detection, outage 
prediction, and semantic communication. 
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1.3. Structure of the Document 

The rest of the document is structured as follows: 

• Section 2 – Background and State of the Art discusses the relevant state-of-art focusing on 
the foundations of explainable AI and the well-known methods and technologies. 

• Section 3 – NANCY XAI Toolbox Architecture documents the architecture of the NANCY AI 
Toolbox and the involved components. 

• Section 4 – XAI Dashboard Implementation presents the dashboard implementation of the 
XAI toolkit and its main functionalities. 

• Section 5 – Integration and Deployment discusses the integration and deployment processes. 
• Section 6 – Conclusion and Outlook concludes the deliverable. 
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2. Background and State of the Art 
Modern network infrastructures have become increasingly complex, necessitating advanced 
management techniques powered by artificial intelligence and machine learning. However, the "black 
box" nature of many AI algorithms presents challenges for network operators who need to understand, 
trust, and effectively act upon AI-generated insights and recommendations. 

2.1. Explainable AI Foundations in Network Management 

Traditional network management has relied on rule-based systems and manual intervention which, 
while transparent, struggle to scale with the increasing complexity of modern networks, particularly in 
5G and beyond [1]. The advent of AI-driven network management solutions has addressed many 
scalability and efficiency challenges but has, on the other hand, introduced a critical opacity problem 
that XAI seeks to resolve. 

Explainable AI in network management is built upon several key foundational principles that 
distinguish it from standard AI approaches. The first of these is transparency, which allows AI-driven 
decisions to be understandable for human operators  [2]. Transparency is important in mission-critical 
network equipment where incorrect decisions can lead to severe service interruptions. Interpretability 
is the second principle, which provides clear explanations of AI predictions and guidance in language 
that can be understood and implemented by network operators. The third principle concerns 
accountability, with clear lines of responsibility being provided for AI-driven tool decision-making, an 
issue that is of specific importance in telecommunication environments [3]. 

Network management presents specific challenges to the utilization of XAI compared to other 
domains. These are the dynamic nature of flows of network traffic, the heterogeneity of network 
protocols and devices and the need for real-time decision-making [4]. Commercial and regulation 
demands have driven the creation of XAI in network management standards that mandate 
transparency in automated decision-making. For instance, the European Union General Data 
Protection Regulation (GDPR) has provisions for "the right to explanation" of automated decisions 
affecting humans, which includes network management decisions affecting service delivery [5]. 
Existing research has shown that XAI approaches would actually advance network Management 
outcomes. For example, studies have shown that network operators can diagnose incidents much 
faster when they are provided with explainable AI insights compared to traditional black-box AI 
suggestions. Additionally, the lack of trust between human operators and AI has been shown to be 
reduced when explainability functionality is added [6]. 

2.2. XAI Methods and Technologies in Network Management 

The field of XAI for network administration covers a broad range of techniques and technologies, each 
having its individual strengths and applications. This subsection explores the XAI techniques that have 
been successfully implemented on network management issues, with a particular focus on 
classification-based techniques as a result of their application in network anomaly detection and traffic 
classification tasks. 

 

2.2.1.  XAI approaches for Classification Methods in Network Management 

Classification is one of the key network management operations that includes significant activities such 
as traffic classification, anomaly detection and identification of attack types. [7] The explainability of 
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these classification models is to depend on and act according to their predictions. Several of the most 
significant XAI approaches have been particularly effective for classification methods in network 
management cases. 

The SHapley Additive exPlanations (SHAP) [8] method has been very well received in network 
management applications since it is well-founded theoretically in cooperative game theory. SHAP 
values provide a comprehensive assessment of feature importance that respects local accuracy, 
missingness, and consistency properties and are therefore extremely well suited to explaining 
classifications of network traffic and anomalies. SHAP has been used well to explain other models' 
decisions in network management (Figure 1). 

 

Figure 1: Indicative SHAP application 

The application of SHAP to network traffic classification offers several advantages. First, it provides 
global insights into which features are most important across all classifications. This capability is 
particularly valuable in network security contexts, where operators need to understand both general 
attack patterns and specific incident details. Second, SHAP's ability to handle feature interactions 
makes it well-suited for network data, where correlations between features (e.g., packet size and 
protocol type) often contain significant predictive information. Third, visualization features of SHAP, 
such as force plots and summary plots are aligned with network operators' need for easy graphical 
representation of complex network behavior. Experimental tasks of SHAP on network management 
have proved SHAP to be effective for various tasks. For instance, Aljohani et. al.'s [9] experiment 
utilized SHAP to explain a deep learning model's decision process for DDoS attacks detection and 
discovered packet timing variance-related features were important in different advanced attacks. 

LIME (Local Interpretable Model-agnostic Explanations [10]) is another prominent technique in XAI 
network management. LIME approximates a sophisticated model with a simpler, more interpretable 
model to explain individual predictions (Figure 2). 
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Figure 2: Indicative LIME application 

This is useful in network management systems where explanations need to be provided to operators 
whose technical expertise is diverse. The interpretability of LIME's linear approximations allows its 
explanations to be understood by all, while its model-agnostic nature allows it to be applied directly 
to any classifier model being used in network management. LIME has already been used in numerous 
network management problems. For instance, it has been used to analyze intrusion detection system 
alarms to allow security experts to simply detect if alarms are real threats or not [11].  

While both LIME and SHAP provide valuable explanations for network management classifications, 
they are two alternative compromises between the quality of explanation and the computational 
expense. LIME provides less computationally expensive results but potentially less informative 
explanations over comparable instances, while SHAP provides more theoretically robust explanations 
but at higher computation [12]. It is an important compromise for network management tasks where 
real-time explanatory capability might be really useful for operational decision-making. 

Table 1: Comparison of XAI Methods for Network Traffic Classification 

XAI Method Explanation Type Computational 
Complexity 

Real-time 
Capability 

Network Apps 

SHAP Global 
approximation 

High Limited Anomaly 
explanation, 
Attack 
classification 

LIME Local 
approximation 

Medium Moderate Intrusion 
detection, QoS 
classification 

 

A comparison of XAI methods for network traffic classification is summarized in Table 1.The choice of 
the XAI method for classification in network management depends on several factors. Some of them 
are the type of classification problem, the model complexity, the working situation and the explanation 
consumer. Awareness of these trade-offs and selection of appropriate XAI methods is critical to 
creating practical explainable AI systems for network management. 

