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Executive Summary 
This deliverable, namely "D2.2 – NANCY Experimental-Driven Modelling", presents the theoretical 
modelling frameworks for the Blockchain-Radio Access Network (B-RAN) architecture within the NANCY 
project. The core objective is to rethink the roles of connectivity providers and service consumers, where 
a consumer can also act as a provider. The document focuses on three NANCY usage scenarios: fixed 
fronthaul network, advanced coverage expansion, and advanced connectivity of mobile nodes. 

The deliverable introduces a novel B-RAN architecture and attack modelling approach. It employs Markov 
chain theory to model the probabilistic transitions between different system states in both single-chain B-
RAN and a Hierarchical B-RAN (HB-RAN) architecture designed for coverage expansion scenarios. The HB-
RAN model utilizes nested blockchains with intermediate users to extend network coverage securely. 

Performance evaluation, primarily focusing on latency, is conducted for both B-RAN and HB-RAN using 
queueing theory (M/M/1 and M/M/s models) and Markov chain analysis. Numerical results demonstrate 
the impact of parameters like the number of confirmations (N), block capacity (k), and traffic intensity (ρ) 
on latency. The HB-RAN analysis reveals a performance trade-off due to the introduction of the secondary 
blockchain. 

The deliverable also investigates the security landscape of B-RAN, identifying and modelling prominent 
attacks, particularly the 51% attack and the Sybil attack. Closed-form expressions for the probability of 
successful attacks are derived based on the attacker's mining power and network parameters. Numerical 
results highlight the relationship between security (attack probability) and latency, demonstrating an 
inherent trade-off. Increasing the number of confirmations generally enhances security but increases 
latency. 

Finally, the deliverable explores intelligent optimisation of B-RAN using a Reinforcement Learning (RL) 
framework. A Proximal Policy Optimization (PPO) based RL agent is developed to dynamically adjust 
blockchain parameters at runtime to maintain target latency while optimizing resource utilization. 
Simulation results demonstrate the RL agent's effectiveness in mitigating traffic surges and stabilizing 
network performance. The findings underscore the potential of AI-based techniques for enhancing the 
efficiency and resilience of B-RAN systems. 
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1. Introduction 

1.1. Purpose of the Document 
This deliverable, namely "D2.2 – NANCY Experimental-Driven Modelling", presents a new model in which 
service consumers may also act as connectivity providers, and provides theoretical modelling frameworks 
for the B-RAN architecture, which revolutionizes wireless networks, by allowing a service consumer to 
simultaneously be a service provider. It focuses on the three NANCY usage scenarios, i.e., fixed fronthaul 
network, advanced coverage expansion, and advanced connectivity of mobile nodes. D2.2 also 
investigates the security landscape of B-RAN, recognizes the 51% and Sybil attacks as the most impactful, 
and incorporate them in the theoretical modelling framework. It capitalises on Markov-Chain theory and 
artificial intelligence, and extracts closed-form expressions for the average latency and probability of 
successful attack. Finally, AI-based techniques are provided for the intelligent optimisation of B-RAN. 

1.2. Relation to other Tasks and Deliverables 
This deliverable builds upon previous research and findings within the NANCY project as follows: 

• “D2.1 – NANCY Requirements Analysis” provides a strong foundation for the construction of the 
experimental-driven modelling in terms of the NANCY’s vision, use cases, usage scenarios, and 
requirements.  

• “D3.1 – NANCY Architecture Design” describes the NANCY architecture along with details about 
its various components. A preliminary analysis of the experimental-driven modelling approaches 
of NANCY is included in D3.1. 

1.3. Structure of the Document 
The rest of the document is structured as follows: 

• Section 2 – The role of B-RAN modelling in NANCY: This section addresses the necessity of 
providing intelligence, energy efficiency, and security at the network's edge, leading to the 
transformation of Radio Access Networks (RANs). It highlights the potential of incorporating 
blockchain into RANs (B-RAN) as a promising countermeasure to security risks by offering 
decentralized tamper-proof solutions. The section discusses how B-RAN enables secure, private, 
and dependable collaboration among service providers and users by integrating blockchain with 
virtualization, Multiple-access Edge Computing (MEC), and Artificial Intelligence (AI). It also details 
the relation of B-RAN modelling to the three NANCY usage scenarios: fronthaul network of fixed 
topology, advanced coverage expansion, and advanced connectivity of mobile nodes. The section 
further describes the network topology, considering both point-to-point and multi-hop 
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connectivity scenarios, and introduces the concept of a hierarchical B-RAN (HB-RAN) architecture 
for advanced coverage expansion. 

• Section 3 – B-RAN modelling: This section presents the theoretical modelling frameworks for the 
B-RAN architecture. It employs a Markov chain model to capture the probabilistic transitions 
between different system states and analyses their dynamic behaviour during B-RAN operations. 
The section also introduces an extension of the single-chain B-RAN model, the HB-RAN model, 
designed for assessing the performance of coverage expansion scenarios in terms of security and 
reliability. Furthermore, this section delves into performance evaluation by mathematically 
modelling latency using queuing theory (M/M/1 and M/M/s queues) to represent request 
processing in blockchain blocks and service initiation. Finally, the section presents numerical 
results obtained from the proposed B-RAN model, discussing its performance and highlighting 
valuable design guidelines through simulations. 

• Section 4 – Attack modelling: This section investigates the security landscape of B-RAN by first 
presenting the most prominent attacks, focusing on both blockchain and network aspects. It 
identifies and describes attacks such as the 51% attack, selfish mining, Man-in-the-Middle (MITM) 
attack, collusion attacks, and private key compromise in validator nodes within the blockchain 
domain. In the network domain, it discusses threats to Open Radio Access Network (O-RAN) such 
as Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks, reconnaissance 
attacks, MITM attacks, and eavesdropping. The section then details and models the 51% attack 
and Sybil attack as the most impactful threats. Finally, it prepares these selected attacks for 
integration with the B-RAN theoretical model. 

• Section 5 – Unified B-RAN and attacks modelling: This section focuses on the integration of the 
selected attacks (51% and Sybil) with the theoretical B-RAN modelling presented earlier. It 
emphasizes the security of B-RAN and evaluates it by analysing the probability of a successful 
attack, highlighting the equilibrium between performance and security. The section includes a 
performance evaluation of B-RAN under the 51% attack and the Sybil attack, providing closed-
form expressions for the probability of successful attacks. It then presents numerical results 
collected based on the alternate history attack model, discussing the interactions among various 
B-RAN parameters and comparing the achieved security with other works to provide design 
guidelines for robust protection. 

• Section 6 – Intelligent Optimisation: This section explores the use of AI-enhanced algorithms for 
intelligent optimization in blockchains, aiming to improve performance, security, and scalability. 
It discusses how AI and machine learning can help solve issues like low transaction processing 
speed, energy efficiency, security, and network congestion by enhancing consensus mechanisms 
and resource utilization. The section presents a RL framework designed to optimize the 
performance of a B-RAN by dynamically adjusting blockchain parameters to maintain target 
latency while optimizing resource usage. Finally, it presents the performance of this RL framework 
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through simulations, demonstrating its effectiveness in mitigating network congestion and 
restoring performance under dynamic traffic conditions. 

• Section 7– Conclusions: This section provides a summary of the key findings and insights derived 
from the theoretical modelling, attack analysis, and intelligent optimization strategies discussed 
throughout the deliverable. It will likely reiterate the significance of the research in the context of 
secure Beyond 5G Long Term Evolution networks and potentially outline directions for future work 
within the NANCY project. 
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2. The role of B-RAN modelling in NANCY 
Recent technological developments and the vision for the next generation of wireless communications 
have brought to the forefront the need to provide intelligence, energy efficiency, and security at the far 
edge of the network. As a consequence, radio access networks (RANs) need to be transformed to enable 
flexible, efficient, and reliable connectivity to a wide variety of devices [1]. High security and privacy 
assurances must be implemented as RAN technologies develop to reduce newly emerging risks and 
vulnerabilities [2]. This observation has motivated a great amount of research effort that aims to identify 
and prevent security issues in the RAN have been intensified [3, 4]. Potential threats to the confidentiality 
and integrity of communications include illegal access, data breaches, and network outages. The 
incorporation of blockchain into RANs presents a promising countermeasure to the above risks [5]. 
Although blockchain had initially developed for cryptocurrency [6], its effectiveness in decentralized 
tamper-proof solutions was been extensively validated [7, 8, 9]. Through decentralization, the blockchain 
ensures that no single entity controls the network; thus, mitigating the risks associated with centralized 
points of failure and unauthorized access [10].  

The investigation of how blockchain can enhance security across various network areas has been widely 
explored making it a focal point in the evolution towards the sixth generation (6G) wireless systems. 
Additionally, the Markovian chain technique is a versatile and powerful method that can be applied across 
various fields, such as marketing [11], weather forecasting [12], and chemical engineering [13]. An 
important example of its application is in blockchain technology, where it has proven effective, as 
demonstrated in previous studies [14, 15]. More specifically, Markovian chains have been applied in 
blockchain within RAN scenarios, as seen in research studies [16, 17]. Based on these examples, we 
conclude that Markov chain models are appropriate due to their proven effectiveness in network and 
blockchain performance analysis. For example, the authors of [18] have conducted a comprehensive 
examination of the integration of blockchain into RANs, proposing a framework of secure B-RAN tailored 
for 6G networking. Additionally, they have outlined a framework for the analysis of block-structured 
Markov processes, adding phase-type service periods and transaction arrivals to the existing models. In 
[19, 20], the authors have taken advantage of Markov chain (MC) models to investigate B-RAN systems 
performance in terms of latency and security capabilities. A similar modelling approach has been followed 
in [21], where the authors have presented a dual-hop B-RAN architecture and have analysed its 
performance in terms of probability of delay and average latency.  

Several recent studies have focused on the specification of the ideal block size [22, 23, 24, 25]. In particular, 
in [22], the authors have described the building and mining process with a focus on performance 
assessment, while the authors of [23] have studied the latency model of blockchain with a variety of timers 
and forks. The authors of [24] have presented block access control as a remedy to blockchain forking 
problems in wireless networks. This method effectively controls block transfer and improves transaction 
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throughput. In the same work, an evaluation of the network performance in terms of transaction 
throughput and saving computational power has been conducted. Batch service queuing has been utilized 
in [25] in order to reduce the impact of delay on system stability.  

All the aforementioned works consider very constrained blockchain models that assume singular 
transaction per block and do not consider the possibility of block rejections. To cover this gap, this 
deliverable introduces a novel B-RAN architecture and attacks modelling that allows both individual and 
commercial intermediary nodes to act as wireless access providers, regardless of their ownership. At the 
same time, the reduced complexity of the proposed model constitutes a versatile tool for conducting 
performance assessment and extracting design guidelines before actually deploying a B-RAN system.  

2.1. Relation to the NANCY usage scenarios 
B-RAN enables collaboration among different service providers and users in a secure, private, and 
dependable manner. This is achieved by blending blockchain with virtualization, multiple-access edge 
computing (MEC), and AI functionalities. B-RAN opens the door to a number of attractive usage scenarios, 
such as fronthaul network of fixed topology, advanced coverage expansion, and advanced connectivity of 
mobile nodes. In the rest of the section, we document the aforementioned scenarios. 

 

Figure 1. Network topology 

2.1.1. Fronthaul network of fixed topology 
In the fronthaul network of fixed topology, each user equipment (UE) performs tasks that demand 
significant computing power and time sensitivity, such as navigation, video streaming, or virtual reality. It 
is assumed that the base stations (BSs), which may belong to different service providers, are equipped 
with MEC capabilities. BSs have computing resources and can carry out AI tasks. UEs with resources can 
offload tasks to various edge infrastructures using resource allocation strategies, such as those optimized 
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for cooperative transmission in C-RAN environments [26]. Additionally, coordinated multi-point (CoMP) 
connectivity, managed through joint precoding and resource allocation strategies, can improve system 
reliability and energy efficiency in scenarios involving multiple BSs [27]. The need for B-RAN stems from 
the absence of trust-based interactions between UEs and BSs. 

2.1.2. Advanced coverage expansion 
The concept of advanced coverage expansion plays a significant role in future communication networks in 
order to address the increasing demand for reliable high-speed connectivity in various environments. It 
involves utilizing state-of-the-art approaches, like using infrastructure as relay nodes [28], implementing 
node structures, and employing efficient connectivity models to enhance network performance [29]. 
These methods not only ensure expanded and higher quality network coverage but also significantly 
improve energy efficiency. B-RAN is envisioned to augment security in coverage expansion scenarios 
through the integration of blockchain to strengthen confidentiality and trust in communications. By 
incorporating these elements, B-RAN is capable to meet the complex and evolving needs of modern 
connectivity, while also emphasizing the importance of adaptability, security, and efficiency in network 
expansion. 

