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Executive Summary 

This deliverable outlines the design, implementation, and evaluation of the Smart Pricing Module 

(SPM) within the NANCY framework under Task 4.5 “Smart Pricing Policies”, focusing on pricing and 

resource allocation in the Blockchain Radio Access Network (B-RAN) for Beyond 5G (B5G) ecosystems. 

The SPM employs AI-driven strategies, using Multi-Agent Reinforcement Learning (MARL) and auction 

theory, to facilitate a multi-round blind reverse auction, ensuring fair pricing and efficient resource 

sharing in a decentralized B5G environment. Testing confirms its effectiveness in achieving competitive 

pricing while preventing collusion. 
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1. Introduction 

The evolution of wireless communication systems toward 6G demands innovative solutions to manage 

increasingly complex and dynamic network environments. B-RAN emerges as a transformative 

framework, leveraging blockchain technology and smart contracts to enable secure, decentralized, 

peer-to-peer connectivity and resource management [1]. Unlike traditional centralized approaches, B-

RAN’s distributed nature requires adaptive mechanisms to optimize resource allocation and pricing, 

which are key challenges in providing efficient and equitable access to network resources. Task 4.5 

addresses these challenges by introducing the SPM, a sophisticated system designed to integrate 

Artificial Intelligence (AI), auction theory, and game theory into a dynamic pricing model tailored for 

B-RAN architectures. 

The SPM redefines resource sharing by facilitating auction-based interactions that balance efficiency, 

fairness, and competitiveness, regardless of the resource provider. This deliverable documents the 

process of designing, implementing, and evaluating the SPM within the broader NANCY framework, 

offering a comprehensive exploration of its technical foundations and real-world implications. It details 

how AI-driven pricing strategies, supported by robust hosting infrastructure, deliver fair pricing and 

balanced customer distribution in a competitive B5G ecosystem [2]. Beyond its technical contributions, 

this document evaluates the module’s performance through rigorous testing and benchmarking, while 

also considering its business impact—demonstrating how it fosters innovation and adaptability in a 

multi-stakeholder landscape. By blending cutting-edge technology with practical outcomes, this 

deliverable not only validates the SPM’s role in shaping the future of B5G networks but also paves the 

way for further advancements and research. 

1.1. Purpose of the Deliverable 

This deliverable aims to provide a detailed record of the SPM within the NANCY framework, capturing 

its design, implementation, and evaluation processes. It seeks to present a structured analysis of the 

SPM’s technical components, specifically its AI-driven pricing mechanisms and hosting infrastructure, 

demonstrating their functionality and performance in achieving fair pricing and balanced resource 

allocation. The document also clarifies the SPM’s integration into the NANCY ecosystem, outlining its 

operational role and interactions with other system elements. 

In addition, this deliverable assesses the SPM’s effectiveness through empirical testing and 

performance metrics, offering evidence of its technical viability. It extends this analysis to explore 

business implications, highlighting how the module supports stakeholder collaboration and market 

adaptability. By documenting these aspects, the deliverable serves as both a validation of the SPM’s 
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current achievements and a foundation for identifying future improvements and research 

opportunities. 

This deliverable is the result of Task 4.5 “Smart Pricing Policies”. 

1.2. Structure of the Document 

The deliverable is split into seven sections, each exploring a vital aspect of the module's design, 

implementation, and evaluation. This arrangement allows for a concise and logical display of the work 

done, leading the reader through the main ideas and outcomes. 

• Section 2 covers the technical details of the system architecture and hosting factors that 

support the SPM. The module’s main components, which focus on achieving even customer 

distribution and fair pricing, are described in detail, along with the technologies used in the 

hosting infrastructure for reliable operation. 

• Section 3 focuses on the AI-driven pricing model, explaining its core concepts and 

implementation. It begins with an introduction to MARL, showing how it enables AI agents to 

autonomously adapt pricing strategies in a competitive B-RAN environment. This section also 

explores the use of auction theory as the primary game theory approach, explaining how 

auction mechanisms model stakeholder interactions. The training process for the AI models, 

including reinforcement learning (RL) algorithms, is discussed, along with the effort to find the 

best reward system for the model’s needs. Finally, strategies for load balancing and customer 

distribution are discussed, in order to establish efficient operation and good user experience. 

• The incorporation of the component within the wider NANCY framework is the subject of 

Section 4. This section explains how the SPM interacts with the NANCY Marketplace. 

• Section 5 shows the outcomes of the performance review. The performance benchmarks used 

are defined, and the results gained from testing and simulations are shown. This section 

provides empirical evidence of the module's effectiveness, demonstrating that the proposed 

smart pricing methods are both practical and valuable. 

• A business viewpoint is offered in Section 6, bridging the gap between the technical framework 

and its real-world impact on stakeholders. It explores how the multi-stakeholder model 

enhances flexibility, fosters innovation, and leverages the NANCY Marketplace and smart 

pricing techniques to create a more efficient and competitive B5G ecosystem. 

• Finally, Section 7 concludes the document by summarizing the key successes of Task 4.5 and 

outlining the potential for the SPM’s future growth. 
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2. System Architecture & Hosting 

 

 

Figure 1: SPM Architecture (1) 
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Figure 1 illustrates the step-by-step process of the architecture. It begins when the UE sends a Service 

Request to the Marketplace, which acts as an intermediary between the UE and multiple MNOs. 

The Marketplace first evaluates the MNOs, categorizing them as either "accepted" or "rejected" based 

on their ability to fulfil the UE’s request. In the diagram, accepted MNOs (MNO1, MNO3, and MNO4) 

are shown in green, while rejected ones (MNO2 and MNO5) are in red. 

Next, the Marketplace requests an initial bid, minimum acceptable price, and availability from the 

accepted MNOs. Their responses do not influence their prior acceptance or rejection. 

The Marketplace then forwards the collected data to the SPM, which analyses it to select the MNO 

that will fulfil the UE’s request. Once a decision is made, the SPM communicates it back to the 

Marketplace. 

Finally, the Marketplace assigns the job to the chosen MNO, while rejected MNOs are no longer 

considered. 

2.1. Overview of the Smart Pricing Module’s Architecture 

In modern digital marketplaces and networked environments, efficient resource allocation and 

competitive pricing are essential for optimal performance. Traditional pricing models often fail to 

adapt dynamically to fluctuating supply and demand. To address these challenges, the SPM leverages 

a reverse auction system with intelligent load balancing to ensure fair competition, price optimization, 

and efficient resource distribution (Figure 2). This section explores the architecture of the SPM, 

detailing its core components and benefits in dynamic pricing scenarios. 

 

Figure 2: SPM Architecture (2) 

Following load balancing, the reverse auction takes place, consisting of N iterative bidding rounds. 

Participants submit bids, each aiming to offer the lowest acceptable price for the services being 

auctioned. Throughout the process, the SPM dynamically ranks all participants based on predefined 

selection criteria, including current bids and their deviation from initial bids or minimum acceptable 
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prices. However, to maintain fairness and strategic bidding, each provider is only aware of their ranking 

and not the bids of others. Based on their ranking, providers adjust their prices in subsequent rounds 

strategically to stay competitive. This ranking-based feedback mechanism promotes transparency 

while preserving competition. In the final round, the provider offering the lowest price is declared the 

winner. The SPM then sends the auction results, both the winner and the corresponding winning price, 

back to the Marketplace. This structured approach to pricing and resource allocation makes the SPM 

a critical enabler of dynamic resource sharing, particularly in future network architectures where 

resources may originate from diverse providers, including user equipment. 

The reverse auction mechanism inherently promotes cost efficiency by driving competition and 

ultimately selecting the lowest acceptable price. The integrated pre-auction load balancing 

significantly enhances efficiency by optimizing resource distribution and preventing bottlenecks that 

could hinder providers and services. The multi-round nature of the auction allows for dynamic price 

discovery, empowering participants to react to market fluctuations and refine their bids accordingly. 

Additionally, the SPM offers fairness by ensuring that all participants have equal opportunities to 

adjust their bids based on market conditions. The ability to interact with the Marketplace and receive 

real-time data enables the SPM to dynamically adapt to changing economic conditions. Finally, the 

architecture is designed with scalability in mind, enabling it to manage a large number of participants. 

2.2. Deployment 

The SPM is deployed within a containerized environment on a dedicated server, leveraging 

technologies such as Docker to enhance scalability, isolation, and overall ease of management. 

Containerization certifies that the module runs in a consistent and portable runtime environment, 

eliminating discrepancies between different deployment stages, from development to production. 