 

2.2.2.  XAI approaches for Semantic Communications 

Semantic communication (SemCom) is also quickly emerging as a key field for building future systems, 
where systems seek to transmit not merely raw data, but the meaning intended behind said data. By 



D5.4 – NANCY Explainable AI Toolbox 
 

 
16 

focusing on the semantic rather than traditional bit-by-bit accuracy of information, SemCom can 
potentially very naturally complement the long-term vision for 5G and beyond (B5G) systems. Current 
studies point out the way SemCom offers the promise of novel methods for data encoding, sharing of 
context, and user-centric service adaptation, while reflecting the general trend of integration of 
intelligence-driven solutions in next-generation networks [13] [14]. This direction complements 
ongoing B5G developments by tailoring communication services to meet extreme performance 
requirements in applications like autonomous vehicles, healthcare, and immersive extended reality. 
Central to these advanced networks is the deployment of sophisticated artificial intelligence (AI) 
techniques. While SemCom is a very promising technology, the current research landscape reveals 
complex obstacles in realizing and, by extension, utilizing fully functional SemCom systems, particularly 
in areas of algorithmic transparency, model training complexity, and practical signal transmission [15]. 
In addition, the stringent requirements for parallel model building on both reception and transmission 
ends pose tremendous technical challenges, particularly with regard to varied application cases. The 
gap between theoretical SemCom models and existing infrastructure further aggravates the situation, 
making it increasingly challenging to solve these issues, thus making more interpretable and flexible 
methodology inevitable that can fit in comfortably within dominant technological ecosystems. 

To address these multi-faceted challenges, the field of XAI provides a new path for overcoming the 
very limitations of current SemCom systems. Techniques under XAI provide the promise of a 
breakthrough by offering instruments for deciphering and interpreting the convoluted frequently 
opaque mechanisms that drive semantic content conveyance. By injecting transparency and 
interpretability into SemCom models, we aim to transform such systems from impenetrable black 
boxes to transparent and responsible communication patterns, open to systematized examination, 
improvement, and trust in different technological application domains. XAI for image-based SemCom 
attempts to address fundamental problems of transparency and interpretability undertaken visually 
motivated information processing. As deep learning models become more complex, it has become 
important to understand how these systems represent, extract, and convey semantic information. 
These XAI techniques attempt to disentangle the intricate decision-making process of neural networks 
and therefore allow insights into semantic generation, transformation and reconstruction 
representations. 

In the context of image transmission, XAI techniques aim to bridge the gap between the black box 
neural network processing and semantic understanding on human terms. This includes the designing 
mechanisms which break down intricate image representations into understandable semantic units 
systematically, offer explicit explanations of the manner in which particular features are extracted and 
prioritized, enable consistent checking of semantic information transfer, and determine that the 
SemCom process is transparent and accountable. In [16] a trustworthy image SemCom framework that 
exemplifies XAI principles is introduced. Their approach creates an innovative image semantic encoder 
that transforms images into multiple explainable semantic representations, including natural language 
descriptions, semantic segmentation maps, and object-specific sub-images. By generating these 
representations in discrete data formats, the framework ensures compatibility with existing digital 
communication systems while providing unprecedented interpretability. 

Building upon the foundational principles of explainability established in image SemCom, the domain 
of text-based SemCom has its own specific challenges and opportunities. While visual semantics can 
be reduced to segmentation maps and object representation, textual semantics require a more 
complex methodology of interpretation and transmission. The intrinsic complexity of human language, 
with its contextual dependencies, metaphorical expressions, and subtle semantic variations, requires 
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sophisticated XAI techniques that can unravel the intricate layers of importance or meaning embedded 
within textual content [17]. In [18] a new SemCom system is introduced, which tries to disentangle 
textual representations into semantically interpretable components, thus presenting an approach to 
solving the systematic extraction and conveyance of semantic information. Their work highlighted the 
potential of creating more transparent text communication models that go beyond traditional black-
box approaches. Subsequent research presented in [19] [20] proposed alternative methodologies 
using knowledge graphs as a means of representing text semantic information. These approaches 
sought to decompose textual information into a more structured form, and potentially more 
interpretable method of semantic representation. 

In addition, semantic representations based on graphs have been an efficient method for encoding 
intricate relational data. The problem of representing difficult network topologies into understandable 
and transmissible semantic information has pushed researchers to develop more advanced XAI 
methods for graph-based communication networks. In that regard, [21] presents a novel scene graph-
based SemCom model that overcomes the limitations of current global semantic extraction methods. 
With the use of scene graph representations, the approach offers a more explanatory and informative 
means of semantic transmission. The system encourages the recovery of scene graph semantics, which 
can be encoded in the form of informative graph embeddings, thus offering a more advanced means 
of encoding and transmission of complex relational information. 

Part of this deliverable focuses on this research area by presenting XAI techniques for improving the 
interpretability, efficiency, and credibility of SemCom systems. For this, we address critical challenges 
in semantic information extraction, transmission, and reconstruction across two distinct scenarios. In 
the first scenario, we extract detailed explanations of the American sign language (ASL) SemCom 
framework that was presented in D4.4 [22]. The used techniques (SHAP and Grad-CAM) provide 
complementary explanations regarding how semantic information is extracted and weighted in the 
communication system. Grad-CAM provides visual explanations by coloring the most relevant areas in 
an image that contribute to a specific classification decision, and SHAP values provide a game-theoretic 
explanation technique for the impact of one feature on the model prediction. For the case of the 
second scenario, we examine a SemCom system integrated with a digital twin (DT) architecture for 
pedestrian object detection. For the second application, we utilized a YOLO model, for multi-body 
object recognition in real-time in several cameras to collect and transmit useful semantic information 
such as bounding boxes and object identification. Grad-CAM is used to provide transparency by 
identifying the significant image areas that affect detection choices and thus reduce bandwidth usage 
at the expense of not reducing communication efficiency. With these XAI methods, our work presents 
an invaluable step toward more interpretable, effective, and reliable SemCom systems. We emphasize 
that explainable AI can transform SemCom as a black-box process and make it a clear, transparent 
methodology that can be rigorously analyzed and optimized. 
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3. NANCY XAI Toolbox Architecture 
The NANCY XAI Toolbox represents a comprehensive solution for bringing explainability to AI-driven 
network management. It tackles the essential requirement for transparency in ever more autonomous 
networking setups, especially in 5G and beyond scenarios. This chapter outlines the architecture of the 
NANCY XAI Toolbox, explaining its high-level design, component interaction and implementation 
specifics. The repository for the NANCY XAI Toolbox is located at: https://github.com/Sidroco-
Holdings-Ltd/NANCY_Explainable_AI_Toolbox  