2.1.3. Advanced connectivity of mobile nodes 
This scenario promotes communication between vehicles and BSs as well as between different vehicles. 
Information can be shared among vehicles, where one vehicle acts as the intermediate node to forward 
the data to the BS. Establishing a network that supports both vehicle-to-vehicle (V2V) [30] and vehicle-to-
BS communication is necessary [31, 32]. In addition, an important goal is to ensure wide coverage and 
efficiency in terms of latency, throughput, and energy consumption. Although vehicular communications 
rely on ground-based infrastructure for V2V transmission, the growing demands of services call for more 
stringent requirements that these traditional methods cannot fulfil. For instance, when vehicles travel far 
from the BS, ensuring latency for real-time applications requires synchronization among vehicles and 
becomes challenging if communication must go through the BS. V2V communications address this by 
enabling direct information exchange without relying on centralized infrastructure. While eliminating the 
reliance on the BS can offer advantages, it also comes with drawbacks such as the lack of a centralized 
entity responsible for network security management. B-RAN aims to ensure security and privacy by using 
pseudonyms when sharing data since trust cannot be assumed. Moreover, B-RAN can enable support for 
multi-hop communications among vehicles to minimize connectivity gaps and extend the coverage of the 
network. 

2.2. Network Topology 
The realization of the aforementioned usage scenarios is founded upon not only point-to-point (P2P) but 
also multi-hop connectivity. If we take for instance a mobile connectivity use case of a vehicle moving 
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inside the coverage area of the network, p2p connectivity can suffice for providing network services to the 
UE. However, when the vehicle reaches the limits of the network’s coverage area, P2P links can no longer 
provide adequate quality for the service. In this case, an ad-hoc network must be instantiated by a node 
that is located close to the UE can extend the network coverage and providing connectivity. This 
intermediate node is connected at the same time to the mobile UE and the BS; thus, providing the service 
though multi-hop connectivity. This high-mobility use case is depicted in Figure 1, which illustrates the 
different B-RAN usage scenarios as a vehicle moves through the network and eventually exits its coverage 
to be served by the intermediate node. Specifically, the fronthaul network of fixed topology usage scenario 
is applicable to direct connectivity cases inside the coverage area of the network, the advanced 
connectivity of mobile nodes describes the entire movement of the vehicle, and the advanced coverage 
expansion scenario is applicable after the vehicle moves beyond the limits of the fixed infrastructure and 
an ad-hoc network is deployed by the intermediate node.  

In this deliverable, we model the B-RAN network dynamics through Markov-chain theory. To achieve this, 
we split the theoretical modelling into two network topologies. The first assumes a direct connectivity 
scenario with the UE connected directly to the BS; thus, providing the service through the primary 
blockchain of the network. Of note, there are three main blockchain architectures, i.e., public, private and 
consortium, that can be used in an implementation [33]. Each blockchain type has different characteristics, 
specifications, and requirements; however, the flexible and adaptable nature of the presented model 
makes it applicable in all possible scenarios regardless of the blockchain type. The second topology tackles 
the multi-hop connectivity case of the advanced coverage expansion scenario; thus requires the 
establishment of a hierarchical B-RAN architecture that deploys a secondary blockchain between the 
intermediate node and the UE to provide the service outside of the network’s primary coverage area.  

Alongside the blockchain architecture, it is essential to mention the consensus mechanisms. According to 
relevant studies [34, 35] the consensus algorithms can be categorized into a variant of types, with the most 
used to be Proof of Work (PoW), Proof of Stake (PoS) and Byzantine Fault Tolerance (BFT) each of them 
with unique attributes. For example, a characteristic feature of PoW is the fact that is resource intensive, 
as it requires nodes to solve difficult problems, a feature that offers a strong security level but is highly 
demanding on energy consumption. On the other hand, PoS completes its role based on the validator’s 
stakes, thus consuming less energy. Finally, the BFT algorithm is ideal for distributed models where fault 
tolerance has an important role in the overall model. In conclusion, we can distinguish that each consensus 
mechanism has its strengths and weaknesses by trying to satisfy both the overall speed of the model and 
its security. The ideal choice depends on the blockchain model and the attributes (e.g., security, latency 
times, energy consumption) that would like to address the most in every scenario. The proposed 
framework can model different deployments of blockchain through the employed Markov-chain theory-
based approach that depends on the probabilistic behaviour of the blockchain. 
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3. B-RAN Modelling 
In this section, we present the B-RAN model. We employ a Markov chain model to capture the probabilistic 
transitions between different system states and delve into their dynamic behaviour during the operations 
of B-RAN. Additionally, we introduce an extension of the single-chain B-RAN model, which is characterized 
by nested blockchains that create a HB-RAN architecture. This HB-RAN model provides a novel solution for 
assessing the performance of coverage expansion scenarios, like ad-hoc deployments and cell-free 
network access in terms of security and reliability. Through this approach, our aim is to illustrate the 
operational dynamics of B-RAN, while offering essential insights for its optimization and improvement.  

 

Figure 2. B-RAN architecture 

The B-RAN model is depicted in Figure 2 and illustrates its operation through the utilization of two queues. 
The first queue models service requests that wait to be included in a blockchain block, while the second 
queue models the confirmed requests that wait to be serviced by the network. In more detail, the first 
queue operates based on the principles of a 𝑀𝑀/𝑀𝑀/1 queue, in which requests arrive with a Poisson 
distribution with rate 𝑅𝑅𝑎𝑎 ∈ ℝ+  , and their processing times are governed by memoryless exponential 
distributions with a rate of 𝑅𝑅𝑚𝑚 ∈ ℝ+ . The Poisson process is ideal to model network traffic since the 
aggregation of multiple i.i.d. processes tend to a Poisson process for a sufficient number of events. Also, 
its simplicity and mathematical tractability enable efficient simulation and analysis, making it 
straightforward to generate and evaluate traffic patterns. In addition, the superposition and splitting 
properties allow complex network scenarios-such as multiplexed traffic or routed paths-to be modelled 
with minimal computational overhead. Each of the request is processed within blockchain blocks that may 
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contain a maximum of 𝑘𝑘 number of requests per block. Additionally, the second queue is modelled as a 
𝑀𝑀/𝑀𝑀/𝑠𝑠 queue, with 𝑠𝑠 representing the maximum number of access links. Requests arrive based on a 
Poisson distribution, while their processing times are characterized by memoryless exponential 
distributions. Based on the above model, at any time 𝑡𝑡, the system is fully described by two non-negative 
integers, namely 𝑖𝑖 and 𝑗𝑗. The former denotes the number of requests currently pending inclusion in the 
next blockchain block. The latter specifies the number of (already mined) requests sitting in the service‐
ready queue. The 𝑖𝑖 − 𝑗𝑗  pairs are packaged into one “state,” termed 𝐸𝐸[𝑖𝑖, 𝑗𝑗] ∈ 𝑆𝑆 =  { (𝑖𝑖,  𝑗𝑗) | 𝑖𝑖 =
 0,1,2, … ;  𝑗𝑗 =  0,1,2, …  }. For example, in the case that the servicing stage has only 𝑠𝑠 servers but infinite 
buffer, 𝑗𝑗 ∈ [0,∞) with up to 𝑠𝑠 “in service” simultaneously. Therefore, 𝐸𝐸[𝑖𝑖, 𝑗𝑗] is a 2-dimensional integer 
vector in the product state‐space of the two queues. Every state 𝐸𝐸[𝑖𝑖, 𝑗𝑗]  ∈  ℕ₀ × ℕ₀ fully specifies how 
many jobs are “mining-pending” (𝑖𝑖) and how many are “service-pending” (𝑗𝑗). 

 

Figure 3. B-RAN Markov chain model 

3.1 Markov Chain Model 
The possible states can be aptly portrayed as a continuous time-homogeneous Markov process; thus, 
embodying all the defining characteristics inherent to a Markov chain [20]. As depicted in Figure 3, the 
Markov chain model is defined by its current state, 𝐸𝐸[𝑖𝑖, 𝑗𝑗], at time t, and five discrete states that capture 
various configurations of the system. The transitions between these states take place over minimal time 
interval ℎ →  0.  
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When a new request is received, the next state is denoted by 𝐸𝐸′ → [𝑖𝑖 +  1, 𝑗𝑗] and signifies an increase in 
the number of pending requests for blockchain, 𝑖𝑖, as an additional request is added to the next block. Of 
note, in this case, the number of requests waiting service, 𝑗𝑗, remains unchangeable. This reflects the fact 
that only one event can take place at any given ℎ. The probability of this transition is defined as  

𝑝𝑝𝑎𝑎 = 𝑅𝑅𝑎𝑎ℎ, (1) 

where 𝑅𝑅𝑎𝑎 stands for the rate at which an arrival request occurs. Next, the transition to 𝐸𝐸′ → [𝑖𝑖 − 𝑘𝑘, 𝑗𝑗 + 𝑘𝑘] 
describes the case in which a block is successfully mined. The probability of successful block mining can be 
expressed as 

𝑝𝑝𝑚𝑚 = 𝑅𝑅𝑚𝑚ℎ, (2) 

with 𝑅𝑅𝑚𝑚  being the mining rate of a block. Note that 𝑝𝑝𝑚𝑚depends on 𝑘𝑘 , which denotes the maximum 
number of requests that can be included in a single block. A successful block mining event is related on 
the number of pending requests and the block size number. If the number of pending requests, 𝑖𝑖, is equal 
to or less than the threshold 𝑘𝑘, then all pending requests are successfully mined in a single block; thus, 
increasing 𝑗𝑗  by 𝑖𝑖 ; the subsequent state is denoted by 𝐸𝐸’ →  [0, 𝑗𝑗 +  𝑖𝑖] . Conversely, if the number of 
pending requests surpasses the threshold 𝑘𝑘 , only a maximum of 𝑘𝑘  requests can be mined, while the 
remaining requests remain pending; in this case, the next state can be written as 𝐸𝐸’ →  [0, 𝑗𝑗 +  𝑘𝑘]. The 
transition to the 𝐸𝐸’ → [0, 𝑗𝑗 − 1] state models the service of a request and is associated with a probability 

𝑝𝑝𝑠𝑠 = 𝑅𝑅𝑠𝑠ℎ, (3) 

 where 𝑅𝑅𝑠𝑠  is the service rate. This transition indicates a reduction of 1  in the 𝑗𝑗  queue, signifying the 
commencement of service for the corresponding request. Note that the number of pending requests, 𝑖𝑖, 
remains unaffected, as service initiation influences only the queue of blocks and not the pending requests. 
Additionally, the transition to state 𝐸𝐸’ → [𝑖𝑖 − 𝑟𝑟, 𝑗𝑗] characterizes the rejection of a request due to factors 
like authentication problems, insufficient resources, and so on. In this case, 𝑟𝑟 represents the number of 
rejected requests. This transition is governed by the rejection probability, which is defined as 

𝑝𝑝𝑟𝑟 = 𝑅𝑅𝑟𝑟ℎ, (4) 

with 𝑅𝑅𝑟𝑟 standing for the rejection rate. When a rejection event occurs, 𝑖𝑖 decreases by 𝑟𝑟 since the block 
that contains the rejected request is discarded and the remaining requests need to be included in the next 
block. Meanwhile, 𝑗𝑗 remains unchanged emphasizing that the rejected block did not advance to the mining 
stage. Finally, there is a probability that none of the aforementioned events occur; this signifies the idle 
state. The idle state is denoted by 𝐸𝐸’ → [𝑖𝑖, 𝑗𝑗] with its probability being written as 

𝑝𝑝𝑖𝑖 = 1 − (𝑝𝑝𝑎𝑎 + 𝑝𝑝𝑚𝑚 + 𝑝𝑝𝑠𝑠 + 𝑝𝑝𝑟𝑟), (5) 

or, after applying (1)–(4),  
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𝑝𝑝𝑖𝑖 = 1 − (𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟)ℎ. (6)
The idle state represents that the system remains unchanged at the given time without moving to any 
available states. The probability of this scenario captures the possibility of no requests coming in, no 
requests being rejected, no mining successes, and no service operations being completed. 

3.2 Hierarchical B-RAN Model 
In order to support the scenarios, which were documented in Section 2, HB-RAN deployments are required. 
In the scenario of advanced coverage expansion, the end user is unable to directly connect to the BS of its 
Internet service provider. However, it can establish a direct link with an intermediate user (IU) that is 
already connected to the BS via the primary blockchain. Therefore, a secondary blockchain is created 
between the intermediate and the end user to ensure security, privacy, and trust, as seen in Figure 4. 