This approach streamlines software updates, as new versions of the module can be deployed 

seamlessly without disrupting existing services. Additionally, the containerized setup simplifies 

dependency management by packaging all necessary libraries and configurations within the container, 

thereby minimizing compatibility issues and reducing deployment overhead. This guarantees a more 

stable and efficient deployment process, allowing the module to function reliably in diverse 

operational conditions. Docker is widely adopted in development and DevOps due to its ability to 

provide uniform environments across different stages of the software lifecycle, eliminating 

discrepancies caused by variations in package versions or dependencies that can otherwise lead to 

unexpected behaviour [3]. By running the SPM inside a container, it is certified that the module 

operates reliably across various infrastructure setups, reducing potential errors and making 

deployment more predictable. 
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Containerization enables streamlined updates and simplified dependency management, reducing 

manual intervention and improving operational efficiency [4]. Docker containers autonomously 

manage configurations and dependencies, allowing developers to use the same container across 

development and production environments. This capability is particularly beneficial for the SPM, as it 

allows seamless updates to pricing models and algorithms without disrupting service availability. 

Furthermore, by leveraging container orchestration tools such as Kubernetes, we can automate 

scaling, ensuring that the SPM can handle varying levels of demand efficiently while maintaining high 

performance. 

To facilitate seamless interaction with the NANCY Marketplace, a dedicated API is hosted within the 

premises. This API serves as the central communication channel, retrieving crucial information about 

network providers while also communicating auction results. Designed for efficiency, the API is 

optimized to handle concurrent requests with minimal latency, ensuring that pricing updates and 

auction outcomes are relayed in real-time. 
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3. AI-Driven Pricing Model 

3.1. Multi-Agent Reinforcement Learning Framework (MARL) 

MARL, an extension of classical RL, enables multiple autonomous agents to interact within a shared, 

dynamic environment. Regarding the SPM, MARL provides a robust foundation for modelling 

competitive interactions among AI agents in a B-RAN ecosystem. These agents, representing service 

providers like MNOs, compete to maximize their profits. This section outlines the evolution of MARL 

frameworks, introduces the Agent Environment Cycle (AEC) model as the SPM’s backbone, and 

describes its tailored PettingZoo-inspired API, laying the groundwork for the multi-round blind reverse 

auction and training processes detailed later. 

Historically, single-agent RL benefited from standardized tools like OpenAI’s Gym [5], which provided 

a unified API for environment interaction. MARL, however, faced challenges due to a lack of similar 

standardization, complicating scalable and reproducible multi-agent systems. Early MARL research, as 

noted by Terry et al. [6] in their PettingZoo paper, relied on diverse mathematical models. Partially 

Observable Stochastic Games (POSGs) allowed agents to act, observe, and receive rewards 

simultaneously but struggled in B-RAN settings where pricing decisions occur sequentially, and agents 

join or leave dynamically. Extensive Form Games (EFGs), with their tree-like action sequences, suited 

turn-based scenarios like auctions but lacked adaptability for the continuous, real-time demands of 

SPM’s pricing and load balancing. These limitations drove the need for a more flexible framework 

tailored to the SPM’s competitive, event-driven context. 

To address this, the SPM adopts the AEC model from the PettingZoo library as its MARL foundation. In 

AEC, agents act sequentially, as shown in Figure 3, each observes the environment (e.g., current market 

state), selects an action (e.g., setting a bid in a reverse auction), and passes control to the next agent. 

Rewards, such as profit or ranking, are tied directly to individual actions. This sequential design offers 

key advantages for the SPM. It supports auction-based pricing (detailed in Section 3.2) where agents 

bid prices for offering their services in structured rounds. It also adapts to dynamic agent participation, 

maintaining stability as providers enter or exit B-RAN, or when users move from one geographical 

location to another. 
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Figure 3: MARL [7] 

Building on AEC, the SPM implements a PettingZoo-inspired API customized for its pricing needs. This 

API features an iterable agent sequence, cycling through providers in each auction round, and a state 

retrieval mechanism, delivering observations like bid rankings and remaining rounds, alongside 

rewards. It tracks dynamic agent sets via identifiers (e.g., provider_0), supporting B-RAN’s fluctuating 

participants, and uses dictionary-based data access for agent-specific metrics (e.g., bid history, 

termination status). This bridges the simplicity of Gym’s single-agent interface with MARL’s complexity, 

making the SPM accessible yet scalable. For example, during a multi-round blind reverse auction 

(Section 3.2), agents adjust bids based on ranking feedback, with the API ensuring computational 

efficiency via tools like NumPy’s vectorized operations. 

The AEC model’s flexibility enhances its fit for the SPM over earlier frameworks like POSGs, integrating 

seamlessly with the game-theoretic auction mechanisms and Proximal Policy Optimization (PPO) 

training approach explored later. Agents learn to balance competitive bidding with profitability, guided 

by a neural network (Section 3.3) that processes observations and enforces valid actions via action 

masking (e.g., restricting bids within provider-specific limits). 

3.2. Game Theory Principles in Action: Multi-Round Blind Reverse Auction 

Environment 

3.2.1. Auction Theory and Game-Theoretic Frameworks 

The SPM anchors its pricing model in auction theory, specifically tailored to a multi-round blind reverse 

auction designed for the B-RAN ecosystem. In this strategic setup, MNOs or other resource providers 

compete over N rounds to offer the lowest price for requested network services, with the winner 



D4.5 - Smart Pricing Policies 
 

 
18 

determined by the lowest final bid. Unlike forward auctions where buyers bid upward for goods, 

reverse auctions flip the dynamic (Figure 4): suppliers bid downward to secure contracts, prioritizing 

cost efficiency for the network while sustaining provider viability. This aligns with Jap (2002) [8], who 

frames online reverse auctions as an innovative procurement method where buyers solicit bids from 

multiple suppliers, driving competition to lower prices, a paradigm the SPM adapts for B5G resource 

allocation. 

 

Figure 4: Forward vs Reverse Auctions [9] 

Reverse auctions, as a broader procurement strategy, are characterized by several distinctive features 

that enhance their suitability for dynamic environments like B-RAN. They rely on real-time bidding, 

ensuring rapid price adjustments, which the SPM leverages through its iterative rounds and AI-driven 

tools. Outcomes are inherently price-driven, focusing on cost minimization, a principle central to the 

SPM’s goal of fair and efficient resource allocation. Additionally, reverse auctions often incorporate 

transparent bid visibility and structured rules, though the SPM adapts this with its blind mechanism, 

assuring clarity and fairness, as seen in sectors like construction where buyers quickly secure 

competitive bids for materials and services. These attributes make reverse auctions a powerful tool for 

cost reduction, aligning with the SPM’s objective to optimize pricing in a decentralized B5G context 

[10]. 

Jap emphasizes that reverse auctions diverge from traditional auction models due to their iterative 

nature and practical complexities, a point central to the SPM’s multi-round design. Rather than a single 

bid determining the outcome, the SPM allows providers to refine offers across rounds, culminating in 

the lowest final price, a departure from static theoretical frameworks that Jap critiques as insufficient 

for capturing real-world dynamics. This iterative process enhances price discovery, leveraging 
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competition to reflect true market value in B-RAN’s decentralized context, as supported by Ling et al. 

[1], who highlight blockchain’s role in enabling such distributed systems. 

3.2.2. Multi-Round Bidding and Ranking Feedback 

 

Figure 5: Multi-Round Reverse Auction 

The multi-round structure of the SPM’s reverse auction (Figure 5) introduces a dynamic, iterative 

dimension to the game, resembling a repeated game as conceptualized by Fudenberg and Tirole [11]. 

Across N bidding rounds, providers adjust their bids based on real-time ranking feedback, which serves 

as a proxy for market conditions and competitive positioning. For example, a provider ranked lower in 

one round might reduce their bid in the subsequent round to improve their standing, while a higher-

ranked provider might maintain or even increase their bid, anticipating competitors’ responses. This 

iterative process fosters strategic depth, as providers must balance the risk of bidding too aggressively 

(potentially sacrificing profit margins) against bidding too conservatively (risking loss to competitors). 

The ranking-based feedback mechanism promotes transparency while preserving competition. 

Providers receive their position relative to others after each round but remain unaware of specific 

competitor bids, ensuring a level playing field. This approach aligns with Nash’s concept of equilibrium 

in non-cooperative games, where no player can improve their outcome by unilaterally changing their 

strategy, given the strategies of others. Over time, the iterative bidding converges toward a Nash 

equilibrium, stabilizing pricing outcomes that reflect both market dynamics and provider strategies, as 

supported by simulations discussed in Section 5. 