3.1. High-Level Architecture 

The architectural design of the NANCY Explainable AI (XAI) Toolbox (Figure 3) follows the modular 
design based on the three basic XAI components, and each of the components is modelled to explain 
aspects of network functions and security. The Anomaly Detection XAI Component is the first 
component that explains network traffic anomaly detection models and cyber-attack detection on 
various attack vectors. This component takes the network flow data as input and generates 
explanations for the identified threats, so as to enable security experts to identify the precise indicators 
that have triggered alerts. The second pillar is the Outage Prediction XAI Component, which enables 
transparency for models estimating future service outages in 5G networks based on performance 
measurements and resource allocation trends. The component supports proactive network 
management and maintenance of service level agreement. The third primary pillar is the Semantic 
Communications XAI Component, which addresses interpretability for semantic communications. All 
of these components work together through a centralized visualization dashboard that serves as the 
shared interface for human operators. Stakeholders use the dashboard to explore both global model 
behavior and individual prediction explanations. Augmenting the technical explanations generated by 
the XAI components, a Large Language Model (LLM) subsystem translates complicated feature 
importance values and technical jargon to natural language reasoning that is interpretable by users 
who do not have specialized machine learning or network engineering expertise. The design of the 
architecture can also integrate channels through which the XAI components can interact with other 
external specialized systems. Specifically, the Anomaly Detection XAI Component interacts with FL-IDS 
so that model explanation is enabled for models developed in privacy-preserving federated learning 
environments. Similarly, the Outage Prediction XAI Component interacts with AINQM to interpret 
predictions generated by quality management algorithms. 

https://github.com/Sidroco-Holdings-Ltd/NANCY_Explainable_AI_Toolbox
https://github.com/Sidroco-Holdings-Ltd/NANCY_Explainable_AI_Toolbox
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Figure 3: NANCY Explainable AI Toolbox High Level Architecture 

The working pipeline starts with data from many network systems to be ingested by AI models. The 
models provide the predictions, which are then processed by the appropriate XAI component in order 
to create technical explanations. The explanations can continue to be visualized through the 
dashboard or upgraded via the LLM module for improved interpretability. Such constructed general 
explanations are then fed back to stakeholders in natural language descriptions and visualizations. 

3.2. Component Overview and Interactions 

The NANCY XAI Toolbox components interact within an ecosystem that enables explainability across 
different network domains. These components implement approaches to explanation generation, 
employing techniques appropriate to their specific domains while maintaining a consistent output 
format that facilitates integration with the visualization dashboard and LLM-based interpretation 
layer. The following sections provide detailed technical specifications of each component, their 
internal mechanisms, and their contextual position within the broader NANCY XAI framework. 

3.2.1.  Anomaly Detection XAI Component 

The Anomaly Detection XAI Component represents an implementation of explainable artificial 
intelligence designed to elucidate the decision-making processes of intrusion detection models. This 
component specializes in interpreting the predictions of classification models trained to categorize 
network traffic flows into seven distinct traffic types: Benign Traffic, Reconnaissance Attack, TCP Scan, 
SYN Scan, SYN Flood, HTTP Flood, and Slowrate DoS. Data used for the implementation of anomaly 
detection XAI component was gathered under Greek in-door testbed according to D6.2. The technical 
implementation harnesses explanation techniques to provide interpretability at both global and local 
levels. For global model interpretability, the component implements SHAP methodology through the 
TreeExplainer class. The global explanation process commences with intelligent data sampling, 
selecting up to 5000 representative instances to balance computational efficiency with explanation 
accuracy. The sample data undergoes transformation into SHAP values, which quantify the 
contribution of each feature to predictions across all classes. These values are rendered into 
visualization artifacts and structured data formats to be consumed later by Dashboard and LLM 
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components. 

 

Figure 4: Indicative Example No.1 for Global Explanation under Anomaly Detection [Benign Traffic] 
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Figure 5: Indicative Example No.2 for Global Explanation under Anomaly Detection [SYN_Flood] 

 

The visualizations manifest as summary plots with dot representations indicating both magnitude and 
direction of feature impacts. Figure 4 and Figure 5 display SHAP values showing how network traffic 
features influence the model. Figure 4 represents benign traffic, where features like SYN Flag Count, 
TotLen Fwd Pkts, and Pkt Len Max have varied impacts on the model output, with values distributed 
across both positive and negative ranges. Figure 5 shows SYN_Flood attack traffic, where SYN Flag 
Count exhibits a more distinctive pattern with high values concentrated around positive SHAP values. 
Features like Init Bwd Win Byts and Bwd IAT Min also show a clearer separation between high and low 
values. This difference makes sense since SYN_Flood attacks involve overwhelming targets with TCP 
SYN packets. Simultaneously, the component generates JSON structures containing detailed feature 
importance rankings, accompanied by natural language descriptions of each feature's semantic 
meaning within the network security context for dashboard integration. 
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Figure 6: Indicative JSON output for Global Explanation under Anomaly Detection [SYN_Scan] 
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Local interpretability is achieved through the implementation of the LIME technique. The LIME 
algorithm creates locally faithful surrogate models that approximate the complex decision boundary 
of the original model in the vicinity of specific instances. This process involves generating perturbed 
samples around the target instance, obtaining predictions for these samples, and fitting a simple 
interpretable model such as a linear regressor to the perturbed dataset. The coefficients of this 
surrogate model reveal feature contributions to the specific prediction. The component visualizes 
these contributions as horizontally oriented bar charts indicating both the magnitude and direction of 
feature influence. The local explanation artifacts are stored both as visualizations and as structured 
JSON data containing feature contributions and descriptions for dashboard integration. For instance, 
Figure 7 for Flow_ID_1 with a prediction of TCP_Scan revealed that the most important feature is Bwd 
PSH Flags. Similarly, for Flow_ID_373 in Figure 8 revealed that the most important feature for the 
prediction of Benign traffic in this specific example was Bwp_Pkts/s. Figure 9 illustrates the JSON 
output from the component. 

 

Figure 7: Indicative Example No.1 for Local Explanation under Anomaly Detection 
[Flow_ID_1_Actual_TCP_Scan_Predicted_TCP_Scan] 
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Figure 8: Indicative Example No.2 for Local Explanation under Anomaly Detection 
[Flow_ID_373_Actual_Benign_Traffic_Predicted_Benign_Traffic] 
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Figure 9: Indicative JSON output for Local Explanation under Anomaly Detection 
[Flow_ID_443_Actual_HTTP_Flood_Predicted_HTTP_Flood] 
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The data preprocessing pipeline within the component implements handling of network traffic data. 
The process begins with elimination of non-feature columns including Flow ID, IP addresses, port 
numbers, protocol identifiers, timestamps, and labels. The resulting feature set undergoes cleaning 
operations to address missing values and infinite entries through appropriate replacement and 
filtering. Subsequently, the data is standardized using a pre-trained scaler that normalizes feature 
distributions to ensure algorithmic stability and consistent interpretation. This preprocessing ensures 
that explanation algorithms receive clean, normalized data properly formatted for explanation 
generation. 

Table 2 provides a summary of the parameters employed by the Anomaly Detection XAI Component: 

Table 2: Anomaly Detection XAI Component Parameters 

Parameter Value Description 
Scaler Type StandardScaler Centers features at mean 0 

with unit variance 
Missing Value Strategy Removal Rows with NaN values are 

excluded 
SHAP Sampling Size 5000 Maximum samples used for 

global explanation generation 
LIME Perturb Strategy Discretization Continuous features are 

discretized for perturbation 
Local Explanation Features 10 Number of top features shown 

in local explanations 
 

The component maintains integration capability with FL-IDS, allowing explanation of models trained 
through privacy-preserving federated learning approaches. This integration occurs through a model 
transfer mechanism that ensures compatibility between federated model outputs and the XAI 
component's explanation algorithms. The integrity is ensured through various functional and 
integration tests. 