 

Figure 4. Hierarchical blockchain architecture 

This procedure generates a smart contract between the end user and the IU. Consequently, an end-user 
request from the secondary network, as illustrated in Step 1 of the figure, is initiated to establish a 
connection and create a Service Level Agreement (SLA) in Step 2, after which it is inserted into the 
secondary blockchain. At first, this request enters a 𝑀𝑀/𝑀𝑀/1 queue and waits to be included in a block; this 
process is depicted in Step 2 of the figure. Next, the mining phase begins by the blockchain network in 
order to verify the request. After a successful mining process, the request is forwarded to a second queue, 
where blocks are waiting to be serviced using a multiple-server queuing model 𝑀𝑀/𝑀𝑀/𝑠𝑠. Once the request 
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is validated through the secondary blockchain (Step 4), a corresponding request is formed in the primary 
blockchain. Upon accessing the primary blockchain by a new SLA thus has been created from the secondary 
blockchain, as depicted in step 5, it joins the 𝑀𝑀/𝑀𝑀/1 queue of the primary blockchain (Step 6) for block 
inclusion and then waits for 𝑁𝑁  confirmations to validate the block, according to step 7 of the figure. 
Afterwards, it transitions into a distinct stage that waits in the 𝑀𝑀/𝑀𝑀/𝑠𝑠 queue of the primary blockchain to 
begin its service (Step 8). Once the request’s service starts on the main blockchain, it switches to the 
secondary blockchain, and its end-toend (e2e) latency can be measured, reflecting the initiation of service 
as depicted in Step 9. This refers to the total time spent navigating across both primary and secondary 
blockchains. 

3.3 Performance Evaluation 
In this subsection we analyse the performance of the BRAN framework, concentrating on assessing the 
vulnerabilities and estimating the system latency. We provide important insights into the fundamental 
concepts of B-RAN by mathematically modelling latency.  

The proposed framework utilizes two queues to model the complex dynamics of incoming requests and 
their processing in blockchain blocks. As explained earlier, a 𝑀𝑀/𝑀𝑀/𝑠𝑠 queue simulates the latency caused 
by service initiation and processing, while a 𝑀𝑀/𝑀𝑀/1  queue handles requests that are waiting to be 
included in the blockchain. The end-to-end latency of the system is a result of both queues. The expected 
value of the waiting time due to the 𝑀𝑀/𝑀𝑀/1 queue in the B-RAN model can be analytically expressed as 
in [36] 

𝜏𝜏1 =
1

𝑅𝑅𝑚𝑚 − 𝑅𝑅𝑎𝑎
, (7) 

where 𝑅𝑅𝑎𝑎 stands for arrival rate and 𝑅𝑅𝑚𝑚 for service rate. Moreover, the latency generated by the 𝑀𝑀/𝑀𝑀/𝑠𝑠 
queue can be written as in [37] 

𝜏𝜏2 =
𝐶𝐶 �𝑠𝑠,𝑅𝑅𝑎𝑎𝑅𝑅𝑠𝑠

�

𝑠𝑠𝑅𝑅𝑠𝑠 − 𝑅𝑅𝑎𝑎
+

1
𝑅𝑅𝑠𝑠

, (8) 

with the first term’s nominator expressing the Erlang 𝐶𝐶  formula, which depends on 𝑠𝑠 , 𝑅𝑅𝑎𝑎 , and 𝑅𝑅𝑚𝑚 . 
Furthermore, the confirmation process of the blockchain also creates some additional delay that can be 
calculated as  

𝜏𝜏3 =
𝑁𝑁 − 1
𝑅𝑅𝑚𝑚

, (9) 

where 𝑁𝑁 denotes the number of confirmations and Rm represents the block generation rate. At this point, 
Little’s Law has been applied to establish a relationship between the expected latency and the queue 
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length. Little’s Law asserts that the arrival rate multiplied by the average time an item spends in the system 
equals the average number of transactions in a stable system. Consequently, the expected sojourn time, 
𝜏𝜏𝑠𝑠 , which quantifies how long each service request remains within its specific system state, can be 
expressed as 

𝜏𝜏𝑠𝑠 = 𝜏𝜏1 + 𝜏𝜏2 + 𝜏𝜏3. (10) 

As a result, the average latency of B-RAN, 𝜏𝜏𝑡𝑡, can be evaluated as 

𝜏𝜏𝑡𝑡 = 𝜏𝜏𝑠𝑠 −
1
𝑅𝑅𝑠𝑠

. (11) 

It is important to highlight that, in the HB-RAN model, the same process is followed for the evaluating the 
latency. This method calculates the time it takes for a request to be served by the primary blockchain. 
However, in the coverage expansion scenario, the end-to-end latency is measured by combining the delays 
incurred by both the primary and secondary blockchains. Based on the aforementioned, we now 
investigate the BRAN service latency for the single confirmation scenario. In this scenario, the current state 
is expressed as 𝐸𝐸(𝑖𝑖, 𝑗𝑗) with 𝑖𝑖 and 𝑗𝑗 denoting the pending requests awaiting assembly into a block and the 
confirmed requests ready for service, respectively. Let 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡) = 𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝐸𝐸(𝑖𝑖, 𝑗𝑗) denote the probability of 
the queue being in state 𝐸𝐸(𝑖𝑖, 𝑗𝑗)  at time 𝑡𝑡 . Additionally, we assume that the transition probability 𝑃𝑃 
characterizes the queuing model. All transition probabilities are zero except for events of arrivals, mined 
blocks, rejected blocks, or start of service. The nonzero probabilities of the system are given by 

P{𝐸𝐸(𝑖𝑖, 𝑗𝑗) ∣ 𝐸𝐸′(𝑖𝑖, 𝑗𝑗)} =
𝑅𝑅𝑎𝑎

𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑟𝑟 + 𝑅𝑅𝑠𝑠
𝑗𝑗 �𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑟𝑟 + 𝑅𝑅𝑠𝑠

𝑗𝑗�ℎ + 𝒪𝒪(ℎ2), (12) 

where 𝒪𝒪(ℎ2) denotes higher order terms which vanish sufficiently faster than ℎ. In case a new request 
arrives in the system, its probability is given by 

𝑙𝑙𝑙𝑙𝑙𝑙
ℎ→0

 P{𝐸𝐸(𝑖𝑖, 𝑗𝑗) ∣ 𝐸𝐸′(𝑖𝑖 + 1, 𝑗𝑗)} = 𝑅𝑅𝑎𝑎ℎ + 𝒪𝒪(ℎ2). (13) 

Additionally, when a block gets mined, the probability of this event can be written as 

𝑙𝑙𝑙𝑙𝑙𝑙
ℎ→0

 P{𝐸𝐸(𝑖𝑖, 𝑗𝑗) ∣ 𝐸𝐸′(𝑖𝑖 − 𝑘𝑘, 𝑗𝑗 + 𝑘𝑘)} = 𝑅𝑅𝑚𝑚ℎ + 𝒪𝒪(ℎ2). (14) 

In case a contract gets rejected from the block, its probability can be expressed as 

𝑙𝑙𝑙𝑙𝑙𝑙
ℎ→0

 P{𝐸𝐸(𝑖𝑖, 𝑗𝑗) ∣ 𝐸𝐸′(𝑖𝑖 − 𝑟𝑟, 𝑗𝑗)} = 𝑅𝑅𝑟𝑟ℎ + 𝒪𝒪(ℎ2). (15) 

In case a contract gets serviced, the probability of this event is given by 

𝑙𝑙𝑙𝑙𝑙𝑙
ℎ→0

 P{𝐸𝐸(𝑖𝑖, 𝑗𝑗) ∣ 𝐸𝐸′(𝑖𝑖, 𝑗𝑗 − 1)} = 𝑅𝑅𝑠𝑠
𝑗𝑗ℎ + 𝒪𝒪(ℎ2), (16) 
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  (16) 

The sum of all transition probabilities should be equal to unity, which can be expressed as 

𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡 + ℎ) − 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡) = �𝑃𝑃𝑖𝑖−1,𝑗𝑗(𝑡𝑡)𝑅𝑅𝑎𝑎 + 𝑃𝑃𝑖𝑖,𝑗𝑗+1(𝑡𝑡)𝑅𝑅𝑠𝑠
𝑗𝑗+1 − 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡)�𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑠𝑠

𝑗𝑗 + 𝑅𝑅𝑟𝑟��ℎ, (17) 

where 𝑅𝑅𝑠𝑠 is the completion rate and it’s defined by 𝑅𝑅𝑠𝑠
𝑗𝑗  = min(𝑗𝑗, 𝑠𝑠)𝑅𝑅𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤  𝑗𝑗 ≤  𝑠𝑠, since at most 𝑠𝑠 

can be in service at the same time. Dividing by ℎ equation (17) and taking the limit ℎ →  0, we get 

lim
ℎ → 0

𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡 + ℎ) − 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡)
ℎ

≝
𝑑𝑑𝑃𝑃{𝑖𝑖,𝑗𝑗}(𝑡𝑡)

𝑑𝑑𝑑𝑑
, (18) 

which is the definition of derivative, and thus we obtain the steady-state distribution of B-RAN by setting 
(18) to zero 

𝑑𝑑𝑃𝑃{𝑖𝑖,𝑗𝑗}(𝑡𝑡)
𝑑𝑑𝑑𝑑

 = 𝑃𝑃𝑖𝑖−1,𝑗𝑗𝑅𝑅𝑎𝑎 + 𝑃𝑃𝑖𝑖,𝑗𝑗+1𝑅𝑅𝑠𝑠
𝑗𝑗+1 − 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑟𝑟) = 0. (19) 

Specifically, in the boundary case of (𝑖𝑖 = 0), (18) can be rewritten as 

��𝑃𝑃ℓ,𝑗𝑗−ℓ

𝑗𝑗

ℓ=1

�𝑅𝑅𝑚𝑚 + 𝑃𝑃0
𝑗𝑗+1𝑅𝑅𝑠𝑠

𝑗𝑗+1 − 𝑃𝑃0,𝑗𝑗�𝑅𝑅𝑎𝑎 + 𝑅𝑅𝑠𝑠
𝑗𝑗 + 𝑅𝑅𝑟𝑟� = 0, ∀j ≥ 0, (20) 

where, 

𝑃𝑃0,1𝑅𝑅𝑠𝑠1 − 𝑃𝑃0,0𝑅𝑅𝑎𝑎 = 0. (21) 

The differential-difference equations (19)-(21) are the forward Kolmogorov equations [38], which can be 
rewritten more concisely in a probability vector given by 

𝐏𝐏 = �𝑃𝑃0,0�𝑃𝑃1,0𝑃𝑃0,1�𝑃𝑃2,0𝑃𝑃1,1𝑃𝑃0,2 ⋯ �𝑇𝑇 , (22) 

Or in matrix notation as  

𝑄𝑄𝑄𝑄 = 𝟎𝟎, (23) 

with 𝑄𝑄  being the infinitesimal generator or transition rate matrix. Each entry in 𝑄𝑄  equals the 

corresponding transition rate given by 𝑑𝑑
𝑑𝑑ℎ

P r𝑋𝑋(𝑡𝑡) = 𝐸𝐸|𝑋𝑋(𝑡𝑡 + ℎ) = 𝐸𝐸’, depending solely on the B-RAN 

configuration tuple 𝛷𝛷 =  {𝑅𝑅𝑎𝑎 ,𝑅𝑅𝑚𝑚,𝑅𝑅𝑟𝑟,𝑅𝑅𝑠𝑠, 𝑠𝑠}.  It can be numerically calculated by utilizing the sum 
probability condition, 1𝑇𝑇𝑃𝑃 =  1 as 

� 𝐐𝐐
𝟏𝟏𝑇𝑇
�𝐏𝐏 = �01� . (24) 
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The state transition relationships that can be calculated based on the presented analysis for the one 
confirmation case are presented in Figure 5. From (24), the steady-state distribution, 𝑤𝑤(𝛷𝛷)  can be 
analysed as an implicit function of 𝛷𝛷. Of note the waiting space of B-RAN has no maximum limit, resulting 
in infinite dimensions for the vector 𝑤𝑤. In numerical calculations, we approximate the infinite-dimension 
solution with sufficiently large but finite dimensions as, in practice, the number of UEs cannot be infinite. 
Thus, the aggressive load 𝑅𝑅𝑎𝑎 must be less than 𝑅𝑅𝑠𝑠 for stability.  

 

Figure 5. State space scenario for k = 2 and r = 1 

In order to analyse the average latency in B-RAN, we consider the limiting distribution 𝑤𝑤(𝛷𝛷) to obtain the 
average number of waiting requests 𝑁𝑁(𝛷𝛷) as 

𝔼𝔼𝑁𝑁(Φ) = �(𝑖𝑖 + 𝑗𝑗) ⋅ 𝑃𝑃𝑖𝑖,𝑗𝑗(Φ). (25) 

Applying Little’s Law, we can link the expected queue length and average latency as the expected sojourn 
time, 𝐿𝐿𝑠𝑠(𝑁𝑁,𝛷𝛷), includes both waiting and service latency and can be expressed as 

L𝑠𝑠(𝑁𝑁 = 1,Φ) = 𝔼𝔼N(Φ)/𝑅𝑅𝑎𝑎
= 𝑇𝑇𝑎𝑎�  

𝑖𝑖,𝑗𝑗

(𝑖𝑖 + 𝑗𝑗)𝑃𝑃𝑖𝑖,𝑗𝑗(Φ), (26) 

therefore, the average latency for the one-confirmation scenario can be expressed based on the limiting 
distribution in Eq. (23) as 
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L(𝑁𝑁 = 1,Φ) = 𝑇𝑇𝑎𝑎�  
𝑖𝑖,𝑗𝑗

(𝑖𝑖 + 𝑗𝑗)𝑃𝑃𝑖𝑖,𝑗𝑗(Φ) − 𝑇𝑇𝑠𝑠, (27) 

with 𝑇𝑇𝑠𝑠 denoting the service time. 