Furthermore, one of the critical advantages of the SPM’s multi-round auction is its ability to mitigate 

the “winner’s curse” [12], a common pitfall in auction mechanisms where the winning bidder overpays 

due to overestimation of value or underestimation of competition [13]. In traditional single-shot 

auctions, bidders may inflate their offers based on imperfect information, leading to inefficiencies in 

resource allocation. However, by distributing the bidding process across multiple rounds, the SPM 
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allows providers to recalibrate their strategies based on ranking feedback, reducing the likelihood of 

overbidding [14]. 

3.2.3. Technical Implementation of the Reverse Auction Environment 

The multi-round blind reverse auction is brought to life through a class implemented as a parallel MARL 

environment using the PettingZoo framework (see Figure 6). The bidding process, its core mechanism, 

is designed to model strategic decision-making in competitive pricing scenarios, enabling agents to 

iteratively adjust their bids over a fixed number of rounds to achieve the lowest rank, representing the 

most competitive bid, while adhering to personalized constraints defined by minimum and maximum 

bid limits. This process facilitates competition by allowing simultaneous bid adjustments in each round, 

optimizes decision-making by balancing competitiveness and profitability, and reflects real-world 

dynamics where the lowest bid wins. Key features include multi-agent parallel actions for real-time 

competition, dynamic ranking of bids in ascending order and historical bid tracking to inform future 

decisions, culminating in a final evaluation. 
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Figure 6: PettingZoo Environment 

Action & Observation Spaces 

The Action Space is structured as a discrete space representing bid adjustment options, defined as 

percentage reductions ranging from 1.99 to 0.01 in decrements of 0.01. Its purpose is to allow agents 

to incrementally lower their bids within constraints.  

The Observation Space is structured as a dictionary, containing the current ranking, the previous 

ranking, the remaining auction rounds, each agent’s bid history and the action mask. The first two are 

defined as Discrete values from 1 to the maximum number of agents. The remaining auction rounds 

are also indicated by a Discrete value, ranging from 0 to the maximum auction rounds. The bid history 

is defined as an array. Finally, the action mask is a vector indicating valid bid adjustments based on the 

current bid and constraints. 

Bid Updates 

Bid updates begin with an input dictionary of actions, such as {"provider_0": 0.50, "provider_1": 0.25}, 

where each agent specifies a bid adjustment. The process updates the current bid applying the chosen 

adjustment while respecting the minimum and maximum bid limits mentioned above. The updated 

bid is also recorded in the agent’s bid history. 



D4.5 - Smart Pricing Policies 
 

 
22 

Rank Calculation & Reward Computation 

Rank calculation occurs after all bids are updated. The environment sorts all current bids in ascending 

order, then assigns ranks where the lowest bid receives 1, the second-lowest 2, and so forth. The 

resulting rank array is stored, with current ranks updated and previous ranks retained for reward 

computation. 

Reward Computation uses the reward function, which considers multiple inputs: the current ranking, 

the total number of agents, the current bid value relative to the bid constraints, the current round 

number and the total rounds. The objective is to encourage strategic bid lowering without excessive 

profit loss. The output is a scalar reward value per agent, included in the step output. 

Step Execution 

The step execution follows a structured workflow. It receives actions from all agents, updates bids and 

histories, calculates new ranks, computes rewards and observations, and increments the round 

counter until the final round. The output is a tuple containing observations and rewards per agent. 

3.2.4. Strategic Blind Auction Design 

The SPM’s blind auction mechanism establishes that resource providers in B-RAN iteratively refine 

their bids without direct access to competitors’ actual bid amounts. Instead, after each round of the 

multi-round process, participants receive only their relative ranking, preserving strategic uncertainty 

and creating a highly competitive pricing environment. This design, where the lowest final bid 

determines the winner, mirrors the principles of repeated games with imperfect public information, 

as articulated by Green and Porter [15]. In their theoretical models, players navigate environments 

where they must adjust strategies based on noisy or indirect signals, such as observed market prices 

or outputs, rather than having explicit knowledge of competitors’ actions. Similarly, in the SPM, bidders 

rely on ranking feedback as an imperfect, probabilistic indicator of market conditions, inferring 

competitive pressures to strategically lower their bids and drive prices downward over multiple 

rounds, ensuring dynamic and responsive pricing in a decentralized B5G network context. 

By deliberately concealing bid details, the SPM effectively mitigates inefficiencies that plague 

traditional auction systems, particularly those stemming from collusion and price manipulation. In fully 

transparent bidding environments, participants can observe and potentially coordinate their 

strategies, risking tacit agreements that artificially inflate prices or distort market outcomes. The SPM’s 

blind structure counters these risks by forcing providers to make independent, strategic decisions 

based solely on their own bid and ranking, aligning with B-RAN’s blockchain-based framework. The 

design choices underpinning this mechanism, implemented in the reverse auction, reflect a deliberate 
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effort to operationalize these theoretical advantages while meeting the SPM’s goals of fairness, 

efficiency, and scalability. 

3.3. Training Process 

3.3.1. Policy 

The agents are trained using PPO [16], which is an RL algorithm that balances exploration and 

exploitation while certifying stable policy updates. It builds on previous policy gradient methods such 

as Vanilla Policy Gradient (VPG) and Trust Region Policy Optimization (TRPO) [17], addressing their 

limitations. 

VPG directly optimizes policy parameters by maximizing expected rewards. However, it suffers from 

high variance because it updates policy parameters using raw rewards without considering the relative 

importance of different actions. Additionally, since it lacks a mechanism to constrain policy updates, it 

may make overly aggressive changes that lead to instability in training. 

To address these issues, TRPO introduces a trust region constraint, which limits the step size of policy 

updates to prevent drastic changes. This is achieved by enforcing the constraint: 𝐾𝐾𝐾𝐾�𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜�𝜋𝜋𝜃𝜃� ≤ 𝛿𝛿 

where KL is the Kullback-Leibler divergence between the old and new policies, and δ is a small 

threshold that controls the allowed deviation. This ensures that updates are gradual and do not 

destabilize learning. However, TRPO requires solving a constrained optimization problem, which 

involves second-order derivatives and is computationally expensive. 

PPO simplifies TRPO by replacing the complex constraint with a clipped surrogate objective, ensuring 

stable updates without requiring second-order derivatives. This prevents large policy shifts while 

maintaining sample efficiency, making PPO both powerful and easy to implement. 

Mathematically, PPO optimizes the following objective function: 

𝐾𝐾(𝜃𝜃) = 𝐸𝐸𝑡𝑡[min(𝑟𝑟𝑡𝑡(𝜃𝜃)𝐴𝐴𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜀𝜀, 1 + 𝜀𝜀)𝐴𝐴𝑡𝑡)] 

where: 

• 𝑡𝑡 is the time step in a learning episode. 

• 𝑟𝑟𝑡𝑡(𝜃𝜃) = 𝜋𝜋𝜃𝜃�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡�
𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡�

 is the probability ratio between the new and old policies. 

• 𝐴𝐴𝑡𝑡 is the advantage estimate, measuring how much better an action is compared to the 

expected return. 

• 𝜀𝜀  is a hyperparameter that controls how much the policy is allowed to change per update. 
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By clipping the policy update, PPO prevents excessive divergence from the current policy, ensuring 

more stable and reliable learning. 

The advantage function, denoted as 𝐴𝐴𝑡𝑡, or more accurately 𝐴𝐴(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡), is a crucial component in PPO, 

measuring how much better taking a specific action in a state is compared to the expected value of 

that state. It provides a way to determine whether an action was beneficial and should be reinforced 

or if it was suboptimal and should be discouraged. The advantage function is defined as 𝐴𝐴(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) =

𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)− 𝑉𝑉(𝑠𝑠𝑡𝑡), where 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) represents the expected cumulative reward of taking action 𝑎𝑎  in 

state 𝑠𝑠 at timestep 𝑡𝑡 . By computing the advantage, PPO can decide whether a policy update should 

increase or decrease the probability of taking that action in the future. 