3.2.2.  Outage Prediction XAI Component 

The Outage Prediction XAI Component constitutes an implementation of explainable artificial 
intelligence techniques targeted at interpreting predictions related to service disruptions in 5G 
network environments. This component focuses on binary classification decisions that categorize 
network states into Normal Operation (transmission rates ≥ 0.01 Mbps) or Outage Risk (transmission 
rates < 0.01 Mbps) based on performance metrics. The component operates on a specific feature space 
identical to AINQM component: downlink buffer size in bytes (dl_buffer), number of transmitted 
packets in the downlink direction (tx_pkts), Channel Quality Indicator for downlink (dl_cqi), sum of 
requested Physical Resource Blocks (sum_requested_prbs), and sum of granted Physical Resource 
Blocks (sum_granted_prbs). 

For global model understanding, the component implements the SHAP methodology through 
TreeExplainer, which calculates attribution values by analyzing all possible feature coalitions. The SHAP 
implementation within this component handles the binary classification nature of outage prediction 
by generating separate explanation sets for Normal Operation and Outage Risk classes. The 
visualization approach employs distinctive color gradients to emphasize feature contributions, with 
blue tones indicating factors contributing to normal operation and red tones highlighting outage risk 
factors. The global explanations provide network operations personnel with comprehensive 
understanding of model behavior across different network conditions and enable identification of 
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systemic vulnerabilities. Also, the relevant JSON file is produced, used for dashboard integration. 
Figure 10 and Figure 11 show the SHAP values for ‘Normal Operation’ and ‘Outage Risk’, while Figure 
12 shows the global explanation under outage prediction. 

 

Figure 10: Global Explanation under Outage Prediction [Normal_Operation]  

 

 

Figure 11: Global Explanation under Outage Prediction [Outage_Risk] 
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Figure 12: Indicative JSON output for Global Explanation under Outage Prediction [Outage_Risk] 

Local explanations are generated through a LIME implementation which incorporates domain-specific 
adaptations for outage prediction. The component implements a custom prediction probability 
function, ensuring that explanations accurately reflect the operational decision boundary. This 
threshold adjustment addresses the inherent imbalance in outage scenarios, where false negatives 
(missed outage predictions) carry significantly higher operational cost than false positives. The local 
explanation process generates sample-specific visualizations that highlight the particular network 
conditions contributing to an outage prediction, enabling targeted remediation actions, along with the 
JSON outputs for dashboard integration. Figure 13 and Figure 14 show two examples for local 
explanation, while the respective JSON output is shown in Figure 15. 
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Figure 13: Indicative Example No.1 for Local Explanation under Outage Prediction 
[Sample_1_Actual_Normal_Operation_Predicted_Normal_Operation] 

 

Figure 14: Indicative Example No.2 for Local Explanation under Outage Prediction 
[Sample_5_Actual_Outage_Risk_Predicted_Outage_Risk] 
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Figure 15: Indicative JSON output for Local Explanation under Outage Prediction 
[Sample_8_Actual_Normal_Operation_Predicted_Normal_Operation] 

A special technical feature of this component is the column name standardization mechanism 
implemented through the clean_column_names() function. This function maps diverse feature naming 
conventions from different data sources to a standardized internal representation, ensuring 
explanation consistency across varying input formats. The standardization process handles variations 
in delimiter characters, unit notations, and directional indicators, converting them to a canonical form 
that facilitates both explanation generation and human interpretation. As the AINQM, the component 
was trained on the GitHub Colosseum Oran Dataset [23], specifically utilizing subsets containing 
comprehensive 5G network performance metrics including buffer utilization patterns, packet 
transmission statistics, channel quality indicators, and physical resource block allocation metrics.  

Table 3 sums up the technical parameters and thresholds employed in the Outage Prediction XAI 
Component: 
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Table 3: Outage Prediction XAI Component Parameters 

Parameter Value Description 
Outage Threshold < 0.01 Mbps Transmission rate below which 

outage is defined (same as 
AINQM) 

Classification Confidence 0.2 (20%) Probability threshold for binary 
classification (same as AINQM) 

SHAP Plot Type Dot Visualization format for global 
importance 

LIME Discretization Enabled Continuous features are 
discretized for perturbation 

Column Standardization Mapping Function Converts varied column names 
to standard format 

 

The Outage Prediction XAI Component maintains integration capability with AINQM through a client-
server architecture. This integration enables explanation of outage predictions generated by the 
quality management algorithms. Both the functionality of the XAI component and the integration with 
AINQM were checked through a series of functional and integration tests. 

3.2.3.  Semantic Communications XAI Component 

Recent work on beyond 5G and emerging 6G networks has highlighted the importance of semantically 
enriched communication [24] [25]. By extracting and filtering goal-specific semantic information at the 
source and performing semantic decoding and post-processing at the destination, these systems aim 
to handle multiple time-varying, deadline-constrained traffic flows in a multi-user, distributed edge-
to-cloud network. Consequently, new frameworks for semantic information extraction, novel 
knowledge representation models, and innovative metrics infused with semantics are required to 
manage congestion and measure performance while preserving relevancy. 

Based on the above, we have created the SemCom-XAI repository on the official NANCY GitHub page, 
which is presented in Figure 16. This repository holds the implementation of XAI SemCom across two 
distinct scenarios, utilizing CNNs and the YOLO object detection framework.  
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Figure 16: SemCom-XAI repository. 

This project contains two primary scenarios: 

1. ASL gesture recognition: Images of ASL gestures are processed by a CNN to extract only the semantic 
meaning of the sign. Instead of sending the entire image, the system transmits a condensed 
representation (semantic features) which can be interpreted on the receiving end. A dataset has been 
created within the NANCY project for ASL-based SemCom [26]. 

2. V2x (Vehicle-to-Everything) object detection: In a connected vehicle environment, real-time camera 
feeds are used with YOLO to detect and classify objects (vehicles, pedestrians, traffic signs, etc.). Again, 
the focus is on sending semantic information (e.g., object types and positions) rather than raw video 
frames, optimizing communication channels and reducing bandwidth. A dataset has been created 
within the NANCY project for V2x multi-view SemCom [27]. 

ASL Gesture recognition 

In the first scenario, a system categorizes ASL signs within a SemCom model where, instead of sending 
the full raw image, only its meaning is sent. At a higher level of description, the process begins by 
obtaining raw gesture images, which are then preprocessed through resizing and normalization. These 
refined images are fed into a custom CNN that extracts important semantic features, transforming the 
visual data into a compact feature vector. This approach enhances efficiency by transmitting only key 
information through the network. This system not only identifies each gesture with high accuracy but 
also explains the reasoning behind each prediction through advanced XAI techniques. 