So far, only the one-confirmation scenario was considered. When investigating the generic 𝑁𝑁-confirmation 
problem, the huge number of variables in eq. (23) makes analysis of a queue with (𝑁𝑁 + 1) −dimensional 
state space difficult. However, if we consider that once a request is included into a block it must wait for 
𝑁𝑁 − 1 confirmations after the initial confirmation, eq. (27) can be rewritten as 

L(𝑁𝑁,Φ) = L(1,Φ) + 𝔼𝔼 ��  
𝑁𝑁

𝑛𝑛=2

𝑈𝑈𝑛𝑛𝑚𝑚�

= 𝑇𝑇𝑎𝑎�  
𝑖𝑖,𝑗𝑗

(𝑖𝑖 + 𝑗𝑗)𝑃𝑃𝑖𝑖,𝑗𝑗(Φ) + 𝑇𝑇𝑚𝑚(𝑁𝑁 − 1) − 𝑇𝑇𝑠𝑠
. (28) 

Based on (28), the transition rate matrix, 𝑄𝑄 , becomes an infinitely dimensional structure that 
encapsulating all possible rates for every state and is presented in Figure 6. 

 

Figure 6. Transition rate matrix 

𝑄𝑄 visualizes the rate at which changes between states occur in a stochastic process. Each element of the 
matrix represents the rate of transitioning from one state to another. The off-diagonal elements represent 
the rates of shifting between separate states, while the diagonal elements express the rate of the idle state 
and ensure that the sum of all elements in a row equals to zero. This matrix is crucial for the calculation of 
the latency since it determines the system’s behaviour throughout the stochastic system. If we take the 
initial state 𝐸𝐸[0, 0] for example, which denotes no pending requests to be mined and no requests awaiting 
servicing, according to Figure 6, we have two possible transitions. Either the system stays idle, or a new 
request arrives with a rate of 𝑅𝑅𝑎𝑎. Representing the absence of further transitions, the rate for the system 
to remain inactive is calculated as the negative of the arrival rate 𝑅𝑅𝑎𝑎. As we get into more complicated 
stages, the number of possible outcomes grows. For each state, their future possible states can be 
identified through their corresponding transition rates. For instance, from state 𝐸𝐸[0,1], there are three 
possible future states, specifically: 
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1) A service is completed at a rate of 𝑅𝑅𝑠𝑠 and the state changes into the state 𝐸𝐸’[0,0] as the number 
of requests decreases by one.  

2) A new request arrives at a rate of 𝑅𝑅𝑎𝑎, transitioning to state 𝐸𝐸’[1,1]. 
3) The system remains idle, with this rate equal to the negative sum of the arrival and service rates 

−(𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑅𝑅). 

All in all, by analysing the transition rates in the 𝑄𝑄  matrix, we can accurately predict all the possible future 
states from any given state. 

3.4 Numerical Results 
In this subsection, we present numerical results obtained from the proposed B-RAN model alongside 
interesting discussions that assess its performance and highlight valuable design guidelines. It is worth 
noting that our simulation scenarios required substantial process power to manage the complex 
calculations. The following plots have produced results based on multiple simulations and events (106) to 
ensure the statistical validity and reliability of the results. To achieve this, we utilized a high-performance 
computing environment in order to execute our multiple scenarios properly and extract our results. Below 
is listed the hardware that we have used to fulfil our computational needs: CPU: AMD Ryzen 5 7600X 6-
Core Processor 4.70 GHz, GPU: NVIDIA RTX 4070 Ti, RAM: 32 GB, OS: Linux Ubuntu 24.01. By utilizing 
multiple types of carefully constructed figures, we provide a visual representation of the latency of the 
model and contrast it with traditional models. These results highlight how closely the BRAN model 
captures latency while also offering insights into its flexibility and scalability in realistic scenarios with 
different topologies. Furthermore, we investigate the security features of the proposed B-RAN model and 
demonstrate its robustness against possible attacks. The presented results serve as a prism that highlights 
the complexities of B-RAN and helps to derive definitive conclusions about its effectiveness and robustness 
in realistic usage scenarios. 
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Figure 7. Latency vs N for multiple k and ρ combinations 

Figure 7 presents the system’s latency as a function of the number of confirmations, 𝑁𝑁, for different 
combinations of k and ρ. For all plotted lines, we observe that, as the number of confirmations increases, 
the achievable latency also increases. Moreover, it becomes obvious that the scenarios with higher 𝑘𝑘 
values exhibit better temporal performance. Specifically, for the high traffic regime, the model with 𝑘𝑘 =
 6 has the lowest latency, while the conventional model with 𝑘𝑘 =  1 has the worst. Finally, it is worth 
noting that in the low-intensity case, all scenarios achieve similar performance with no noticeable changes. 
This suggests that higher block capacity may appear insignificant when the system performs under 
reasonable or low traffic but can have a higher impact on latency in high traffic cases.  
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Figure 8. Latency vs N in single blockchain 

Figure 8 presents a comparison between the conventional model and the proposed framework with regard 
to the achievable latency under different traffic intensity scenarios and different 𝑁𝑁 values. By observing 
this figure, it becomes evident that as the number of confirmations for mining a block increases, the 
latency increases as well. However, a deeper look reveals some significant differences between the 
proposed and the traditional models. Despite achieving similar performance in low-traffic scenarios, the 
traditional model is characterized by higher delay under medium and heavy traffic conditions. This 
highlights that the proposed framework is more capable of modelling the temporal performance of 
complex B-RAN systems under a plethora of traffic conditions. 
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Figure 9. Latency vs traffic intensity for single blockchain for different k values 

Figure 9 illustrates the latency as a function of the traffic intensity for different values of 𝑘𝑘 in the single 
blockchain scenario. From this figure, it becomes evident that the achievable latency for the low traffic 
regime achieves very close latency independent of the value of k. Moreover, until the threshold of 𝜌𝜌 =
 0.5, all cases exhibit the same behaviour. On the contrary, when traffic increases past this point, it 
becomes evident that the lines diverge from each other, with 𝑘𝑘 =  1 increasing significantly higher latency 
than the other two cases. For traffic intensity equal to 0.8, we observe the biggest difference between the 
values. Specifically, the  𝑘𝑘 =  1  line achieves the highest latency, while 𝑘𝑘 =  6  has the lowest. This 
suggests that by increasing the number k we achieve significantly lower latency especially in high traffic 
scenarios. In essence, as long as the intensity remains below a certain threshold, the number of possible 
transactions per block has no major impact on the system’s latency. As the intensity increases, larger 
values of k allow the system to reach its true potential. 
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Figure 10. Latency vs traffic intensity of the HB-RAN 

A thorough study of traffic intensity impact on latency is presented in Figure 10 which provides interesting 
insights on the average total delay of the system as well as the interactions of the primary and secondary 
blockchains. Specifically, the primary blockchain is analysed both in conjunction with the secondary 
blockchain and on its own; thus, offering a deeper understanding of the performance degradation that is 
introduced by the hierarchical approach. Moreover, the various traffic intensity values were exclusively 
applied to the secondary blockchain in order to keep the primary blockchain’s characteristics stable. This 
figure reveals a coherent trajectory, in which both blockchains and the average total delay exhibit a 
correlated increase in latency as the traffic intensity increases. Nonetheless, some subtle differences that 
characterize how primary and secondary blockchains behave differently from one another can be 
extracted. First and foremost, the secondary blockchain is characterized by significantly higher latency 
compared to the primary. This is a consequence of the fact that the primary chain has more computing 
capacity as it is the one connected with the BS, responsible for the direct connection between the users 
and the station, while the secondary has the responsibility to expand the network and connect the users 
with the primary. In addition, as traffic intensity increases, the secondary blockchain experiences a steeper 
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increase in delay, while the latency of the primary blockchain maintains a relatively low latency. Moreover, 
the average total delay shows a larger dependency on primary blockchain performance, with a trajectory 
that is closer to the performance of the primary blockchain. Also, the plot highlights the efficiency of an 
isolated primary blockchain, devoid of secondary blockchain influence. In conclusion, the plot clarifies how 
variations in network traffic can affect temporal dynamics and the system’s overall performance, offering 
important insights into the complex relationship between the primary and secondary blockchains. 

 
(a) Latency (primary blockchain) for k = 1 

  
(d) Latency (primary blockchain) for k = 3 

 
(b) Latency (secondary blockchain) for k = 1 

 
(e) Latency (secondary blockchain) for k = 3 
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(c) e2e latency for k = 1 

 

 
(f) e2e latency for k = 3 

Figure 11. Performance comparison across various traffic scenarios and k values 

Figure 11 presents the latency achieved by the primary and the secondary blockchains as well as the e2e 
system as a function of the number of concurrent users that can be served by a BS, s. In more detail, 
subfigures (a)-(c) assume that each block of the secondary blockchain can contain a maximum of 𝑘𝑘 =  1 
transactions, while the rest assume 𝑘𝑘 =  3. By comparing the achievable latency of the primary blockchain 
as depicted in subfigures (a) and (d), it becomes evident that the latency is not affected by variations in 
the secondary blockchain’s maximum capacity or traffic intensity. It is interesting to point out that for 𝑠𝑠 
values higher than 16, the latency increases significantly. This phenomenon is caused by the congestion 
brought on by the high traffic of the secondary blockchain that affects the primary one. Furthermore, the 
latency performance of the secondary blockchain is illustrated in subfigures (b) and (e), which showcase 
how greatly can 𝑘𝑘, 𝜌𝜌, and s affect the performance of the secondary blockchain. Specifically, high traffic 
values caused increased latency, while low k and s values can restrict the system’s performance to a great 
extent. This highlights the importance of appropriately selecting the various degrees of freedom when 
designing B-RAN systems. Finally, subfigures (c) and (f) present the e2e latency of the system, which is 
shown to be significantly influenced by the number of contracts that can be included in a single block of 
the secondary blockchain. This emphasizes the equilibrium that is forged between traffic intensity and 
block capacity. 
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Figure 12. Latency vs N of the hierarchical B-RAN with multiple intensities 

An extensive examination of the impact of different 𝑁𝑁 confirmation numbers on latency is presented in 
Figure 12 for the primary and secondary blockchain. The plot shows the average total delay of the system 
along with the individual latency of the primary and secondary blockchains. Notably, the primary 
blockchain’s behaviour remains constant throughout the plotted range of 𝑁𝑁 , allowing for a focused 
examination of the impact of the secondary blockchain on the system. With three distinct traffic intensity 
values for the secondary blockchain – low, medium, and high – the plot demonstrates how various traffic 
scenarios influence the latency of the entire system. As anticipated, a higher traffic intensity correlates 
with increased latency across the board, while lower intensity results in lower latency. The average total 
delay of the system is particularly interesting since it resembles the behaviour of the secondary blockchain. 
This discovery implies that secondary blockchain activity has a major impact on the overall performance 
of the system. Moreover, this figure provides an understanding of the extra latency that the secondary 
blockchain adds to the major blockchain, particularly when contrasting with a situation in which the 
primary blockchain is isolated. This comparison demonstrates how much secondary blockchain activity 
affects the parent blockchain’s delay. Overall, the plot emphasizes the complex interplay between primary 
and secondary blockchains, showing how changes in the characteristics of the secondary blockchain can 
impact the temporal dynamics of the entire system. 
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4. Attack Modelling 
This section investigates the security landscape of B-RAN. Initially, the most prominent attacks are 
presented with a focus on the Blockchain and network aspects. Afterwards, the most influential attacks 
are described in detailed and modelled. The selected attacks are then connected with the B-RAN 
theoretical model and their impact is evaluated through numerical results. 

4.1. Identified Attacks 

4.1.1. Attacks on the Blockchain  
Since B-RAN uses permissioned blockchains, the risk of external attacks is lower, but insider threats e.g. 
collusion, and cryptographic material compromises can become critical concerns. As mentioned in D5.2, 
we must here assume the potential malicious behavior of nodes that are registered and either paying or 
receiving funds for services, which is a rather ambitious assumption.  

51% Attack 

A 51% attack occurs when an adversary obtains control of more than half of the total mining or validation 
power in a blockchain network. With this majority control, the attacker can clandestinely mine an 
alternative blockchain fork that eventually surpasses the length of the honest network’s chain. Once this 
longer fraudulent chain is released to the network, the attacker leverages the rule that the longest valid 
chain is accepted as the authoritative ledger to reverse previously confirmed transactions. In doing so, the 
attacker effectively enables double spending and fundamentally undermines the system’s trust and 
immutability. 