To compute 𝐴𝐴(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡), the agent must estimate 𝑉𝑉(𝑠𝑠𝑡𝑡), the value function, which predicts the 

cumulative future reward expected from a given state. The value function serves as a baseline for 

advantage computation, helping stabilize policy updates by reducing variance. Mathematically, the 

value function is updated using: 𝑉𝑉(𝑠𝑠 ) ≈ 𝐸𝐸[𝑅𝑅𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠], where 𝑅𝑅𝑡𝑡 represents the discounted sum of 

future rewards. Discounting is used to prioritize immediate rewards over distant ones, ensuring 

stability in training. PPO estimates the value function during training by minimizing a loss function 

involving the predicted value and the actual return. This structured value function estimation enables 

PPO to balance exploration and exploitation effectively, leading to more stable RL outcomes. 

It is important to note that PPO does not directly estimate 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡). Instead, it relies on the value 

function and the advantage function to guide policy updates. The advantage function indirectly 

captures information about the value of actions without needing a separate Q-function approximation. 

By refining these estimates over time, the agent can improve the reliability of policy updates, reduce 

variance, and ultimately make more consistent decisions.  

3.3.2. Model 

The model is a neural network designed to process observations while ensuring only valid actions can 

be selected. It builds on Ray RLlib’s [18] TorchModelV2 and consists of a fully connected neural 

network (FCN) with hidden layers. The model processes the state representation as input and outputs 

action logits, defining the probability distribution over available actions. 

The neural network is responsible for estimating both the policy (action selection) and the value 

function (state evaluation), which work together for effective learning. The model consists of two 

components: 
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• Policy Network (Actor): Outputs action logits, which determine the probability of selecting 

each action. 

• Value Network (Critic): Estimates, the expected return of a state, which helps calculate the 

advantage function. 

Network Architecture and Components 

• Input Layer: Receives the encoded state representation (observation space) from the 

environment. 

• Hidden Layers: Fully connected layers with non-linear activations to extract relevant features. 

• Output Layers: 

o Action Logits: Used to sample actions from a probability distribution. 

o Value Function Estimate: Used to compute the advantage function and guide policy 

updates. 

Note that the output layers share input and hidden layer weights and are trained together. 

Action Masking 

A critical feature of this model is the action mask, which prevents the policy from selecting invalid 

actions. Before selecting an action, the logits corresponding to invalid actions are set to a very low 

value, effectively preventing the agent from choosing them. This ensures that only valid actions retain 

their computed logits, while invalid actions are forced to near-zero probability. This mechanism allows 

the policy network to learn only from valid action spaces, improving efficiency and preventing rule 

violations. 

On a higher level, action masking is used to enforce the min/max values constrain. They restrict the 

agent's actions so that each bid falls into the allowed range. 

Loss Functions 

The model is trained using two primary loss functions: 

• Policy Loss (Actor’s Loss): Based on the PPO-clipped surrogate objective, updating the policy 

network to maximize expected rewards while maintaining stable policy changes. 

• Value Loss (Critic’s Loss): Using the Mean Squared Error (MSE) to optimize the value function’s 

accuracy, achieving precise state value estimates. 

By continuously refining these estimates over time, the agent enhances the reliability of policy 

updates, reduces variance, and ultimately achieves more consistent decision-making. This structured 
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value function estimation enables PPO to balance exploration and exploitation effectively, leading to 

more stable RL outcomes. 

With this architecture, action masking, and well-defined loss functions, the model enables the agent 

to efficiently learn in complex environments while adhering to constraints imposed by the 

environment. 

3.3.3. Reward Function 

The reward function is a key component of the RL framework, responsible for guiding the agent’s 

decision-making process throughout the auction. It provides numerical feedback based on each action 

taken, enabling the model to iteratively refine its bidding strategy. By systematically evaluating the 

outcomes of different bidding decisions, the agent learns to optimize its performance within the 

constraints of the auction environment [19]. 

An effective reward function must balance competitiveness and sustainability. If a function rewards 

only immediate auction wins, the agent may adopt overly aggressive bidding strategies, consistently 

lowering its bids to the minimum allowable value. This could lead to unsustainable market conditions 

where bids are too low to be practical. Conversely, if the function encourages overly conservative 

bidding, the agent may avoid competitive pricing altogether, resulting in fewer successful bids. A well-

structured function must allow the agent to compete effectively while maintaining a viable pricing 

strategy, optimizing for long-term participation rather than isolated wins. 

The reward function must take input from the observation space, which encapsulates the relevant 

auction environment data, including the agent’s bid, the minimum and maximum bid constraints, the 

number of competing agents, and the agent’s current ranking within the auction. These inputs allow 

the function to compute rewards dynamically, ensuring that feedback is shaped by the real-time state 

of the auction rather than static rules. By integrating multiple contextual factors, the function ensures 

that the agent’s learning process is grounded in the actual auction mechanics, allowing it to adapt to 

different competitive scenarios over time. 

In multi-agent environments, reward structures must account for both individual and relative 

performance. In an auction setting, simply rewarding an agent for placing a bid is insufficient; the 

function must also consider bid placement relative to competitors, strategic positioning over multiple 

rounds, and adaptability to changing conditions. The reward function must provide sufficient 

granularity, allowing the agent to distinguish between incremental optimizations rather than treating 

all outcomes as binary wins or losses. Without fine-grained distinctions, the agent might struggle to 
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differentiate between a near-optimal bid that narrowly lost and a poorly placed bid that was never 

competitive. 

Granularity is necessary for incremental improvements in decision-making. If the reward function 

provides only extreme signals, such as full reward for winning and none for losing, the agent may fail 

to recognize useful bidding behaviours that contribute to long-term success. A well-structured function 

provides graduated feedback, enabling the agent to adjust its bidding with precision rather than abrupt 

shifts [20] [21]. This facilitates smooth learning progression, enabling the agent to refine its bidding 

strategy across multiple auction rounds. 

Moreover, a granular reward structure prevents exploitative behaviours that could emerge from a 

simplistic reward signal. For example, if an agent is rewarded solely based on winning without 

considering bid efficiency, it may adopt a reckless bidding strategy that disregards market stability. By 

incorporating detailed reward signals that reflect ranking, bid efficiency, and long-term adaptability, 

the system enables the agent to develop a more strategic and calculated approach to bidding. 

The implemented reward function is designed to incentivize competitive yet structured bidding by 

evaluating multiple factors that influence auction outcomes. The reward is positively correlated with 

the agent’s rank in the auction, meaning that achieving a higher placement results in a better reward 

signal. This encourages the agent to optimize its bids over time, assuring that it remains competitive 

against other participants. However, simply winning an auction is not enough—the function also 

accounts for how well the agent performs relative to others, making it sensitive to fine-grained 

differences in bid positioning. 

Additionally, the function penalizes bids that are placed too close to the lowest possible bid, 

discouraging excessive underbidding that could destabilize auction pricing. Instead, it encourages 

bidding strategies that balance competitiveness with profitability, guiding the agent toward more 

optimal decision-making across multiple auctions. The reward also scales dynamically over multiple 

rounds, meaning that an agent’s actions early in the auction process influence its long-term reward 

trajectory. This allows the model to avoid focusing solely on short-term success, instead learning to 

adjust its bidding behaviour strategically over extended training. 

By structuring the reward function in this way, the system provides granular feedback that helps the 

agent refine its approach with increasing precision. Instead of rewarding only binary outcomes—such 

as whether the agent won or lost—the function considers rank positioning, bid placement, and long-

term adaptability, allowing the model to develop a well-calibrated bidding strategy. This certifies that 

the agent can successfully navigate competitive auction environments while maintaining efficiency and 

sustainability. 
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Figure 7: Reward Function 

The 3D scatter plot (Figure 7) visualizes how the reward function behaves based on an agent's rank, 

round, and bid amount, with the colour representing the computed reward. This helps us understand 

how different variables interact with the reward function within the auction-based environment. 

From the function, we see that reward is influenced by three primary factors: 

1. Rank in the auction: Higher-ranked agents (lower numerical rank) receive a greater proportion 
of the reward. This is because the function scales rewards using a normalized rank factor, 
encouraging agents to compete for better placements. 

2. Bid amount relative to the maximum: The function penalizes bids that are too close to the 
minimum allowed bid. Instead, rewards are positively correlated with bids closer to the 
maximum bid. This discourages overly conservative bidding and promotes competitive yet 
profitable strategies. 

3. Progression through rounds: The function scales rewards based on the round number, 
meaning actions taken in later rounds yield higher rewards than those in earlier rounds. This 
encourages long-term strategic bidding rather than only focusing on immediate gains. 

Based on the graph (Figure 7) we can say that: 
• Higher-ranked agents (lower x-values) generally receive higher rewards if they bid 

competitively, as indicated by the colour gradient. 
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• The reward increases over rounds (y-axis), which aligns with the function's behaviour of scaling 
rewards dynamically based on the current round. Agents are incentivized to stay competitive 
throughout multiple rounds. 