One of the two chosen interpretability methods is GradCAM. This technique plays an important role in 
the visualization of the inner workings of the neural network. It has the ability to compute the gradients 
of the predicted class relative to the desired convolutional layer's feature maps and provides a 
heatmap that highlights the regions of the input image that contributed the most towards the 
prediction. As is evident from Figure 17, which shows three different gesture images, as well as four 
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GradCAM outputs from the last convolutional layer of the model for every image. For each layer, the 
GradCAM output is a single image where the heatmap is superimposed over the original hand sign and 
easily displaying the high attention areas of the raw image with warmer colors while it uses cooler 
colors for less important areas. The GradCAM visualization offers a macro-level representation by 
showing the overall areas of interest in the input image. It ensures that the network's focus is properly 
directed at the respective regions of the hand, making it easier to identify any errors in case the model 
ever glances at the wrong features. Visualization is important in developing confidence in the model 
because it enables the user to get an instantaneous, intuitive sense of what the network is "looking 
for" when making its predictions. 

 

Figure 17: GradCAM heatmaps for different ASL letters. 

In addition, in order to further increase the interpretability of the CNN model, the SHAP technique was 
applied to provide a more detailed explanation of the model predictions. This method uses Shapley 
values from game theory to calculate the contribution of each input attribute to the final decision. The 
visualization of SHAP is presented as a series of images: the first image shows the initial input (raw 
image), while the rest of the images (to the right) show the SHAP values for different regions of the 
image, as shown in Figure 18. Each of these images uses a color combination to indicate positive or 
negative contributions, clearly showing which features of the image drive the model towards a 
particular output category, and which ones drive the former away from it. The above technique 
provides a more detailed analysis, capable of showing even the effect of the smallest individual 
features of each image. By observing the original input image and the corresponding SHAP images, we 
can see how each segment or pixel group of the gesture contributes to the final class. This analysis not 
only helps to identify the most critical features but also makes the debugging process more accurate 
by highlighting any inconsistencies or incorrect feature mappings that may affect the performance of 
the model. 
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Figure 18: SHAP heatmaps for different ASL letters. 

Together with one another, GradCAM and SHAP visualizations create a balanced XAI framework in the 
SemCom model. While GradCAM presents a broad, attention-based summary that is visually 
informative and description-ready in an instant, SHAP delves deeper into feature importance, 
presenting an elaborate explanation that facilitates analysis to a fine-grained extent and model 
optimization. This bidirectional approach not only enhances the system's transparency and 
trustworthiness but also makes it possible to continuously refine it through the revealing of the 
internal thinking of the model and rendering it comprehensible. 

V2x object detection 

In the second scenario, another SemCom model system is present, combined with a DT as the final 
product. First, we have a YOLO model that detects and classifies pedestrians in real time, analyzing 
streams from three cameras placed at different locations and angles but "looking" at the same point. 
Instead of sending full images, this model sends only the necessary semantic information, such as 
bounding boxes, object categories and other metadata, thus drastically reducing bandwidth usage and 
promoting fast and efficient communication.  

The process starts by capturing raw images from all camera units. These images are fed into the YOLO 
detection model, which detects pedestrians in each frame. After extracting the necessary information 
from the regions of interest, SemCom can send only the semantic information to generate the desired 
DT. One of the key features of this system is the integration of XAI through the GradCAM technique. 
GradCAM computes the derivatives of the output classes with respect to the feature maps, creating 
heat maps that show exactly which parts of the image contributed the most to the detection. For each 
camera stream, a heat map is generated and superimposed over the original image, highlighting areas 
of high interest with hot colors, as shown in Figure 19, which shows three frames, one from each 
camera, with the original image displayed on the left and the right image containing the heatmaps. 
These images allow the users to verify that the model is observing critical pedestrian features from 
different directions. The heatmaps act as a window into the "logic" of the YOLO model, revealing that 
the model correctly focuses on pedestrians, omitting irrelevant background information.  

After the detection and visualization stages, the system computes the corresponding semantic data, 
and then the SemCom model sends this information over the V2x networks in the form of lightweight 
data packets. This SemCom approach transmits only the required data, allowing maximum 
transmission speed and optimal system performance. On the receiver side, semantic information is 
used to generate a dynamic DT, capable of being generated in real time, offering the analogous 
advantages of a live DT, such as real-time accident alert. In addition, GradCAM visualizations offer a 
secondary but useful function, providing a means of continuous verification and debugging. By 
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observing the heatmaps from each camera, users can ensure that the YOLO model focuses on the 
expected characteristics, increasing confidence in the system and allowing for continuous 
improvement. 

 

Figure 19: GradCAM heatmaps for each camera of the multi-view V2x scenario. 
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4. XAI Dashboard Implementation 
The NANCY XAI Dashboard is a web-based application with the objective of providing a comprehensive 
and interactive platform for visualizing and analyzing Explainable AI (XAI) outputs. It is a meeting point 
for network operators and other stakeholders to understand the AI model decision-making processes 
that are applied in network management. The dashboard is built to handle image data in conjunction 
with associated JSON metadata so that users can naturally navigate, filter, and analyze AI model 
outputs along with their explanations.  

4.1. Dashboard Architecture 

The NANCY XAI Dashboard provides a scalable environment for the visualization and analysis of 
explainable AI outputs. The core design is based on a three-panel responsive layout, namely the 
“Anomaly Detection”, the “Outage Probability Detection” and the “Semantic Communications”. All 
panels with their sub-windows and drop-down menus are showcased in the Annex. The landing page 
is demonstrated below in Figure 20: 

• Navigation Sidebar: Persistent icon-driven navigation to quickly select analytical modules. 

• Upper Content Panel: A tab-based setting enabling easy toggling between Global and Local 
explainability analyses. 

• Dynamic Visualization Panel: Interactive data visualizations and analytical results are 
dynamically rendered. 

 

Figure 20: Dashboard overview 
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Using the Next.js 14 App Router, the dashboard integrates a file-system-based routing 
(/app/dashboard/[foldername]/). It provides easy adoption of new tabs and significantly boosts the 
scalability of an application. The use of abstract components assures universal layout as well as smooth 
integration, excluding duplication of code, and making processes faster to implement. Table 4 indicates 
the dashboard’s main components. 

Table 4: Dashboard's main components 

Component Path Functionality and Purpose 
/app/dashboard Manages overall layout and ensures consistency across pages 
/app/dashboard/[tab] Enables scalable and dynamic integration of analytical modules 
Abstract Components Template layouts ensuring visual consistency and rapid integration 

4.2. LLM Integration for Results Explanation 

In cybersecurity threat detection, explainability is crucial for understanding and validating AI-driven 
decisions. Traditional machine learning classifiers often operate as "black boxes," making it challenging 
for security analysts to interpret why a specific event is flagged as malicious. To address this, we have 
integrated a Large Language Model (LLM)-Powered Analysis Component that leverages SHAP values 
[28] to provide human-readable explanations for classifier decisions. 