Although such an attacker cannot create new coins out of nothing or arbitrarily change the protocol’s rules, 
their ability to unilaterally reorganize the blockchain demonstrates a critical vulnerability in systems 
lacking sufficient decentralization. Consequently, 51% attacks are regarded as both a theoretical possibility 
and a practical threat, particularly in networks where mining power is highly concentrated [39]. 

Selfish Mining 

Selfish mining is a protocol deviation in which a miner or a coalition of miners deliberately withholds newly 
mined blocks instead of broadcasting them immediately to the rest of the network. The attacker’s 
objective is to gain a lead over the public blockchain and cause honest nodes to waste their computational 
resources on mining blocks that will ultimately not be accepted into the main chain [40]. To execute this 
attack, the selfish miner maintains a private fork of the blockchain and continues to extend it in secret. 
The withheld blocks are released to the public network strategically at opportune moments to maximize 
the attacker’s advantage. For example, if an honest miner finds a block, the selfish miner will promptly 
publish its own previously hidden block (or chain of blocks) in order to invalidate the honest miner’s block 
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and keep the attacker’s chain ahead, as shown in Figure 13. Through this tactic, the selfish miner secures 
block rewards that would have otherwise gone to honest participants. 

 

Figure 13. Selfish Mining Attack 

This scheme carries inherent risks for the attacker. If the attacker’s private chain fails to stay ahead of the 
public chain—for instance, if the honest miners happen to find a block before the attacker can extend the 
private chain—then the attacker’s withheld blocks will be overtaken and discarded (or orphaned) by the 
network, yielding no reward. In other words, a selfish miner who cannot consistently outpace the rest of 
the network will find the benefits of this strategy negated. However, if the attacker commands a 
sufficiently large portion of the total hash power, they can often maintain a lead over the honest miners 
and thereby reap rewards greater than their fair share. Early analyses of selfish mining showed that an 
attacker could obtain a disproportionate share of mining rewards with significantly less than 50% of the 
network’s hash power. In particular, initial studies estimated that selfish mining becomes net profitable 
when the attacker controls roughly one-quarter to one-third of the total hashing power. Later studies 
refined this threshold, suggesting that optimized strategies could make selfish mining viable with only 
around 21–23% of the total hash power [41]. 

Man-in-the-Middle (MITM) Attack 

A MITM attack is a classic network security breach in which an adversary covertly intercepts and potentially 
alters the communication between two parties who believe they are directly communicating with each 
other. In this scenario, the attacker surreptitiously monitors the exchange and can inject new messages or 
modify legitimate messages in real-time [42]. To accomplish this, the attacker typically impersonates each 
party to the other. For example, the adversary might pose as a legitimate server to the client while 
simultaneously posing as the client to the server, thereby gaining full control over the information flow 
between them. This privileged position allows the attacker to harvest sensitive data (such as login 
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credentials or financial transaction details) and to manipulate the contents of the messages without 
detection by the legitimate participants. 

In the context of blockchain networks, a MITM attacker could intercept and alter data transmissions 
related to transactions. For example, an attacker could intercept a transaction broadcast (such as an API 
call or a peer-to-peer network message containing a pending transaction) and change the transaction’s 
destination address or other details before relaying it to its intended recipients [43]. If such 
communications are not protected by strong encryption and authentication, the participants would 
remain unaware of the tampering, potentially resulting in fraudulent transactions being accepted into the 
blockchain. Unlike attacks such as the 51% attack and selfish mining, which compromise the blockchain’s 
consensus layer, a MITM attack targets the network communication layer. The attacker exploits 
weaknesses in network-level security (for example, insufficient encryption or lack of proper 
authentication) rather than any flaw in the blockchain’s consensus protocol. 

Collusion attack  

A “collusion attack” is a type of security attack or threat in which a node intentionally makes a secret 
agreement with an adversary, or the node is somehow made to have such an agreement [44]. In 
Hyperledger Fabric, due to its particular ordering/endorsing schemes, different collusion attacks can 
theoretically take place.  

• Endorsing Peer Collusion: Fabric relies on endorsement policies (e.g., "at least 2 out of 3 peers 
must approve a transaction"), which render this attack improbable and highly costly in terms of 
resources; however, if multiple endorsing peers collude, they can fabricate transactions and 
manipulate the ledger. 

• Orderer Node Collusion: The ordering service (e.g., Kafka, Raft) determines the sequence of 
transactions. Here, if orderers collude, they can censor transactions or reorder them to benefit 
certain parties. 

• Application-Level Collusion: Here, client applications can collude to submit malicious transactions 
or manipulate business logic in chaincode. 

• Identity Provider (MSP) Collusion: Membership Service Providers (MSPs) issue identities for 
participants in Fabric. If an MSP colludes with certain participants, they can allow unauthorized 
access or fake endorsements. 

Let us stress that the above are far reaching assumptions, especially in the case of NANCY, where a fastBFT 
consensus protocol is used. Some additional mitigation strategies could, however, include:  

• Strong Governance: Carefully select and monitor participants. 
• Diverse Orderers & Peers: Use multiple organizations to reduce single-party control. 
• Audit & Logging: Regularly audit transactions and endorsements. 



 D2.2 – NANCY Experimental-Driven Modelling 
 

 
 

 
38 

 
 

• Zero-Trust Policies: Assume nodes could be compromised and use cryptographic verification. For 
this, using a Hardware Security Module (HSM) is a recommended strategy.  

Private Key Compromise in a validator node 

Compromising a private key in a Hyperledger Fabric validator node (peer or orderer) can lead to serious 
security breaches, including transaction forgery, unauthorized endorsements, and ledger manipulation. 
There are several ways to compromise this key in Fabric: 

• Weak File Permissions: Here, if the private key file keystore/*_sk has loose permissions, 
unauthorized users or processes can access it. A very simplistic example would be that a careless 
admin might set file permissions to chmod 777, allowing any user on the system to read it. 

• Malware or Keylogging Attacks: Attackers can use malware, rootkits, or keyloggers to extract 
private keys from memory or disk. For instance, a compromised machine running a validator node 
may expose the key if an attacker gains remote access. 

• Docker Container Escape: Hyperledger Fabric often runs inside Docker containers. If an attacker 
escapes the container, they can access the host file system and steal keys. 

• Man-in-the-Middle (MITM) Attacks: If keys were to be transferred insecurely (e.g., over an 
unencrypted channel), an attacker could intercept and steal them. 

• Insider Threats: A malicious admin or developer with access to the server could copy private keys. 
• Unpatched Vulnerabilities: If the host OS, Fabric binaries, or cryptographic libraries are outdated, 

attackers can exploit vulnerabilities to gain access. 

Let us again stress that the above are far reaching assumptions, especially in the case of NANCY, where 
proper file permissions, proper channel encryption and proper containerization engineering are expected. 
Some mitigation strategies are however listed: 

• Store private keys in hardware security modules (HSMs) or secure key vaults instead of the file 
system. Additionally, restrict SSH access and prevent unauthorized users from logging into the 
node, and set strict file permissions: 

chmod 600 keystore/*_sk 
chown fabricuser:fabricgroup keystore/*_sk 

• Apply encryption on the file system where private keys are stored (i.e. keystore/) or use Hardware 
Security Modules (HSMs) to protect keys from being directly accessed. 

• Protect against malware e.g. run security monitoring tools like Falco to detect abnormal container 
behaviour, use anti-malware tools and endpoint security software on validator nodes, or limit 
third-party software installed on the node to avoid potential malware 

• Harden Docker containers, e.g. using Docker namespaces and user namespaces to restrict 
permissions, enable SELinux or AppArmor to enforce security policies on Fabric containers, or run 
containers as non-root users. 



 D2.2 – NANCY Experimental-Driven Modelling 
 

 
 

 
39 

 
 

• Secure network communication, e.g. using TLS encryption for all communication, and restrict 
access using firewall rules and VPNs.  

• Implement Role-Based Access Control (RBAC) e.g. using Hyperledger Fabric’s MSP roles to restrict 
node access and set up multi-admin approvals before making critical changes. 

• Use audit logs to track key access and identify anomalies and periodically rotate private keys and 
certificates. 

Using a hardware security module (HSM) 

Several mitigation strategies, beyond proper software engineering, include the use of a hardware security 
module (HSM) for both protecting the system from insider threats and private key compromises. The 
cryptographic operations performed by Fabric nodes can thus be delegated to an HSM.  

An HSM protects private keys and handles cryptographic operations, allowing peers and orderer nodes to 
sign and endorse transactions without exposing their private keys [45]. If the system requires compliance 
with government standards such as FIPS 140-2, there are multiple certified HSMs from which to choose. 
Fabric currently leverages the PKCS11 standard to communicate with an HSM. This is also what NANCY 
currently uses to communicate with the PQC token.  

To use an HSM with a Fabric node, one needs to update the bccsp (Crypto Service Provider) section of 
the node configuration file such as core.yaml or orderer.yaml. In the bccsp section, we must select 
PKCS11 as the provider and enter the path to the PKCS11 library that we would like to use. Administrators 
also need to provide the Label and PIN of the token that was created for our cryptographic operations. 
We can use one token to generate and store multiple keys. 

The prebuilt Hyperledger Fabric Docker images are not enabled to use PKCS11. For deploying Fabric using 
docker, one needs to build own images and enable PKCS11 using the commands available in the 
Hyperledger documentation. We must also ensure that the PKCS11 library is available to be used by the 
node by installing it or mounting it inside the container. 

The numeric improvement [46] of using a Hardware Security Module (HSM) in Hyperledger Fabric depends 
on several factors, including the HSM model, Fabric configuration, transaction load, and cryptographic 
operations performed. However, general benchmarks and studies indicate the following performance 
improvements in Table 1. 

Table 1. Performance metrics with and without HSM 

Metric Without HSM With HSM 
Transaction Signing Speed ~200-500 TPS (transactions per 

second) 
2x-10x improvement 

Endorsement Latency 10-50 ms per transaction Reduced by 30-70% 
CPU Usage on Validator Nodes High (CPU-bound operations) Lower (Offloaded to HSM) 
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Security Private key stored in 
memory/disk 

Zero-exposure of private keys: 
The private keys never leave the 
HSM, significantly improving 
security. 
 
Tamper resistance: HSMs are 
resistant to physical and logical 
attacks. 
 
FIPS 140-2 Compliance: Many 
HSMs comply with high security 
standards. 

Currently, there is a lack of publicly available, detailed performance comparisons between different HSM 
brands and models within Hyperledger Fabric environments. While some studies have explored hardware 
acceleration in Fabric, they often focus on custom solutions rather than commercial HSMs [47]. The paper 
"Blockchain Machine: A Network-Attached Hardware Accelerator for Hyperledger Fabric" [48] discusses a 
custom hardware accelerator achieving up to a 12x speedup in block validation, resulting in commit 
throughput of up to 68,900 transactions per second. 

Exploring custom solutions for empowering B-RAN with HSM is, in fact, an interesting idea for securing B-
RAN architectures such as NANCY in the future.  

4.1.2. Attacks on the Network 
Due to their open specifications and interoperability requirements, the open radio access network (O-
RAN) is vulnerable to various threats focusing on the networking layer. The aforementioned characteristics 
increase the attack surfaces, making O-RAN susceptible to DoS and DDoS attacks. Particularly vulnerable 
are centralized control points and virtualized network functions, which can become single points of failure 
[49]. 

In more detail, DoS attacks aim to disable services by overwhelming the network resources with excessive 
traffic or resource-intensive requests, typically originating from a single source. The goal of these attacks 
is to exhaust bandwidth, computational power, or storage capacity, resulting in the denial of legitimate 
service requests. Furthermore, DDoS attacks extend this threat by using multiple compromised systems 
or devices organized into botnets, amplifying their impact and making detection and mitigation much 
more difficult. Specifically, the distributed nature of DDoS attacks makes it difficult to identify and block 
malicious traffic, as the attack originates simultaneously from geographically dispersed and independently 
operated sources [49]. A specialized variant of DDoS attacks is known as the slow or "low-and-slow" DDoS 
attacks. In contrast with traditional DoS attacks involving large volumes of requests, slow DDoS attacks use 
minimal bandwidth for large periods of time. Slowloris and HX-DoS are such attacks which initiate multiple 
connections but do not complete them, holding the host resources through minimal interactions. As a 
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result, the resources are exhausted without triggering standard defenses, making these attacks difficult to 
detect and mitigate [50]. Figure 14 illustrates an example of DoS attacks where a malicious user sends 
massive requests with the aim of exhausting the resources of the O-RAN components. 