• Bids closer to the maximum (higher z-values) result in higher rewards, as the function explicitly 
rewards proximity to the maximum bid. This discourages low-ball bidding strategies. 

The colour mapping enhances these insights, making it clear that the highest rewards occur for higher-

ranked agents, in later rounds, who bid closer to the maximum bid. Conversely, agents that bid too 

low, especially in early rounds, receive minimal rewards. This structured approach allows the system 

to foster competitive and well-balanced bidding behaviour over time. 

3.3.4. Training Environment Parameters 

To make sure that the RL agent effectively adapts to a diverse set of auction scenarios, the training 

process was structured with a variety of carefully chosen environmental, training, and evaluation 

parameters. These parameters influence the agent’s ability to generalize, optimize bidding strategies, 

and compete effectively under different market conditions. Table 1 summarizes some of the key 

training environment parameters. 

Table 1: Training Environment Parameters 

Parameter Description 

Number of Providers Randomly chosen between 2 and 10 (uniform distribution). 

Minimum Bid Limit Each provider's minimum bid is randomly selected between 20 and 40. 

Maximum Bid Limit Each provider's maximum bid is randomly selected between 80 and 100. 

Auction Rounds Each auction runs for 10 rounds, allowing for strategic bidding 

adjustments. 

These parameters establish the constraints within which the agent must operate. By randomizing the 

number of providers and their respective bid limits, the training environment introduces variability, 

ensuring that the agent does not overfit to a static market. Instead, it must learn to adapt to different 

auction conditions, optimizing its bids relative to competitors with diverse constraints. Table 2 

summarizes some of the key training configuration parameters. 

Table 2: Training Configuration 

Parameter Value Purpose 

Batch Size 512 
Controls how many experiences are used per training 

step, affecting learning stability. 

Entropy 

Coefficient 
0.9 (decaying to 0.001) 

Encourages exploration early in training, shifting to 

exploitation over time. 
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Learning Rate 0.001 
Determines how quickly the agent updates its policy. A 

lower value stabilizes learning. 

Training Steps 500 
Number of iterations the agent undergoes to refine its 

strategy. 

A key aspect of the training setup is the entropy coefficient, which plays a crucial role in balancing 

exploration and exploitation when sampling actions. In RL, an agent selects actions based on a 

probability distribution over possible choices. Higher entropy means the probabilities are more evenly 

spread, making the agent more likely to sample a wider range of actions. Lower entropy means the 

probabilities are more concentrated, making the agent more likely to select the highest-rated action 

with little randomness. 

Early in training, the agent is encouraged to explore a diverse set of bidding strategies, preventing it 

from prematurely converging to a suboptimal policy. This is achieved by setting a high entropy 

coefficient (0.9), which increases the randomness of action selection, allowing the agent to test 

different bid placements. This phase is critical in helping the model discover effective bidding patterns 

that might not be immediately obvious. 

As training progresses, the entropy coefficient gradually decreases, reducing randomness and shifting 

the focus toward the exploitation of learned strategies [22]. By the final stages of training, entropy is 

minimal (0.001), ensuring that the agent consistently follows the best bidding strategies it has 

developed over time rather than randomly selecting suboptimal actions. This decay schedule prevents 

the agent from becoming stuck in local optima too early, while also ensuring that it ultimately 

converges to a stable and effective policy. 

By carefully structuring these training parameters, the model is able to learn effective bidding 

strategies that generalize across different auction conditions. These settings ensure that the agent not 

only learns how to win auctions efficiently but also how to balance competition and profitability, 

leading to a robust and adaptable bidding strategy. 

3.3.5. Self-Play 

Self-Play is a fundamental mechanism used to train the RL agents in this auction environment [23]. By 

competing against themselves in multiple simulated auctions, agents iteratively refine their strategies 

without requiring external expert demonstrations. This approach is particularly useful in strategic 

games and economic simulations, where an optimal strategy emerges through repeated interactions 

between agents [24]. 
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In self-play, multiple agents participate in training rounds where each agent's behaviour influences the 

learning of others. This creates an evolving competition, ensuring that strategies remain adaptive 

rather than static. The multi-round blind reverse auction format benefits from self-play as agents must 

continuously adjust their bidding strategies based on observed competition dynamics rather than 

predefined rules. 

Through repeated self-play iterations, the agents explore different bidding behaviours, learning which 

strategies yield the highest probability of winning while maintaining efficiency. Over time, this self-play 

approach allows the agents to develop sophisticated bidding strategies, balancing competitive pricing 

with strategic adaptation to market conditions. 

Ultimately, self-play enables agents to improve autonomously, refining their competitive behaviour 

through repeated exposure to the auction dynamics. This process ensures that the model remains 

adaptive, responding effectively to a wide range of auction conditions without requiring manually 

crafted strategies. 

 

Figure 8: Training Rewards 

Figure 8 visualizes the episode rewards during training. The x-axis represents the training steps, while 

the y-axis shows the episode reward. The blue line represents the average reward. The shaded regions 

represent the maximum and minimum episode rewards for this training step. 

The average episode reward function during training, instead of increasing over time, shows a gradual 

decline, which might initially seem counterintuitive. Given that the reward function ranges from 0 to 

1000 per episode, one might expect the agent to optimize its policy to achieve higher rewards. 
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However, in the self-play training framework, the decreasing reward trend can be attributed to the 

evolving competition between agents [25]. 

At the beginning of training, agents are still exploring the environment, their actions are largely 

unoptimized. This results in higher variance in rewards, as some actions may lead to significantly better 

outcomes than others. During this phase, some agents may achieve high episodic rewards due to 

random favourable conditions rather than strategic superiority. 

As training progresses, agents improve their strategies and the overall competition intensifies, leading 

to tighter bid margins and lower overall rewards [26]. In a reverse auction, where the goal is to place 

the lowest possible bid while still winning, agents gradually learn that bidding lower can secure a win 

but also reduces the total reward received [27]. This aligns with the observed decline in the average 

reward, as the model is shifting toward a more competitive environment where optimal bids approach 

the minimum necessary to win rather than maximizing individual episodic rewards. 

The maximum rewards (shaded region’s upper bound) remain highly volatile throughout training. This 

suggests that some episodes still produce significantly higher rewards, possibly due to occasional 

exploration behaviours, fluctuations in opponent strategies, or temporary instability in policy updates. 

However, as self-play continues, the frequency of such high-reward episodes decreases, reflecting that 

agents are settling into equilibrium strategies where excessive overbidding or underbidding becomes 

rare. 

Finally, the training process converges as agents stabilize their bidding strategies. The decline in reward 

values suggests that the model is not focused on maximizing individual rewards but rather on 

optimizing its bidding to win the auction efficiently. This behaviour is a direct result of self-play 

dynamics, where agents continuously adjust their strategies against evolving opponents, leading to 

progressively refined decision-making and a stable competitive environment. 

3.4. Load Balancing & Customer Distribution 

In competitive reverse auctions, maintaining a balance between fair pricing and efficient resource 

allocation is crucial. Without proper regulation, providers with lower capacity usage might struggle to 

secure clients, while those with high-capacity utilization may continue to win auctions despite being 

heavily loaded. This imbalance can lead to service degradation, price inflation, or inefficiencies in the 

bidding process. To address this challenge, a dynamic load balancing mechanism is implemented to 

adjust provider participation based on real-time availability, ensuring that the auction system remains 

fair, efficient, and beneficial to both providers and customers. 
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The load balancing mechanism is designed to dynamically adjust providers’ pricing thresholds based 

on their current capacity without ever lowering the minimum bid they have set. Instead, the function 

increases the minimum bid by varying amounts according to the provider’s capacity usage. This 

ensures that each provider’s baseline pricing is preserved while still creating a penalty for those who 

are more occupied. In this way, the system guarantees that no provider is forced below their own 

acceptable minimum, maintaining fairness and respecting each provider's original pricing strategy. 

By selectively raising the minimum bid for providers with higher resource usage, the system indirectly 

discourages them from winning too many auctions when they are already under heavy load. Providers 

with low-capacity utilization are not penalized, allowing them to remain competitive in the bidding 

process. This selective adjustment is crucial because it protects the customer by steering the auction 

toward providers who have the availability to deliver quality service without compromising their 

performance due to overcommitment. 