By incorporating an LLM-driven approach, we aim to enhance transparency, trust, and usability in our 
security intelligence framework, ensuring that AI-generated insights are both actionable and 
understandable. 

An LLM is a deep learning-based artificial intelligence system that is trained on vast amounts of textual 
data to understand, generate, and analyze human-like text. LLMs utilize transformer-based 
architectures [29] to process and generate natural language with a high degree of fluency and 
contextual awareness. These models are capable of performing a wide range of tasks, including text 
summarization, machine translation, question answering, and content generation. 

One of the core capabilities of LLMs is contextual understanding and decision-making, and therefore, 
they have use cases in healthcare, finance, law, and customer service. In healthcare, for example, LLMs 
can assist in clinical decision-making by analyzing patient records and by providing diagnostic 
suggestions. In finance, LLMs can study financial reports, detect anomalies in transactions, and build 
market research. 

One of the main uses of LLMs is in XAI, where they are used to explain intricate machine learning 
models by transforming quantitative feature attributions—like SHAP values—into actionable, human-
understandable insights. In this way, LLMs allow users to see the rationale underlying AI-generated 
predictions, making machine learning models more interpretable and accessible to non-experts. 

For our LLM-powered analysis component, we utilize the Mistral-7B-cybersecurity-rules1 model. This 
model is specifically fine-tuned for cybersecurity rule generation and explainability. 

• Base Model: Mistral-7B-Instruct-v0.2 

• Specialization: Threat detection and rule generation 

 
1 https://huggingface.co/jcordon5/Mistral-7B-cybersecurity-rules  

https://huggingface.co/jcordon5/Mistral-7B-cybersecurity-rules
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• Training Data: A curated corpus of 950 cybersecurity rules from SIGMA, YARA, and Suricata2 
repositories 

• Primary Use Case: Automated rule creation, security event analysis, and SHAP value 
interpretation 

The model’s cybersecurity-specific fine-tuning makes it an ideal candidate for explaining classifier 
decisions, as it understands the relationships between threat indicators and detection rules. 

The core technologies utilized for the project implementation are:  

• Large Language Model: Mistral-7B-cybersecurity-rules (fine-tuned Mistral-7B-Instruct-v0.2) 
• Framework: Hugging Face Transformers 
• Runtime Environment: Python 3.12.53 with PyTorch4 
• Hardware Acceleration: CUDA-compatible for GPU acceleration 

The main.py script serves as the primary entry point for the analysis workflow and implements the 
following functionalities: 

• Model Loading and Configuration: 
- Loads the Mistral-7B-cybersecurity-rules model from Hugging Face 
- Configures tokenizer settings with appropriate padding token handling 
- Sets maximum input token length constraint 

• Analysis Workflow: 
- Processes SHAP values from explainable AI components 
- Constructs appropriate prompts for the LLM with feature importance data 
- Handles the generation of explanatory text through the Transformers pipeline 

• Output Processing: 
- Formats and presents the model's explanation in a user-friendly manner  
- Highlights key features using markdown syntax for improved readability 
- Organizes explanations into overview, bullet points, and conclusion sections 

Table 5: Dependencies for the LLM implementation 

Libary Version Description 
torch5 2.5.1 Supplies the computational backend for model 

operations 

accelerate6 1.0.1 Optimizes model loading and inference for better 
performance 

peft7 0.13.2 Supports parameter-efficient fine-tuning 
techniques if model asjustments are needed 

huggingface-hub8 0.26.2 Facilitates model downloading and version 
management 

nvidia-cuda9 - Enable GPU acceleration for faster inference 

 
2 https://suricata.io  
3 https://www.python.org/downloads/release/python-3125/  
4 https://pytorch.org  
5 https://pytorch.org/get-started/previous-versions/  
6 https://pypi.org/project/accelerate/  
7 https://github.com/huggingface/peft  
8 https://huggingface.co/docs/hub/index  
9 https://developer.nvidia.com/cuda-toolkit  

https://suricata.io/
https://www.python.org/downloads/release/python-3125/
https://pytorch.org/
https://pytorch.org/get-started/previous-versions/
https://pypi.org/project/accelerate/
https://github.com/huggingface/peft
https://huggingface.co/docs/hub/index
https://developer.nvidia.com/cuda-toolkit
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transformers10 4.46.1 Provides the core functionality for loading and 
running the LLM 

 
The component accepts the following input data: 

• Class prediction (e.g., "Outage_Risk") 
• Feature importance rankings with associated descriptions 
• Feature importance scores from SHAP analysis 

The following optimization techniques enhance AI model performance by improving efficiency, 
leveraging hardware acceleration, and managing resource constraints effectively. 

• Torch bfloat16 Precision: Reduces memory footprint while maintaining computational 
accuracy 

• Device Mapping: Automatically utilizes available GPU resources for accelerated inference 
• Token Length Management: Enforces maximum token constraints to prevent resource 

exhaustion 

The explanation output of the LLM follows a structured format: 

• Brief Overview: Summarizes why the model made its classification 
• Feature Analysis: Bullet-pointed explanations of each feature's relevance 
• Conclusion: Synthesizes the feature analysis into a coherent final assessment 

The process, illustrated in Figure 12, begins with the XAI Component, which generates SHAP values 
(both for Outage prediction as well as Anomaly  Detection) to quantify the contribution of individual 
features in a model's decision-making. These values are then processed through an LLM-powered 
Analysis module, which interprets the SHAP values and generates human-readable explanations. 
Finally, the processed explanations are sent to the NANCY Explainable AI Dashboard, which provides a 
user-friendly interface for understanding and visualizing model behavior. This workflow enhances 
transparency and interpretability in AI-driven decision systems. 

 

 
Figure 21: Data flow diagram between the XAI component, LLM-Powered Analysis component and NANCY Explainable AI 

Dashboard 

The component's output format is designed to integrate seamlessly with the NANCY XAI Dashboard, 
providing: 

• Markdown-formatted text suitable for web display 
• Bold highlighting of feature names for improved readability 
• Bullet-point organization for structured presentation 

Future development efforts will focus on enhancing explainability, expanding model support, 
optimizing performance, and improving efficiency through batch processing. 

 
10 https://pypi.org/project/transformers 
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• Explanation Customization: Implementing options for different explanation styles and detail 
levels 

• Model Alternatives: Support for additional LLMs beyond the current Mistral-7B 
implementation 

• Performance Optimization: Further tuning for reduced latency and memory usage 
• Batch Processing: Adding capabilities to analyze multiple predictions in a single run 

The integration of the LLM-Powered Analysis Component successfully enhances explainability by 
translating SHAP values into interpretable insights. To achieve this, the system utilizes a structured 
prompt to guide the LLM in producing clear, human-readable explanations for classification results. 
Below is the exact prompt used to generate the explanation: 

messages = [{ 
    "role": "user", 
    "content": '''You are a cybersecurity expert, and you are responsible to analyze the SHAP values 
produced by an explainable AI component.  
                  You are responsible to analyze why the classifier has classified the instance to the given class.  
                  I want at first a brief overview, then the explanation in bullet points (the bullet points should 
be displayed as •) which will include markdown, and finally a conclusion.  
                  The brief overview should begin with the following based on the input of SHAP values for 
the given class. 
                  I want to explain whether the given features really matter in predicting the associated class. 
                  I do not want to take into consideration the importance of each feature. I do not want any 
introductory information and any headings e.g. Summary. 
                  Make bold all the features/classes and do not use any " in the response. 
                  Here is the output from the classifier. 
             