 

Figure 14. DoS attacks against O-RAN 

Reconnaissance attacks are focused on host detection and mapping, as well as service identification, in 
order to obtain information such as IP addresses, open ports, and other critical details [51]. The 
information gathered through the reconnaissance attacks serves as a basis for attackers to exploit 
potential vulnerabilities to compromise the system security [52, 53]. In the context of O-RAN, attackers 
can target the various hosts of O-RAN components, as well as the user equipment. Also, the disaggregated 
nature of O-RAN increases the possibility of misconfigurations in particular servers that host the O-RAN 
components. To this end, reconnaissance attacks, such as port and service scanning and fingerprinting, 
can expose vulnerabilities that can be exploited by adversaries [54]. An illustration of the reconnaissance 
attacks is presented in Figure 15. 
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Figure 15. Reconnaissance attacks at O-RAN component 

Finally, in MITM attacks, an attacker aims to intercept and manipulate communications between two 
entities. This allows the attacker to modify messages, steal sensitive data, or disrupt services. MITM 
attacks often exploit weaknesses in communication protocols or insecure network configurations to gain 
unauthorized access [55]. Similarly, an eavesdropping attack is a passive attack in which an adversary 
eavesdrops on network traffic to extract sensitive information. Unlike MITM attacks, which involve active 
interference, eavesdropping focuses on surveillance, allowing attackers to gather information undetected. 
This is particularly dangerous in networks that handle personal information, authentication credentials, or 
control signals [49, 56]. 

Assuming a post-intrusion scenario in O-RAN context, the attacker being in the same subnetwork as the 
RICs can launch address resolution protocol (ARP) spoofing attacks to compromise the mapping between 
MAC and IP addresses [57]. Upon successful implementation of the attack, all data exchanged through the 
A1 interface will pass through the attacker. As a result, the attacker can tamper with the decision-making 
processes of RICs. Furthermore, the O-RAN interfaces can expose sensitive user information, such as 
location and authentication credentials if the security mechanisms are weak or improperly implemented. 
For instance, an attacker can intercept the communications between the UE and the BS in order to 
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eavesdrop and/or manipulate the network traffic [58]. Figure 16 illustrates a MiTM attack between the 
two RICs. In the particular scenario, ARP spoofing is employed to compromise the MAC-to-IP address 
mapping. 

 

Figure 16. MITM attack between the two RICs 

4.2. Simulated Attacks 

4.2.1. 51% attack modelling 
In this section, we consider the scenario of a 51% attack (specifically double spending) on BRAN and 
provide closed form expression of the probability of a successful attack. This part demonstrates, by careful 
inspection and analysis, the robustness and advantages of the B-RAN model across a range of network 
topologies and with potential security risks. 
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Figure 17. Procedural illustration of an alternate history attack in B-RAN 

The incorporation of blockchain technology into RAN systems has the potential to improve security and 
avoid attacks by malicious users. The decentralized and transparent design of blockchain enhances its 
resilience against attacks. However, the structure of blockchain raises new security risks that were not 
present in earlier RAN systems. A typical example is the alternative history attack, which includes malicious 
attempts to modify the transactions in the blockchain’s history. This attack scenario is examined in detail 
in the following section, along with how it could affect B-RAN’s performance or compromise its 
dependability and security. 

In the case of the alternative history attack, as seen in Figure 17, an attacker initially gains access to the 
blockchain as a regular user. At some point, along with the official mining process, the attacker creates an 
exact duplicate of the official blockchain. Despite the differences in mining rates between the two versions 
(official and malicious), official blockchain activities are unaffected. The mining rate of the malicious fork, 
Rm, is determined by the computational capabilities of the attacker. Additionally, the symbol beta 
represents the ratio between legitimate and malicious blockchains. Once the tampered block gathers 𝑁𝑁  
confirmations, the attacker initiates a mining race to catch up with the official blockchain. The attacker 
evaluates the length of the malicious fork compared to the original chain. If this difference falls below a 
specified threshold 𝑁𝑁𝑔𝑔, the attacker persists in mining until the malicious chain surpasses the official one 
and deems the attack as successful. On the contrary, if the difference exceeds Ng, the attacker ceases the 
attack deeming it unsuccessful. The likelihood of a successful alternative history attack depends on the 
attacker’s relative mining rate, 𝛽𝛽, the required number of confirmations, 𝑁𝑁, and the attacker’s strategy, 
𝑁𝑁𝑔𝑔. 

4.2.2. Sybil attack modelling 
A Sybil-type attack occurs when the attacker creates multiple fake users in order to gain influence over the 
network. As Blockchain systems rely on the peer-to-peer (P2P) architecture for their decentralization, the 
above attack is obviously very dangerous. The attacker using multiple false users can control consensus 
mechanisms, to disrupt communication, or compromise the integrity of transactions. The basic idea of the 
above method, as presented in [59] exploits the lack of a centralized authority for verifying node identities, 
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making decentralized systems such as blockchain vulnerable to such attacks. In its basic form, a Sybil attack 
allows an attacker to control a significant portion of the network, allowing them to alter data propagation, 
block validation, or even undermine trust in the system. 

Modern Blockchain systems rely on a decentralized network of nodes to serialize and verify transactions 
in a public ledger. Transactions are gathered into blocks, which are then "mined" by solving a cryptographic 
puzzle. It is impossible for most users to revert previous payments, as successful modification of the chain 
typically requires majority (or near-majority) mining power. However, when an attacker combines a 
double-spend attack (spending the same coins in two conflicting payments) with a Sybil attack (computing 
many artificial or "Sybil" identities), the attacker can exploit communication latency among honest nodes 
and catch up with or even surpass the legitimate blockchain more readily. By doing so, the attacker can 
erase a transaction that appeared valid, letting them walk away with both the purchased goods and the 
supposedly spent coins. 

In order to illustrate the synergistic effect of Sybil and double-spend techniques, we now present a detailed, 
step-by-step breakdown of how a malicious party can orchestrate this combined attack. By injecting 
numerous Sybil nodes—fake participants that do not genuinely contribute to mining—into the 
blockchain’s peer-to-peer network, the attacker deliberately disrupts the normal flow of information. 
When legitimate miners are unaware of newly discovered blocks or receive them too late, their efforts can 
be wasted on outdated forks. Meanwhile, the attacker quietly builds a private chain in secret. If this hidden 
chain eventually becomes longer than the recognized public chain, the protocol will switch to the 
attacker’s version, rendering earlier “legitimate” transactions invalid. The following stages outline 
precisely how the attacker leverages this environment to carry out a successful double-spend: 

1. The attacker joins the network: The malicious party first starts with a typical mining process to 
participate in the blockchain network. Secondly, he utilizes numerous Sybil (spurious) nodes. The 
Sybil nodes are essentially mining-incapable but appear to be ordinary participants. 

2. Initiating double-spend: The attacker sends a first transaction (TX0) to purchase some service. 
Simultaneously, the attacker secretly prepares a conflicting transaction (TX1) to return the same 
money back to themselves. 

3. Secret chain and Sybil interference: While honest miners are building the main (public) chain 
incorporating TX0, the attacker secretly mines the block in some other unknown chain 
incorporating TX1. The Sybil nodes, meanwhile, meddle in the block discoveries propagation to 
the legitimate participants. The fake identities issue "invite" to the legitimate participants, but 
don't provide them with the blocks when the legitimate participants request them. This artificially 
decelerates the propagation among legitimate participants. 

4. Gaining an advantage: Because honest miners are forced to wait longer for real block information, 
some of their efforts can be wasted on outdated forks or missing blocks. The attacker, meanwhile, 
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faces no delay in extending their secret chain. If the attacker’s hidden chain eventually becomes 
longer than the main chain, the attacker broadcasts it. By the rules of the blockchain, the network 
accepts the longer chain, and TX0 effectively disappears (it is replaced by TX1). Thus, the attacker 
keeps the goods they purchased with TX0 and also retains the original coins via TX1. 
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5. Unified B-RAN and Attacks Modelling 
This section describes the integration of the selected attacks, which were described in Section 4.2., with 
the theoretical B-RAN modelling that was presented in Section 3. The security of B-RAN is emphasised and 
is evaluated by means of the successful attack probability, while an equilibrium between performance and 
security is highlighted. 

5.1. Performance Evaluation 

5.1.1. 51% attack 
To evaluate the probability of a successful attack we assume stable strategy level and mining rates. We 

consider a scenario where the probability of extending the official chain by one block is 1
1+𝛽𝛽

 , while the 

likelihood of an attacker to find the next block is 𝛽𝛽
1+𝛽𝛽

 . This implies that the mining process can be modeled 

by a series of independent Bernoulli trials with a success probability of 1
1+𝛽𝛽

 . For the attack to be successful, 

the attacker must deliberately wait for 𝑁𝑁 confirmations. At the same time, the attacker generates 𝑛𝑛𝑌𝑌 
blocks on the malicious fork. Consequently, the stochastic variable denoting the number of failures, 𝑌𝑌 and 
follows a negative binomial distribution, 𝑌𝑌 ∼ 𝑁𝑁𝑁𝑁�𝑁𝑁, 1/(1 + 𝛽𝛽)�, with the probability mass function given 
by 

Pr �𝑌𝑌 = 𝑛𝑛𝑌𝑌;𝑁𝑁,
1

1 + 𝛽𝛽�
= �

𝑛𝑛𝑌𝑌 + 𝑁𝑁 − 1
𝑛𝑛𝑌𝑌

� �
1

1 + 𝛽𝛽
�
𝑁𝑁
�

𝛽𝛽
1 + 𝛽𝛽

�
𝑛𝑛𝑌𝑌

, (29) 

where �𝑛𝑛𝑘𝑘� denotes the binomial coefficient. Afterwards, both the malicious and the official blockchains 
start mining with the attacker trying to outperform the official network. If this happens, the attacker can 
publish the malicious chain and rewrite the confirmed history. However, if the fraudulent chain lags behind 
by 𝑁𝑁𝑔𝑔 blocks, the attacker abandons the attempt. Let 𝑃𝑃𝑛𝑛 = P r Win|𝑧𝑧 = 𝑛𝑛 denote the probability of the 
attacker winning despite starting with a delay of n blocks. Two special cases become evident, specifically 
𝑃𝑃−1 = 1 and 𝑃𝑃𝑁𝑁𝑔𝑔 = 0. If the attacker finds the next block, the malicious chain shortens by 𝑛𝑛 −  1 blocks 

compared to the benign chain, and the success probability becomes 𝑃𝑃 𝑛𝑛−1 . Conversely, if the official 
blockchain mines a block, the attacker falls further behind to 𝑛𝑛 +  1 blocks and the success probability 
decreases to 𝑃𝑃𝑛𝑛+1. By conditioning on the outcome of the first generated block, the probability of the 
attacker winning can be written as 

𝑃𝑃𝑛𝑛 =
1

1 + 𝛽𝛽
𝑃𝑃𝑛𝑛+1 +

𝛽𝛽
1 + 𝛽𝛽

𝑃𝑃𝑛𝑛−1, 0 ≤ 𝑛𝑛 < 𝑁𝑁𝑔𝑔, (30) 

Which can be further reformulated as  
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𝑃𝑃𝑛𝑛−1 − 𝑃𝑃𝑛𝑛 =
1
𝛽𝛽

(𝑃𝑃𝑛𝑛 − 𝑃𝑃𝑛𝑛+1), 0 ≤ 𝑛𝑛 < 𝑁𝑁𝑔𝑔 . (31) 

For 𝑛𝑛 =  𝑁𝑁𝑔𝑔 − 1, the previous equation can be rewritten as 

𝑃𝑃𝑁𝑁𝑔𝑔−2 − 𝑃𝑃𝑁𝑁𝑔𝑔−1 =
1
𝛽𝛽
�𝑃𝑃𝑁𝑁𝑔𝑔−1 − 𝑃𝑃𝑁𝑁𝑔𝑔� =

1
𝛽𝛽
𝑃𝑃𝑁𝑁𝑔𝑔−1, (32) 

which, through recursion, yields 

𝑃𝑃𝑁𝑁𝑔𝑔−𝑛𝑛−1 − 𝑃𝑃𝑁𝑁𝑔𝑔−𝑛𝑛 =
1
𝛽𝛽𝑛𝑛

𝑃𝑃𝑁𝑁𝑔𝑔−1, 0 ≤ 𝑛𝑛 < 𝑁𝑁𝑔𝑔 , (33) 

that can be rewritten as 

𝑃𝑃𝑁𝑁𝑔𝑔−𝑛𝑛−1 = 𝑃𝑃𝑁𝑁𝑔𝑔−1 + �  
𝑛𝑛

𝑚𝑚=1

1
𝛽𝛽𝑚𝑚

𝑃𝑃𝑁𝑁𝑔𝑔−1, (34) 

By expanding the sum, the previous equation can be transformed into 

𝑃𝑃𝑁𝑁𝑔𝑔−𝑛𝑛−1 = �
𝑃𝑃𝑁𝑁𝑔𝑔−1

1 − 1/𝛽𝛽𝑛𝑛+1

1 − 1/𝛽𝛽
,      if 𝛽𝛽 ≠ 1

𝑃𝑃𝑁𝑁𝑔𝑔−1(𝑛𝑛 + 1),      if 𝛽𝛽 = 1.
, (35) 

Next, by utilizing the boundary condition P−1 = 1, (35) can be rewritten as 

𝑃𝑃𝑁𝑁𝑔𝑔−1 =

⎩
⎪
⎨

⎪
⎧ 1 − 1/𝛽𝛽

1 − 1/𝛽𝛽𝑁𝑁+1
     if 𝛽𝛽 ≠ 1

1
𝑁𝑁𝑔𝑔 + 1

     if 𝛽𝛽 = 1
. (36) 

Hence, we derive the expression for 𝑃𝑃𝑛𝑛 as 

𝑃𝑃𝑛𝑛 =

⎩
⎪⎪
⎨

⎪⎪
⎧𝛽𝛽

𝑛𝑛+1 − 𝛽𝛽𝑁𝑁𝑁𝑁+1

1 − 𝛽𝛽𝑁𝑁+1
     if 𝛽𝛽 ≠ 1 and 0 ≤ 𝑛𝑛 < 𝑁𝑁𝑔𝑔

𝑁𝑁𝑔𝑔 − 𝑛𝑛
𝑁𝑁𝑔𝑔 + 1

     if 𝛽𝛽 = 1 and 0 ≤ 𝑛𝑛 < 𝑁𝑁𝑔𝑔

1     if 𝑛𝑛 < 0
0     if 𝑛𝑛 ≥ 𝑁𝑁𝑔𝑔 .