In addition to adjusting the minimum bid based on provider availability, the mechanism also modifies 

the initial bid to further enhance the chances of providers with greater available resources. Just as 

increasing the minimum bid makes highly occupied providers less competitive, the initial bid 

adjustment ensures that providers with more available capacity start the auction at a more favourable 

position. This increases their likelihood of winning while maintaining fair pricing dynamics. By doing 

so, the system naturally steers the auction toward providers who can accommodate more clients, 

ensuring that demand is matched with the providers best suited to fulfil it efficiently. 

A key benefit of this approach is that it prevents the artificial inflation of market prices while 

maintaining competitive bidding dynamics. Without this mechanism, providers with limited availability 

could still win bids at low prices, despite not being in a position to effectively serve new clients. By 

ensuring that underutilized providers remain competitive, the system keeps prices fair for customers 

while reducing the risk of service bottlenecks caused by overburdened providers winning too many 

auctions. 

Overall, the strategy behind this load balancing and customer distribution approach is to align provider 

participation with their actual resource availability without reducing their baseline bids. The careful 

increase in minimum bids for overloaded providers guides the auction toward a fairer and more 

efficient allocation of work. This ultimately benefits customers by increasing the likelihood that they 

will be matched with providers who can meet their service needs promptly and effectively, preserving 

service quality and market stability. 
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4. Integration into the NANCY Framework 

The SPM is considered in the inter-operator domain flow, which is explained in detail in deliverable 

D5.2 “Security and Privacy Distributed Blockchain-based Mechanisms”, in order to identify the most 

suitable service to be offered to a client from those registered in the common marketplace. This flow 

is executed when an operator needs a new service (from another operator) to attend to their clients' 

demands.  

This flow is managed by the blockchain-based marketplace, which receives the search request of a new 

service with specific specifications (quality level, minimum resources, location etc.) from the original 

operator. The marketplace selects the most suitable services according to the defined specifications 

and calls the SPM to identify the most suitable one, along with the most suitable price. 

This communication between the blockchain-based marketplace and the non-blockchain-based SPM 

happens through the Smart Pricing Oracle, which handles the communication between the 

marketplace and the SPM, as shown in Figure 9. 

 

Figure 9: Marketplace and SPM Communication via an Oracle 

The oracle generates an HTTP request to the price_calculation endpoint of the SPM, indicating in 

“data” the list of services suitable according to the specifications. In the current implementation, the 

information related to each suitable service the marketplace shares is limited to:  

• Service_id: it refers to the service identifier. 

• Provider_id: ir refers to the operator identifier offering the service. 

• Minprice: it refers to the minimum acceptable price for the service (to be considered as 

reference by the SPM). 

• Maxprice: it refers to the maximum acceptable price for the service (to be considered as 

reference by the SPM). 

• Availability: it refers to the percentage of available resources of the associated provider. 

This information could be updated if needed for future more complex SPM implementations, as long 

as the required information by the SPM is available in the marketplace. 
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Taking this into consideration, the request from the Smart Pricing Oracle of the marketplace to the 

SPM, considering three suitable services according to the specifications, is as follows: 

curl --request POST --url https://sp-mock-
nancy.cybersec.digital.tecnalia.dev/price_calculation header 'Content-Type: 
application/json' --data '{ 
  "services": [ 
    { 
      "provider_id":"637223108d14e08b3386afdddbdc2f2bff22041c1ac9c6942364c
3d6a22e9915", 
      "minprice": 30, 
      "maxprice": 120, 
      "service_id":"0355534650b3d3b5fe8d35fcb4a91bf175fab6a505347667381674
25294bf5f3", 
      "availability": 30     }, 
    { 
      "provider_id":"637223108d14e08b3386afdddbdc2f2bff22041c1ac9c6942364c
3d6a22e9915", 
      "minprice": 35, 
      "maxprice": 115, 
      "service_id":"212dee4384ec40d35c6af8adec5c7dab40cd481f206777c156b14c
103f0cf707", 
      "availability": 30     }, 
    { 
      "provider_id":"637223108d14e08b3386afdddbdc2f2bff22041c1ac9c6942364c
3d6a22e9915", 
      "minprice": 40, 
      "maxprice": 112, 
      "service_id":"218dc57aa7a52edef9510f46840f8fa6e485bb8ffad53665674c90
64b28b1d74", 
      "availability": 30     }        
] 
}' 
The Smart Pricing operation happens as explained in Section 3, currently generating an HTTP response 

indicating in “services” the most suitable service from those provided by the marketplace in the 

request. In the current implementation, the provided information is limited to: 

• Service_id: it refers to the service identifier. 

• Provider_id: ir refers to the operator identifier offering the service. 

• price: it refers to the most suitable price for the service according to the existing competence. 

Taking this into consideration, the response of the SPM to the Smart Pricing Oracle is as follows: 

{ 
  "services": { 
    
"service_id":"2cfe938a2b83f0c8b8178e1e399ce771b03854bc0a68744c359b48102e97
086d", 
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"provider_id":"317573acebab0c914649af2c4002e2ea6a6cd7587cb165d34f494111cfe
717ce", 
    "price": 74.12   } 
} 
The marketplace receives this information, processes it and considers the selected service as the 

“winning” one. The marketplace can now send all the registered information about the winning service 

to the Digital Agreement Creator component for the new SLA generation to be signed by the new 

operator identified as “provider_id”. 

More details about the inter-domain flow can be read in D5.2 “Security and Privacy Distributed 

Blockchain-based Mechanisms”. 
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5. Performance Evaluation 

In this test, each player’s maximum and minimum allowed bid is randomly assigned, making the winner 

of each auction unpredictable. However, the frequency with which each player participates in an 

auction varies based on the total number of bidders. Players 1 and 2 always participate because the 

number of bidders ranges from 2 to 10. Player 3 appears slightly less often, and this trend continues, 

with each subsequent player participating in fewer auctions. Player 10, for instance, only joins when 

the number of bidders is exactly 10, which occurs in only 1 out of 9 auctions. Furthermore, even when 

Player 10 does join, they have just a 1 in 9 chance of winning, making their overall likelihood of winning 

an auction quite low. This pattern follows a truncated harmonic series distribution, where players 

appearing in fewer auctions have proportionally fewer chances to win. 

Figure 10 represents the distribution of auction wins among different providers in the multi-round 

blind reverse auction. The x-axis lists the providers (agents), while the y-axis represents the number of 

wins each provider secured in the simulations. The blue bars indicate the actual number of wins for 

each provider based on the simulation results. The red line represents the theoretical distribution, 

which serves as an expected reference for comparison. This theoretical distribution resembles a 

truncated harmonic series, as explained above. As expected, the two distributions follow a similar 

trend. 
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Figure 10: Auction Winner Distribution in Tests 

 

5.1. Results from Testing and Simulations 

5.1.1. Test Parameters 

To evaluate the performance of the auction system, a series of simulations were conducted using 

randomized parameters to emulate every bidding environment (Table 3). The random parameters 

were used to ensure a known distribution of different inputs, allowing for a comprehensive analysis of 

bidding behavior across varied conditions. The results from these simulations provide insights into the 

behavior of the RL agent, helping to evaluate its effectiveness, strategic decision-making, and 

adaptability in a competitive environment. 
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Table 3: Test Parameters 

Parameter Description 

Number of Providers A randomly chosen integer between 2 and 10 (uniform distribution). 

Minimum Bid Limit 
Each provider was assigned a minimum bid limit randomly selected 

between 20 and 40 (uniform distribution). 

Maximum Bid Limit 
Each provider was assigned a maximum bid limit randomly selected 

between 80 and 100 (uniform distribution). 

Current Bids 
The initial bid for each agent was randomly set within their defined 

Minimum and Maximum Bid Limits using a uniform distribution. 

Rounds The auction process had 10 rounds. 

5.1.2. Results and Analysis 

The tests generated results across 500 auctions, leading to the key findings of Table 4. 

Table 4: Simulation Statistics 

Metric Result Explanation 

Average Winning Bid – 

Lowest Possible Difference 
11.02 

This metric represents the average difference between the 

winning bid and the lowest possible bid allowed for each 

winning agent. A difference of 11.02 suggests that the final 

prices in the auction were generally close to the Minimum 

Bid Limit, indicating competitive but not excessively 

aggressive bidding. 

Average Rank 1 vs. Rank 2 

Bid Difference 
3.61 

This represents the average gap between the lowest 

(winning) and the second-lowest bid. A relatively small 

difference of 3.61 indicates that the bidding process was 

competitive, with the top two agents often placing very 

similar final bids. 