                { 
    "class": "Outage_Risk", 
    "top_features": [ 
        { 
            "feature_name": "tx_pkts", 
            "importance": 2.8807356357574463, 
            "description": "Number of transmitted packets in downlink" 
        }, 
        { 
            "feature_name": "dl_cqi", 
            "importance": 0.8394917249679565, 
            "description": "Channel Quality Indicator for downlink" 
        }, 
        { 
            "feature_name": "sum_granted_prbs", 
            "importance": 0.47345030307769775, 
            "description": "Sum of granted Physical Resource Blocks" 
        }, 
        { 
            "feature_name": "sum_requested_prbs", 
            "importance": 0.25738516449928284, 
            "description": "Sum of requested Physical Resource Blocks" 
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        }, 
        { 
            "feature_name": "dl_buffer", 
            "importance": 0.03884560987353325, 
            "description": "Buffer size in the downlink direction" 
        } 
    ] 
} 
Give an explanation to a beginner without referencing the SHAP values.''' 
}] 

At the core of this system is a carefully crafted prompt that ensures the LLM generates explanations 
that are concise, informative, and tailored for a non-expert audience. The prompt follows a structured 
format designed to guide the model in producing clear and contextually relevant insights. First, the 
LLM is assigned a specific role, acting as a cybersecurity expert responsible for analyzing SHAP values 
produced by an explainable AI component. This role assignment helps the model maintain a focused 
and domain-specific approach while generating explanations. 

 

Figure 22: SHAP values example for the Outage Risk prediction 

The task definition steers the LLM to explain why a prediction was made without explicitly mentioning 
SHAP values. Instead of providing comments on numerical feature attributions, the model focuses on 
interpreting these results in natural language such that the results are more user-friendly. The output 
format is also designed in the same way such that each response has a summary of the outcome of 
the classification, along with a detailed description of the predominant features that influenced the 
decision. The descriptions are laid out to be easily readable and highlight how particular features 
contributed to the model's decision to achieve the forecast class. The answer is concluded with a 
summary correlating the recognized features with the classification outcome, reiterating the 
justification for the model's decision. 

To maintain consistency and readability, specific formatting rules are enforced within the prompt. All 
feature names and class labels are presented in bold text to ensure clarity and emphasis. Additionally, 
the explanation follows a structured flow without introductory headings like "Summary" or extraneous 
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contextual information beyond the requested analysis. These formatting constraints help create a 
streamlined and professional output that aligns with the needs of analysts and decision-makers. 

By following these standards, the LLM ensures that complex AI-generated outputs are presented in a 
way that is easy to understand. This structured approach reduces the cognitive load on analysts, 
enabling them to quickly understand the reasoning behind AI-generated decisions. Also, it enhances 
model transparency, which enhances the trustworthiness and reliability of AI systems in high-risk 
scenarios where interpretability is paramount. 

Below is an example of the system's output when analyzing a network activity instance: 

 { 
    "class": "Outage Risk", 
    "analysis": "The classifier has classified this instance as **Outage Risk** due to the following 
factors:\n\n• **tx_pkts**: This feature represents the number of transmitted packets in the downlink 
direction. It is important because it indicates the amount of data being sent from the network to the 
user's device. A higher value of this feature could indicate a higher risk of network congestion or 
outage.\n• **dl_cqi**: This feature stands for Channel Quality Indicator for downlink. It measures the 
quality of the downlink channel, which is essential for understanding the user's experience with the 
network. A lower value of this feature could indicate poor signal strength, leading to a higher risk of 
network congestion or outage.\n• **sum_granted_prbs**: This feature represents the sum of granted 
Physical Resource Blocks in the downlink direction. It is important because it indicates the amount of 
resources allocated to the user's device for data transmission. A higher value of this feature could 
indicate a higher risk of network congestion or outage due to the increased demand for resources.\n• 
**sum_requested_prbs**: This feature represents the sum of requested Physical Resource Blocks in 
the downlink direction. It is important because it indicates the user's device's demand for resources, 
which can affect the network's performance and availability. A higher value of this feature could 
indicate a higher risk of network congestion or outage due to the increased demand for resources.\n• 
**dl_buffer**: This feature represents the buffer size in the downlink direction. It is important because 
it indicates the amount of data that can be stored in the network's buffer before being transmitted to 
the user's device. A lower value of this feature could indicate a higher risk of network congestion or 
outage due to the inability to store and transmit data efficiently.\n\nIn conclusion, these features are 
crucial for predicting the associated class because they provide insights into the network's 
performance and availability. By understanding the relationship between these features and the 
classifier's output, we can identify potential issues that may lead to network congestion or outages. 
This knowledge helps us to proactively manage network resources and improve user experience." 
} 
The system was evaluated based on its ability to generate accurate, relevant, and interpretable 
explanations. The results confirm that: 

• The LLM correctly associates features with cybersecurity-relevant attributes, ensuring 
accurate SHAP-based explanations. 

• The generated insights align with domain knowledge, reinforcing trust in the AI-driven 
decision-making process. 

• The model significantly reduces the cognitive load on security analysts by automating the 
interpretation of complex ML outputs. 
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4.3. Visualization Components and User Interface 

Visualization components in the dashboard are reusable, modular, and designed for optimal user 
interaction, as shown in Figure 23: 

• Interactive Dot Plots: Offer compact visual rendition of global feature impacts. 

• Data Grids: Offer detailed numerical analysis, with filtering and sorting capabilities. 

• Statistical Cards: Offer essential metrics concisely and efficiently. 

The user interface is designed to favor an intuitive look and feel and user experience: 

• Progressive Disclosure: Discloses detailed analytical information progressively to prevent 
cognitive overload. 

• Responsive Interactivity: Anticipates instant responses to improve interaction with the user 
and ensure transparency in navigation. 

Centralized configuration supports theming and internationalization, which ensures the dashboard's 
flexibility to cope with different user requirements is simple and seamless. 

Figure 23: Front-end Importance Table 
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Modularity allows for rapid updates and extension, supporting the addition of new visualization 
features with minimal effort. Table 6 lists the functional components of the developed Dashboard. 