, (37) 

As a result, assuming the official blockchain extends 𝑁𝑁  blocks and the malicious 𝑛𝑛𝑌𝑌  , the attacker 
commences the race trailing by (𝑁𝑁 – 𝑛𝑛𝑌𝑌) blocks. In this case, the probability of a successful alternative 
history attack can be expressed as 
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𝑆𝑆�𝑁𝑁,𝛽𝛽,𝑁𝑁𝑔𝑔� = � Pr{Win ∣ 𝑧𝑧 = 𝑁𝑁 − 𝑛𝑛𝑌𝑌}Pr �𝑌𝑌 = 𝑛𝑛𝑌𝑌;𝑁𝑁,
1

1 + 𝛽𝛽�
∞

𝑛𝑛𝑌𝑌=0

, (38) 

or equivalently 

𝑆𝑆�𝑁𝑁,𝛽𝛽,𝑁𝑁𝑔𝑔� = � �
𝑛𝑛𝑌𝑌 + 𝑁𝑁 − 1

𝑛𝑛𝑌𝑌
� �

1
1 + 𝛽𝛽

�
𝑁𝑁
�

𝛽𝛽
1 + 𝛽𝛽

�
𝑛𝑛𝑌𝑌
𝑃𝑃𝑁𝑁−𝑛𝑛𝑌𝑌

∞

𝑛𝑛𝑌𝑌=0

(39) 

Finally, by exploiting the identity 

��
𝑛𝑛 + 𝑁𝑁 − 1

𝑛𝑛
� �

1
1 + 𝛽𝛽

�
𝑁𝑁
�

𝛽𝛽
1 + 𝛽𝛽

�
𝑛𝑛

= 1
∞

𝑛𝑛=0

, (40) 

(39) can be rewritten as (41), shown below. We can conclude that the success of an attack it depends on 
a plethora of parameters such as the hash power of the attacker, the 𝑁𝑁𝑔𝑔 threshold, the mining rate Rm of 
the official blockchain, as well as the official’s confirmation number 𝑁𝑁. A higher 𝑁𝑁 value, while can be 
slowing down the speed of the blockchain and increase the total latency of the model, at the same time it 
increases the security of it, by challenging the malicious chain to keep the pace with the official. 
Additionally, by adopting the longest-chain rule in the official, priority is given to the value of proof of work 
as this approach is widely recognized for maintaining data integrity and making malicious attacks more 
difficult as they require greater computational power (hash power) by the attackers [60]. 

S�𝑁𝑁,𝛽𝛽,𝑁𝑁𝑔𝑔� =

⎩
⎪
⎨

⎪
⎧1 −�  

𝑁𝑁

𝑛𝑛=0

�
𝑛𝑛 + 𝑁𝑁 − 1

𝑛𝑛
� �

1
1 + 𝛽𝛽

�
𝑁𝑁
�

𝛽𝛽
1 + 𝛽𝛽

�
𝑛𝑛

�
1 − 𝛽𝛽𝑁𝑁−𝑛𝑛+1

1 − 𝛽𝛽𝑁𝑁𝑁𝑁+1 �
     if 𝛽𝛽 ≠ 1

1 −�  
𝑁𝑁

𝑛𝑛=0

1
2𝑁𝑁+𝑛𝑛

�
𝑛𝑛 + 𝑁𝑁 − 1

𝑛𝑛
� �
𝑁𝑁 − 𝑛𝑛 + 1
𝑁𝑁𝑔𝑔 + 1 �      if 𝛽𝛽 = 1

. (41) 

5.1.2. Sybil attack 
In order to evaluate the successful Sybil attack probability, it is essential to formulate a probabilistic model 
that captures both the hidden chain mining by the attacker and the deliberate communication delays 
introduced by Sybil nodes. The analysis presented in this section highlights how the combination of slowing 
down honest nodes’ propagation and privately mining conflicting blocks significantly increases the 
attacker’s chances of carrying out a successful double-spend.  

Let 𝑍𝑍 denote the number of blocks the merchant waits to confirm before releasing goods, while 𝑃𝑃 is the 
probability that the attacker successfully creates a secret chain that overtakes the main chain. Therefore, 
the overall success probability can be expressed as in [61] 
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𝑃𝑃 = 1 −�  
𝑧𝑧−1

𝑘𝑘=0

[Pr[𝑋𝑋𝑧𝑧 = 𝑘𝑘](1− 𝑃𝑃𝑧𝑧−𝑘𝑘)], (42) 

where 𝑃𝑃𝑃𝑃[𝑋𝑋𝑋𝑋 = 𝑘𝑘] is the probability the attacker mines 𝑘𝑘 blocks while the main chain mines 𝑧𝑧 and 𝑃𝑃𝑧𝑧−𝑘𝑘  
is the probability that, given the attacker is 𝑧𝑧 − 𝑘𝑘 blocks behind, it can still catch up.  

The probability 𝑃𝑃𝑃𝑃[𝑋𝑋𝑋𝑋 = 𝑘𝑘] follows a negative binomial distribution and can be written as 

Pr[𝑋𝑋𝑧𝑧 = 𝑘𝑘] = 𝜆𝜆1𝑘𝑘𝜆𝜆2𝑧𝑧 �
𝑘𝑘 + 𝑧𝑧 − 1

𝑘𝑘
� , (43) 

where 𝜆𝜆1 and 𝜆𝜆2 depend on (i) the attacker’s fraction of mining power 𝑞𝑞, (ii) the impact of delays caused 
by Sybil nodes, and (iii) how quickly the main chain grows despite these delays. The analytical expressions 
of 𝜆𝜆1 and 𝜆𝜆2 are given by 

𝜆𝜆1 =
𝛽𝛽

𝛽𝛽 + 𝛿𝛿
, (44) 

and  

𝜆𝜆2 =
𝛿𝛿

𝛽𝛽 + 𝛿𝛿
, (45) 

in which 𝛽𝛽 is the has rate of the attacker and 𝛿𝛿 represents the growth rate of the main chain. Moreover, 
𝑃𝑃𝑧𝑧−𝜅𝜅  is given by 

𝑃𝑃𝑧𝑧−𝑘𝑘 = �
𝛼𝛼
𝛽𝛽
�
𝑧𝑧−𝑘𝑘

, (46) 

where 𝛼𝛼 is the attacker’s effective mining rate, and 𝛽𝛽 is the “effective growth rate” of the legitimate chain, 
which is slowed down by the communication delays introduced by Sybil nodes. 

By substituting (43) and (46) into (42), the latter can be rewritten as 

𝑃𝑃 = 1 −�  
𝑧𝑧−1

𝑘𝑘=0

��𝜆𝜆2𝑧𝑧𝜆𝜆1𝑘𝑘� − �𝜆𝜆1𝑧𝑧𝜆𝜆2𝑘𝑘�� �
𝑘𝑘 + 𝑧𝑧 − 1

𝑘𝑘
� , (47) 

with 𝜆𝜆1 and 𝜆𝜆2 are carefully defined expressions involving both the attacker’s fraction of mining power 
and the fraction of Sybil nodes that slow down honest block propagation.  
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In summary, Sybil nodes artificially slow down the legitimate network’s block communication. This helps 
the attacker more effectively use their own mining power to overtake the honest chain. If they do, the 
attacker voids their “public” payment transaction and reclaims the same funds, thus completing a double-
spend. This attack highlights how network-layer manipulation can lower the mining power threshold 
needed for a successful double-spend, making it more dangerous than the standard assumption that one 
needs the majority of the hash power. 

5.2. Numerical Results 
This section sheds light on the security aspects of the proposed B-RAN model by providing numerical 
results that were collected based on the modelling of the alternate history attack that was presented in 
Section 4.2.1. The demonstrated results focus on the interaction among various degrees of freedom of B-
RAN and provide interesting discussions on its adaptability to various configurations. This analysis is crucial, 
as attackers can target either the primary or secondary blockchain of the proposed framework. Moreover, 
the security achieved is compared to other works. This allows us to capture the dynamic nature of security 
challenges within B-RAN and provide design guidelines that ensure robust protection against potential 
attacks. 

5.2.1. 51% attack 
Figure 18 presents the probability of a successful attack as a function of the rate between the hash power 
of the official and malicious blockchains. Different attack strategies, Ng, of the attacker and various 
numbers of confirmations, 𝑁𝑁, are taken into consideration in the analysis. All of the scenarios include both 
the proposed and conventional BRAN modelling approaches. It immediately becomes evident that the two 
modelling approaches provide similar results, which validates the validity of the proposed framework. As 
expected, the probability of successful attacks increases as the β values increase, while it approaches 
100% when the malicious and official blockchains have comparable mining power. This is the case for 
both 𝑁𝑁 =  1  and 𝑁𝑁 =  3  configurations, with the latter exhibiting better security performance of 
2 ×  10−3  for low 𝛽𝛽  values. This observation indicates a consistent behavioral pattern for both 
configurations across various attack scenarios, regardless of variations in Ng values. The convergence of 
the two configurations suggests a shared vulnerability for B-RAN systems that is introduced due to the 
existence of blockchain. Finally, it is important to highlight that the official blockchain is characterized by 
robust computational capabilities that cannot be easily matched by the malicious one. 
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Figure 18. Probability of successful attack vs the attacker’s mining power for multiple combinations of Ng 
and N 

Figure 19 illustrates the interactions between latency and security for various different configurations of 
B-RAN. Specifically, six combinations are drawn for 𝑠𝑠 =  10 or 25 and k values equal to 1, 2, or 3. By 
observing any of the plotted configurations, it is evident that as security increases the latency increases as 
well. This highlights an equilibrium between security and latency when designing BRAN systems. In 
systems where security plays a significant role, a trade-off with temporal performance is expected, and 
vice versa. Although at first glance different configurations appear to have similar behavior, a closer 
inspection uncovers significant differences. Specifically, the black line that is characterized by 𝑘𝑘 =  1 and 
𝑠𝑠 =  10 indicates the worst performance in both security and latency, whereas the yellow line of 𝑘𝑘 =  3 
and 𝑠𝑠 =  25 is the fastest and the most resilience to attacks. Furthermore, the models with higher s values 
demonstrate a notable improvement in security when compared to their low-s counterparts, which 
highlights the important role of s. Moreover, a closer investigation of the 𝑠𝑠 =  25 configurations reveal a 
medium variation between 𝑘𝑘 =  1 and 𝑘𝑘 =  2, but only a minor difference between 𝑘𝑘 =  2 and 𝑘𝑘 =  3. 
This indicates that after a certain point increasing the 𝑘𝑘 value does not result in improved performance. 
Overall, this figure underlines the significance of appropriately selecting the design parameters of B-RAN 
to achieve the intended latency without sacrificing security. 
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Figure 19. Security vs latency for different s and k configurations 
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5.2.2. Sybil attack 

 

Figure 20. Probability of a successful Sybil attack as a function of β 

Figure 20 illustrates the relationship between beta power (β) of the attacker and likelihood of a successful 
attack in a blockchain simulating combined double spend (51%) and Sybil attacks. There are three cases 
shown: the baseline case of 0% Sybil nodes shown in blue is a pure double spend attack; an intermediate 
case of 10% Sybil nodes is shown in orange; and an advanced attack of 20% Sybil nodes is shown in green. 
All three cases show comparable increasing trajectories as beta power increases, culminating in the 
predicted convergence towards near-certainty, a probability of approximately 100%, as beta approaches 
1.0. The pure form double spend attack always has the minimum success probability for any beta value, 
whereas the 20% Sybil attack provides the attackers with the maximum success probability throughout 
the range. The intermediate 10% Sybil case, as anticipated, is somewhere in between these two extremes, 
indicating the incremental advantage that accrues by adding more fake (Sybil) nodes. It is notable that all 
scenarios begin with low probabilities of success, i.e., below 1%, at β = 0.1; however, they all show a steep 
turning point around β = 0.3, after which the probabilities surpass the 10% mark. The most rapid rate of 
increase is achieved between hash power levels of 0.2 and 0.6, after which the curves begin to flatten out 
as they approach certainty. This graph clearly illustrates the way in which introducing Sybil nodes 
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significantly optimizes attack effectiveness to facilitate smooth compromise of blockchain networks with 
relatively moderate computational power. 
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6. Intelligent Optimisation 
In this section, we explore the intelligent optimizations in blockchains, in which the AI-enhanced 
algorithms are used to optimize performance, security, and scalability. With more and more networks in 
blockchains, problems like low transaction processing speed, energy efficiency, security and network 
congestion arise. Intelligent optimization techniques like artificial intelligence and machine learning help 
in solving these issues by improving consensus mechanisms, resource utilization, and overall efficiency. 
Through the integration of such intelligent solutions, blockchain systems can operate more efficiently, and 
their long-term stability and flexibility to new technology are ensured. 