Percentage of Lowest 

Starting Price Wins 
32.20% 

This metric highlights how often the agent with the lowest 

starting bid ultimately won the auction. A success rate of 
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32.20% suggests that while an initial low bid provides an 

advantage, other strategic factors (such as incremental 

bidding behaviour) play a more crucial role in determining 

the winner. 

Percentage of Lowest 

Minimum Bid Limit Wins 
69.20% 

This represents how often the agent with the lowest 

Minimum Bid Limit won the auction. A success rate of 

69.20% indicates that having a lower bidding range 

significantly improves the likelihood of winning. However, 

since this is a multi-round blind reverse auction, having the 

lowest Minimum Bid Limit does not always guarantee a 

win. The result reflects a balanced system where strategic 

bidding plays a crucial role. 

Percentage of Providers 

Bidding at Minimum Bid 

Limit 

0.00% 

No providers consistently bid at their Minimum Bid Limit 

(or very close to it). This suggests that bidders are 

generally cautious and strategic, avoiding bids that might 

be too low to secure a win. 

Percentage of Providers 

Bidding at Maximum Bid 

Limit 

0.00% 

Similarly, no providers bid at their Maximum Bid Limit (or 

very close to it). This indicates that participants do not 

blindly bid at their upper limit but rather adjust their bids 

dynamically to remain competitive. 

The results reinforce that while having a lower Minimum Bid Limit increases the likelihood of winning, 

it does not guarantee success due to the blind nature of the auction. This ensures that the auction 

mechanism remains fair and competitive. 
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Winning Price Distribution Analysis 

 

Figure 11: Winning Prices Distribution 

The histogram (Figure 11), illustrating the distribution of winning prices, shows that the auction system 

is functioning effectively. The distribution follows a bell-shaped curve, centering around a mean 

winning price in the low-to-mid 30s. 

The distribution follows a normal-like pattern where most winning prices cluster around an average 

value of 32-35. This indicates a competitive and stable market, and the absence of extreme outliers 

suggests rational and strategic bidding. The spread of winning prices demonstrates that providers 

engage in strategic bidding rather than consistently bidding at extreme values, highlighting a dynamic 

and adaptive auction process. 

Very few winning prices fall below 25 or above 45, showing that providers respect their bidding 

constraints and avoid unrealistic pricing. This ensures a well-balanced competition and prevents 

auction manipulation. Additionally, the distribution suggests efficient price discovery, with winning 

bids naturally stabilizing around competitive values. If the distribution were heavily skewed, it could 

indicate inefficiencies or weaknesses in agent strategies. 
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The results indicate that the auction mechanism fosters fair and competitive market dynamics where 

no single strategy dominates. Providers adjust their bids dynamically rather than defaulting to fixed 

rules, improving the realism of auction behavior. Additionally, the fair spread of bids suggests that 

providers are competing without artificially inflating or depressing prices. 

 

Explanation of Average Percentage Price Difference Per Round 

 

Figure 12: Average Agent Behavior 

Figure 12 represents the average percentage price difference per round, indicating the average action 

taken by agents in the auction process. It effectively showcases how RL agents behave in a multi-round 

blind reverse auction, making strategic bid adjustments to maximize their chances of winning while 

adapting to competition. The x-axis represents the rounds in the auction, while the y-axis shows the 

average percentage difference in price adjustments made by the agents. 

In the early rounds, there are significant fluctuations, with an initial sharp drop in bids followed by a 

large positive adjustment in round two. This suggests that agents initially reduce their bids aggressively 

but then make upward corrections, likely to test competitive behavior or respond to constraints. As 

the auction progresses, bid adjustments become more refined, with smaller alternating increases and 
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decreases in the middle rounds, reflecting strategic fine-tuning. A notable drop in round five indicates 

a moment where agents may have collectively reduced bids more aggressively. In the later rounds, we 

see a consistent negative trend, meaning that agents are progressively lowering their bids to remain 

competitive, aligning with the expected strategy in a reverse auction. This pattern demonstrates that 

agents are learning and adapting rather than bidding randomly, ensuring competitive bidding 

dynamics while preventing static bidding or collusion. Ultimately, this behavior leads to an efficient 

auction process, where agents gradually reach their optimal bid while remaining responsive to market 

pressures. 

 

5.1.3. Example Auction 

 

Figure 13: Example Auction 

Figure 13 visualizes an example auction where multiple agents (providers) participate across 10 

rounds, with the x-axis representing the round number and the y-axis showing the bid value submitted 

by each agent per round. The dotted lines at the top and bottom represent the maximum and 

minimum allowed bid constraints for each agent. The initial bid is randomly selected within these 

constraints. The blue line represents provider_0, following its trajectory can offer insights into possible 
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bidding strategies, even though the exact reasoning behind its actions remains unknown due to the 

black-box nature of the neural network controlling the agent. 

At the start of the auction, provider_0 places a moderate bid, followed by a sharp increase in round 2, 

which could suggest an attempt to test competition or a misjudgment of the bidding landscape. 

However, in round 3, provider_0 drastically lowers its bid, possibly reacting to market pressure or 

recognizing that its previous bid was too high. The following rounds exhibit a series of erratic shifts, 

with another bid increase in round 5, before the agent transitions into a more consistent downward 

trend from round 6 onward. 

The later rounds suggest that provider_0 gradually adopts a more competitive bidding approach, 

where bids continuously decrease in an incremental and controlled manner. While we cannot 

determine with certainty why the agent made these choices, it appears to be engaging in progressive 

price-cutting, likely as a response to competition and the nature of the reverse auction format. The 

earlier, more erratic bidding could indicate an exploratory phase, where the agent was adjusting to the 

auction environment, while the later rounds suggest more refined decision-making, possibly aiming to 

secure a win with the lowest viable bid. 

It is worth noting that although provider_0 had the lowest minimum allowed bid, it did not win the 

auction by simply bidding the absolute lowest price. Instead, its bidding strategy appears to have 

balanced competitiveness with profitability, choosing to stay within a competitive range rather than 

immediately lowering its bid to the minimum possible value. This suggests that the agent factored in 

the need to win the auction while still securing a reasonable profit margin. Even though it had the 

flexibility to bid much lower, it did not adopt an overly aggressive underbidding strategy, indicating a 

more nuanced decision-making process rather than a purely price-minimizing approach. 

Since the agent operates as a black-box neural network, we can only speculate on the reasoning behind 

its bidding behavior. However, the pattern observed—initial exploration, abrupt corrections, and 

eventual stabilization into strategic, controlled bidding—is consistent with what we might expect from 

an RL model that is optimizing towards a winning strategy. This gradual adaptation highlights the 

agent’s potential ability to learn from prior rounds, adjust dynamically, and improve its 

competitiveness over time, even if the specific decision-making process remains opaque. 
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5.2. Performance Benchmarks 

 

Figure 14: SPM Response Time 

This test involved 100 sequential requests to the API. There were no failures, each request completed 

with 100% success rate. Figure 14 indicates that the response times are consistently good for NANCY 

research project, with most responses falling within the 700–800 ms. range and an overall average of 

about 790.79 ms. This reliability and performance, especially with a 100% success rate, strongly 

support the API’s effectiveness for the project’s needs. 
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6. Business Perspective 

6.1. 6G Networks: A Multi-Stakeholder Ecosystem 

The evolution towards 6G networks represents a paradigm change in the structure and functioning of 

the telecommunications ecosystem, as it emerges as a highly collaborative, decentralised and flexible 

environment. In this context, a multi-stakeholder scenario emerges as a key model, in which any 

stakeholder can assume the role of provider or consumer of services or resources, depending on each 

situation within this flexible and dynamic landscape. This approach paves new economic opportunities, 

fosters innovation, and redefines the way networks are conceived, deployed and operated. 

From the providers' perspective, the multi-stakeholder model introduces several strategic advantages 

that optimise services supply and business profitability: 

• Greater flexibility and agility: This model allows service providers to adapt swiftly to evolving 

market demand without relying solely on traditional network operators. By leveraging a more 

decentralised approach, providers can dynamically scale services, respond to demand 

fluctuations in real time and adapt their offerings to meet specific customer needs, thereby 

improving the user experience and optimising resource allocation, ensuring more efficient 

service delivery. 

• Cost reduction and resource optimisation: By facilitating the sharing of infrastructure and 

network capabilities among multiple stakeholders, this model significantly reduces operational 

expenses. This cost-effectiveness reduces barriers to entry for new players in the 6G 

ecosystem, fostering a more diverse and competitive market, and the reduction of redundant 

network deployments contributes to a more sustainable and eco-friendly approach to 

telecommunications. 