Table 6: Dashboard's functional components 

Component / UI 
Aspect  

Description and Benefit  Application Scenario  

Dot Plots  Visualize global feature importance clearly  Global model interpretability  

Data Grids  Detailed interactive numerical analysis  In-depth numerical data 
analysis 

Statistical Cards  Quick summary of key metrics  Rapid analytical insights  

Progressive 
Disclosure  

Gradually reveals detailed data  Enhanced usability  

Consistent Visual 
Style  

Cohesive user-friendly design  Improved user comfort  

Responsive 
Interaction  

Immediate UI response  Active user engagement  

 

4.4. Scalability and Extensibility 

The dashboard becomes scalable and extendable by applying architectural patterns: 

• Dynamic Routing: Enables immediate addition of fresh analytical views.  

• Abstract and Reusable Components: Enable consistent and rapid development throughout the 
dashboard.  

• Independent Module Integration: Enable components to be reused outside the context of the 
dashboard, allowing separate applications. 

Table 7 indicates the architectural features of the developed dashboard, that enables its scalability: 

Table 7: Dashboard's architectural features 

Feature  Implementation Approach  Operational Advantage  

Dynamic Routing  Next.js folder-based dynamic 
routes  

Rapid and seamless expansion  

Abstract 
Components  

Reusable UI templates  Reduced coding effort and 
consistency  

Independent 
Modules  

Modular standalone usage  Flexible reuse and easy deployment  
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5. Integration and Deployment 
Effective integration and deployment plans are critical to ensuring that the NANCY XAI Dashboard runs 
stably and scales well. The below explains the strategies employed to streamline component 
communications, optimize performance, and guarantee good application stability. 

5.1. Component Integration 

The integration strategy of the NANCY XAI Dashboard enables seamless communication between 
frontend and backend data services through properly structured, well-defined processes. Well-
designed API endpoints created following Next.js 14 App Router conventions (naming convention: 
route.ts), handle HTTP requests nicely through properly structured methods such as GET and POST. 
This kind of well-organized backend-to-frontend communication simplifies data transfer for efficient 
fetching and transformation of complex data structures, particularly JSON metadata. Table 8 lists the 
technologies used for developing the dashboard. 

Table 8: Dashboard's Technology Stack 

Technology  Version  Purpose  

Next.js11 14.2.24  Frontend routing and server-side rendering  

React12 18.3.1  UI library for building interactive interfaces  

TypeScript13  5.7.3  Static typing to enhance code quality  

Tailwind CSS14 3.4.17 Utility-first CSS framework for responsive design  

React Hooks15 useState/useEffect  State management for efficient rendering  

 
The modular component-based architecture makes integration possible by means of clean separation 
of concerns. The layout components provide structure consistency, and feature-specific components 
encapsulate complex logic independently. Common UI components (e.g., loaders, cards, data displays) 
are utilized as reusable components. Hierarchical layering of the components enables independent 
development, testing, and deployment, making collaboration efficient and CI/CD processes seamless. 
Table 9 shows some of the technical details of the dashboard. 

Table 9: Dashboard's technical details 

Integration Aspect  Technical Details  Advantage  
API Endpoint 
Management  

Structured Next.js App Router API 
routes  

Efficient, clear communication  

JSON Data Handling  Structured parsing and dynamic 
data formatting  

Accurate data visualization, 
responsiveness  

Component-Based 
Integration  

Hierarchical modularity and 
encapsulated logic  

Independent deployment, 
streamlined CI/CD  

 
11 https://nextjs.org/ 
12 https://react.dev/   
13 https://www.typescriptlang.org/   
14 https://tailwindcss.com/ 
15 https://react.dev/reference/react/hooks   

https://nextjs.org/
https://react.dev/
https://www.typescriptlang.org/
https://tailwindcss.com/
https://react.dev/reference/react/hooks
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5.2. Performance Optimization 

Optimization methods of the dashboard are specifically engineered to handle dynamic user 
interactions and long data operations in the best possible way. React hooks (useState, useEffect) offer 
state management that is responsive, reducing unnecessary rendering loops and enhancing user 
interactions. In addition, the application employs lazy loading techniques for components and data 
resources alike so that resources are loaded precisely when they are needed, thereby significantly 
improving initial load times and decreasing memory usage. 

Loading states are managed strategically to provide immediate visual feedback while fetching data, 
making the process transparent and involving the user. Ongoing monitoring and profiling guarantee 
that bottlenecks in the performance can be immediately identified and resolved to maintain ongoing 
high levels of performance. Table 10 summarizes the performance strategies that are applied on the 
dashboard. 

Table 10: Dashboard's performance strategies 

Performance Strategy  Implementation Method  Operational Benefit  
React Hooks for State 
Management  

Efficient localized state 
management  

Enhanced responsiveness, 
reduced rendering time  

Lazy Loading  Dynamic importing of 
components/data  

Improved initial load, reduced 
memory footprint  

Component Isolation  Modular architecture, isolated 
state  

Stable performance, reduced risk 
of regressions  

Immediate Loading 
Feedback  

Visual feedback during data fetch 
operations  

Improved user experience, 
increased transparency  

Continuous Monitoring  Regular performance profiling 
and optimization  

Consistent performance, proactive 
issue handling  
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6. Conclusion and Outlook 
The development and integration of the XAI toolbox and functionalities are a significant milestone for 
the whole NANCY platform. Through the XAI toolbox, the concepts of Familiarity, Knowledgeability, 
and Fairness are integrated. The deliverable demonstrates the technical feasibility of integrating 
explainability mechanisms directly into the AI pipelines used in network management. 

Both global and local explanation techniques using various XAI techniques, tailored for network traffic 
classification and outage prediction and semantic communication, are developed. This dual-layer 
approach ensures that stakeholders can understand not only general model behavior but also case-
specific decisions. The NANCY XAI Dashboard provides a scalable and user-friendly environment for 
the visualization and analysis of explainable AI outputs. 

The LLM-Powered Analysis Component successfully converts numerical attributions into insightful 
cybersecurity information, bridging the gap between AI-driven threat detection and human 
interpretability. This feature strengthens the trust and usability of AI-based cybersecurity solutions, 
thus improving threat analysis and response efficiency. 

The toolbox and dashboard were designed to be extensible, using modular and scalable software 
patterns that can be easily adapted to new network management scenarios. NANCY XAI toolbox 
functionalities support WP5 goals. Additionally, it enhances the usability of AI components, which are 
aligned with the requirements derived from WP3 and WP4. The XAI toolbox will be validated in Greek 
in-lab testbed, under WP6, according to D6.2 “NANCY Integrated system – Initial version”, in the 
upcoming months. 
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Annex – Screenshots from the Graphical User Interface 

 

Figure A 1: Drop-down menu - Global explainability 

 

Figure A 2: Drop-down menu - Local explainability 

 

Figure A 3: Local explainability sample 
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Figure A 4: Global explainability sample 

 

 

Figure A 5: Semantic communications menu – gradCam ASL output 
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Figure A 6: Semantic communications menu – gradCam V2X output 

 

Figure A 7: Semantic communications menu – SHAP ASL output 
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