Important research has been done in AI and blockchain, since AI can process enormous volumes of data, 
optimize transactions, and automate decision-making, reducing the need for human input. Such an 
integration not only makes blockchain systems perform better but also enables smarter fraud detection 
and risk assessment functionalities. According to [62], the application of AI in blockchain has been explored 
thoroughly and shown to simplify tasks and make systems smarter. AI agents, when implemented 
alongside smart contracts, oversee performing repetitive tasks within blockchain networks. This 
automation allows human resources to focus on more sophisticated and creative tasks, optimizing 
efficiency across industries. AI combined with blockchain opens new doors for innovation, particularly in 
the finance, healthcare, and supply chain management industries. With the application of AI, blockchain-
based systems can dynamically respond to changing circumstances, optimizing security, performance, and 
decision-making processes [63]. However, blockchain technology involves a set of trade-offs such as 
security, performance, and decentralization. AI techniques can simplify these complex decisions by 
automatically optimizing procedures and improving governance processes [64]. Blockchain, although 
useful, is costly because it involves high computation and storage needs. Additionally, scalability is an 
impressive concern in the application of AI and blockchain because additional consensus processes and 
storage needs can slow down processes [62]. But AI, because of its ability to process large data and 
leverage high computing power, can be employed to make blockchain networks scalable [65] so that they 
are efficient and dynamic enough to cater to future demands.  

6.1. Reinforcement Learning Framework 
In this section, we present a RL method in order to optimize the performance of a B-RAN. We built an RL 
agent learned from simulation B-RAN data, able to adjust blockchain parameters at runtime in an attempt 
to maintain request latency close to a specific target. The agent is designed to operate in a live 
environment, continuously adapting to network conditions when the conditions require it. Additionally, it 
optimizes resource usage, ensuring effective performance while minimizing computational and energy 
consumption. This approach enhances both the efficiency and scalability of the B-RAN, making it more 
suitable for real-world applications. 
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Our framework utilizes a closed-loop control architecture with an RL Proximal Policy Optimization (PPO) 
to control latency times and optimize blockchain resource allocation networks (BRAN), as can be seen in 
Figure 21. The architecture tries to keep the network latency close to defined thresholds while reducing 
resource utilization through intelligent parameter tuning. Our system is composed of three main 
components. First, the observation module is always gathering network measurements in real-time, such 
as average latency over sliding time windows, along with the mining power which denotes the blockchain 
network’s capabilities and service rate which represents the network resources assigned to the service 
provisioning. These values are forwarded to the agent, which is the decision-making component of our 
system. Afterwards, the agent decides on network conditions and makes optimal parameter setting 
decisions, prioritizing actions that maintain the latency around a target latency level while at the same 
time choosing minimum achievable resource allocation. Finally, the actuation module of the agent 
implements these choices by adapting BRAN parameters like mining capacity and service execution 
rates.  For state representation, we encode the current network conditions as a vector incorporating 
latency measurements, resource utilization, and proximity to a critical latency threshold. Complete 
information about the state allows the agent to make knowledgeable decisions via complete network 
observability. The action space involves discrete parameter adjustments with inherent constraints to avert 
system overloading, for instance, the agent is unable to reduce mining power to unsafe minimum values 
or to exceed the available resources. Additionally, our training procedure utilizes a simulated BRAN 
environment that replicates real traffic patterns and network conditions.  

The simulation can create varied scenarios such as abrupt traffic surges to provide robustness to the agents. 
The reward function weighs two conflicting goals: keeping latency under thresholds effectively and 
reducing parameter changes to save resources. The two-objective reward promotes resource-conserving 
utilization. The PPO updates the policy of the agent iteratively during training, weighing the exploration of 
new actions against the exploitation of old successful strategies. Once deployed, the system is integrated 
into the live BRAN model to retrieve metrics and push configuration changes. The agent is conservative in 
its actions, initiating parameter changes only when latency times are above a threshold. This helps achieve 
system stability through a minimal amount of configuration changes. Key benefits of our framework are 
resource efficiency, flexibility, and low cost of operation. Minimizing the number and volume of parameter 
changes, the system reduces operational costs without sacrificing performance levels. The various training 
scenarios allow the agent to generalize effectively to unseen network conditions. Moreover, the stability 
of the PPO algorithm guarantees consistent performance without requiring frequent policy updates, again 
lowering system overhead. The framework is a scalable solution for latency-critical BRAN environments, 
nicely trading off performance demands with resource conservation through data-driven automation.  
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Figure 21. RL Framework 

6.2. Performance Evaluation 

 

(a) RL agent activation with a delay of 50 timesteps 
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(b) RL agent activation with a delay of 100 timesteps 

 

(c) RL agent activation with a delay of 200 timestep 

Figure 22. Latency over time for different RL agency activation delay scenarios 
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Figure 22 (a) depicts the effect of the RL on the average latency of the BRAN simulation. The x-axis 
represents the time unit in the simulation, and the y-axis represents the corresponding average latency 
measurements. Under normal operation, which is the time period between 0-100, the system shows a 
stable low-latency trend with an average. At timestep 100, indicated by a red dashed vertical line, an 
artificially caused traffic surge leads to significant performance degradation. This event is reflected in 
latency values that drastically peak at levels above 1 unit and show high variation between timesteps 100 
and 150. After the activation of the pre-trained RL agent at time 150, as indicated by the green dashed 
vertical line, the system demonstrates a quick convergence to the performance levels. It is noteworthy 
that the reinforcement learning agent effectively optimizes network parameters by identifying the 
minimum sufficient configuration required to meet target performance metrics, thus conserving 
computational and network resources while still ensuring quality of service requirements. After the agent 
is activated, from timesteps 200 to 500, the network resumes stable performance with low latency and 
little variation. This demonstrates that the reinforcement learning-based adaptive control mechanism 
works well to mitigate network congestion and restore good performance under dynamic traffic conditions.  

A comparison with the other two cases when the RL agent is called after 100 and 200 timesteps is highly 
insightful for intervention timing. As the delay in agent activation increases in duration, we observe a 
corresponding rise in peak latency values. For the 100-unit delay case Figure 22 (b), peak latency values 
increase to around 3.5 units, far above the 2.25 units observed for the 50-timestep delay case scenario. 
Even more starkly, in the 200-timestep delay case Figure 22 (c), the maximum latency approaches 4.75 
units and experiences sustained high-amplitude oscillations throughout congestion time. This behavior 
clearly shows that longer pre-intervention delays cause more degradation, which then becomes 
progressively harder to reverse. The contrast between these three cases demonstrates the presence of a 
critical threshold beyond which network congestion may be irreversible or take much longer recovery 
periods. Although our reinforcement learning agent manages to stabilize the system in each of the three 
cases, the results emphasize the value of early detection and prompt response in sustaining network 
resilience. 

 

 

 

 

 

 



 D2.2 – NANCY Experimental-Driven Modelling 
 

 
 

 
61 

 
 

 

(a) Mediocre traffic increase 

 

(b) High traffic increase 
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(c) Very high traffic increase 

Figure 23. Latency over time for multiple traffic scenarios 

The three subplots of Figure 23 present the results of a BRAN simulation of the average latency vs timestep 
over different traffic rates, with annotations referencing traffic increases and RL agent interventions. Each 
plot presents average latency, where vertical red lines denote increments of the traffic rate and green 
lines are activations of the RL agent. In all cases, higher traffic (red line) provokes instantaneous spikes in 
latency, followed by the activation of the RL agent (green line) and stabilization afterward. At a traffic level 
of 100 Figure 23 (a), latency reaches approximately 3 latency units and then recovers quickly after 
intervention. In the 150-traffic case Figure 23 (b), latency increases sharply to approximately 120 units, an 
indication of moderate system stress; the agent mitigates this spike fairly well, though recovery is slower 
than in the 100-traffic case. In the maximum load Figure 23 (c), latency peaks at around 200-traffic rate, 
and remains elevated for a longer period, and with a higher peak value at 200 latency units, an indication 
of severe stress. Though recovery is very slow, the agent does recover to stability. These results 
demonstrate the RL agent's robustness in reducing latency across varying traffic loads. It is worth noting 
that, while recovery durations increase with traffic rates, suggesting operational challenges at high loads, 
the agent reliably returns to system stabilization, demonstrating its adaptability in dynamic environments. 
Finally, the prolonged recovery at the 200-traffic rate suggests potential scalability limits, emphasizing the 
need for complementary strategies in high-stress regimes. 
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7. Conclusion 
The document "D2.2 – NANCY Experimental-Driven Modelling" presents a comprehensive theoretical 
framework for the B-RAN architecture, which aims to transform wireless networks by enabling service 
consumers to act as service providers. This deliverable explores three key NANCY usage scenarios: the 
fixed fronthaul network, advanced coverage expansion, and advanced connectivity of mobile nodes. A 
central lesson from the B-RAN modelling is that the proposed model, leveraging Markov chain theory, 
effectively captures the probabilistic transitions between different system states, offering valuable insights 
into its dynamic behaviour. The introduction of a HB-RAN model represents a novel approach for assessing 
the performance of coverage expansion scenarios by utilizing nested blockchains to enhance security and 
reliability.  

Performance evaluation through analytical modelling and numerical results underscores the significant 
impact of parameters like the number of confirmations (N) and block capacity (k) on system latency, with 
generally higher k values leading to lower latency, particularly under high traffic conditions. Notably, the 
proposed B-RAN model demonstrates superiority over conventional models in accurately representing the 
temporal performance of complex B-RAN systems across diverse traffic conditions. Analysis of the HB-RAN 
model reveals that the secondary blockchain typically experiences higher latency compared to the primary 
blockchain, and its activity has a substantial influence on the overall system performance. Furthermore, 
the study identifies an inherent equilibrium between security and latency in B-RAN design, where 
enhancing security measures often results in increased latency, and vice versa. 

In terms of attack modelling, the document concludes that while the risk of external attacks is lower in the 
permissioned blockchains used by B-RAN, insider threats and compromises of cryptographic material pose 
critical concerns. The document pinpoints 51% and Sybil attacks as the most impactful threats to B-RAN 
systems, integrating them into the theoretical modelling framework. The analysis shows that the 
probability of a successful 51% attack escalates with the attacker's mining power (β) and diminishes with 
a higher number of confirmations (N). Moreover, Sybil attacks, especially when combined with double-
spending attempts, can significantly amplify an attacker's likelihood of success by disrupting 
communication among honest nodes. 

The exploration of intelligent optimization using RL highlights its potential for dynamically adjusting 
blockchain parameters at runtime to maintain target latency levels while optimizing resource utilization. 
RL also demonstrates effectiveness in mitigating network congestion and restoring performance under 
dynamic traffic conditions. This approach facilitates a crucial trade-off between performance demands 
and resource conservation through data-driven automation. 

Looking ahead, the document indicates several future directions, including further investigation into 
custom solutions for empowering B-RAN with HSMs to bolster security. The application of AI in blockchain 
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is identified as a key area for optimizing performance, security, and scalability, encompassing 
improvements in consensus mechanisms, resource utilization, and overall efficiency. The potential of AI 
for smarter fraud detection and risk assessment functionalities within B-RAN systems is also highlighted. 
Addressing the inherent trade-offs between security, performance, and decentralization in blockchain 
through AI-driven automatic optimization and enhanced governance processes is another crucial direction. 
Finally, the document suggests further examination of the scalability limits of the proposed B-RAN model 
under high traffic loads and the exploration of complementary strategies for high-stress regimes.  
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