• New sources of income: The multi-stakeholder framework paves the way for more entities 

(individual entrepreneurs and organisations) to become service providers, driving the 

development of innovative business models and sources of income. Leveraging the 6G 

infrastructure, stakeholders can introduce cutting-edge services such as immersive virtual and 

augmented reality experiences, advanced Internet of Things (IoT) applications and highly 

personalised communication solutions, all of them considered in NANCY. 

• Fostering innovation: Enabling the participation of diverse actors in service delivery fosters a 

dynamic and highly competitive environment, as the contribution of new ideas and diverse 

approaches drives the development of more sophisticated, creative and efficient solutions. 
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This increased competition, in addition to accelerating technological advances, also results in 

a richer and more diversified range of services, thereby benefiting end-users. 

On the other hand, from a consumer perspective, the open and flexible nature of the 6G ecosystem 

offers a more personalised experience, with a wider variety of options and better Quality of Service 

(QoS): 

• Greater customization and choice: With a more dynamic and competitive ecosystem, 

consumers have access to a much more varied offer of services, thus driving the creation of 

solutions adapted to different user profiles, allowing them to choose services that specifically 

fit their needs, preferences and budgets. 

• Better quality and user experience: Continuous service improvement is also enhanced by this 

competition between providers, in this way, consumers can expect faster and more efficient 

networks, lower latency, greater connection stability, and faster and more effective customer 

support, and the ability to choose between different offerings forces providers to focus on 

excellence and innovation to differentiate themselves in the market. 

• Greater control and autonomy: The multi-stakeholder model gives consumers a more active 

role in managing their communication services, so they can freely select their providers, 

customise the packages they purchase and decide how to manage their data and privacy, 

allowing them to optimise their experience and have more precise control over their 

information and security. 

• Access to innovative services: The diversity of actors involved in the 6G ecosystem drives the 

development and availability of advanced technological solutions, so consumers can benefit 

from these innovations such as augmented and virtual reality applications, personalised AI 

services, home automation through the IoT and new forms of immersive communication. 

Considering these advancements, the multi-stakeholder scenario envisioned for 6G networks in 

NANCY not only unlocks new business opportunities but also enhances flexibility, agility, and cost 

efficiency, all while fostering continuous innovation. By embracing a more collaborative and 

decentralized approach, this model has the potential to redefine the telecommunications landscape, 

paving the way for a more inclusive, dynamic, and user-centric digital future. 

Furthermore, within this evolving ecosystem, as stated above, marketplaces and smart pricing 

solutions play a crucial role in optimizing both the provision and consumption of services. On the one 

hand, marketplaces simplify the discovery, contracting, and management of services, making them 

more accessible to a broader range of participants; while on the other hand, smart pricing mechanisms 

dynamically adjust costs based on resource availability, ensuring a fair and efficient distribution of 
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value. Together, these elements contribute to creating a more efficient, transparent, competitive, and 

innovative 6G services market. 

6.2. Balancing Competitiveness & Fair Pricing 

In the evolving 6G landscape, the SPM serves a critical dual purpose: driving competitiveness among 

resource providers while ensuring fair pricing that benefits both these providers and end users in the 

B-RAN. It strikes a balance that fosters a dynamic marketplace, aligning with our vision of a scalable, 

equitable, and user-centric 6G ecosystem. Having already discussed the module’s technical aspects, 

the focus is on the strategic implications and business value of the SPM’s approach, highlighting its 

role in creating a sustainable and inclusive pricing model. 

Competitiveness is at the heart of the SPM, encouraging MNOs to vie for contracts by offering the 

lowest bids through a multi-round auction process. This rivalry ensures efficient price discovery, 

allowing B-RAN to allocate resources at market-driven rates. However, unchecked competition could 

push prices too low, jeopardizing provider profitability or leading to higher costs passed onto users—

outcomes that undermine long-term market health. The SPM addresses this by embedding fairness 

into its design, ensuring that providers can sustain operations while users gain affordable access to 

B5G services. For stakeholders, this balance translates to a robust ecosystem where competition fuels 

innovation without sacrificing stability or accessibility. 

Fair pricing for providers is achieved by setting boundaries that prevent bids from dropping below 

viable levels, preserving their ability to operate and invest in network infrastructure. Simultaneously, 

fair pricing for users ensures that the cost efficiencies gained from competitive bidding translate into 

affordable service rates, avoiding scenarios where providers offset low bids with steep user fees. The 

SPM’s blind auction mechanism supports this by giving providers ranking feedback after each round, 

encouraging strategic adjustments without revealing competitors’ offers. This opacity prevents 

collusion, fostering genuine competition that benefits users with lower, yet sustainable, prices. 

The SPM’s value proposition lies in its ability to cater to diverse stakeholders. Providers benefit from a 

competitive yet fair playing field that rewards efficiency without punishing profitability, encouraging 

participation from both large MNOs and smaller players. Users, meanwhile, enjoy affordable access to 

high-quality B5G services, supporting the project’s goal of equitable connectivity. The system’s 

adaptability—tested through varied scenarios and validated by simulations—ensures it can scale to 

meet growing demand, while its blockchain integration enhances trust and transparency, key selling 

points for a decentralized market. Outputs from the SPM, such as auction analytics, provide 
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stakeholders with clear evidence of this balance, reinforcing confidence in B-RAN’s commercial 

viability. 

In conclusion, the SPM delivers a pricing strategy that harmonizes competitiveness with fairness for 

providers and users alike. By fostering rivalry that drives efficiency, safeguarding provider 

sustainability, and ensuring affordable user rates, it positions B-RAN as a forward-thinking solution for 

6G networks. 
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7. Conclusion & Way Forward 

7.1. Summary of Key Achievements 

The Smart Pricing Module within the NANCY framework has successfully demonstrated an AI-driven 

approach to dynamic pricing and resource allocation in the Blockchain Radio Access Network for 

Beyond 5G ecosystems. By integrating Multi-Agent Reinforcement Learning and auction theory, the 

Smart Pricing Module ensures competitive, fair, and efficient resource sharing in a decentralized 

environment while providing monetary incentives for users. The key achievements of Task 4.5 are as 

follows: 

1. Development and Deployment of the Smart Pricing Module 

a. Designed and implemented a multi-round blind reverse auction mechanism tailored 

for Blockchain Radio Access Network. 

b. Ensured cost-efficient and competitive pricing. 

c. Deployed the module in a containerized environment for scalability and reliability. 

2. AI-Driven Pricing Model 

a. Utilized Multi-Agent Reinforcement Learning to optimize pricing decisions. 

b. Employed Proximal Policy Optimization reinforcement learning to optimize bidding 

behaviour for strategic bid adjustments and competitive balance. 

3. Auction-Based and Game-Theoretic Approaches 

a. Designed a multi-round blind reverse auction, inspired by game-theoretic auction 

mechanisms, to maximize revenue and ensure fair competition. 

b. Implemented ranking-based feedback to optimize bid adjustments while preserving 

privacy. 

4. Integration with the NANCY Ecosystem 

a. Established a seamless interface with the blockchain-based NANCY Marketplace via a 

dedicated API. 

b. Enabled real-time price discovery and resource allocation in a decentralized 

ecosystem based on market demand and provider availability. 

5. Performance Evaluation and Business Impact 

a. Conducted extensive simulations and benchmarking, validating the Smart Pricing 

Module’s effectiveness. 

b. Demonstrated efficient customer distribution, preventing price manipulation and 

ensuring sustainability. 
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c. Showcased a practical pricing model that maintains Mobile Network Operator’s 

profitability while incentivizing users. 

Through these advancements, the Smart Pricing Module has set a foundation for intelligent, fair, and 

scalable pricing mechanisms in future Beyond 5G and 6G networks. This achievement contributes 

directly to the NANCY project’s broader objectives, leveraging AI and blockchain to enable secure and 

intelligent resource management, flexible networking, and orchestration. 

7.2. Opportunities for Expansion 

The SPM could expand its multi-round blind reverse auction framework within the B-RAN by 

integrating QoS as a key parameter in its pricing model, ensuring that price determination reflects not 

only cost but also the service quality each MNO can deliver. Currently, the SPM focuses on achieving 

the lowest final bid for network services, but incorporating more focused QoS metrics such as latency, 

bandwidth, or resolution support, instead of just the resource availability of each provider, could 

enhance its utility in 6G networks where diverse user demands require tailored service levels. For 

instance, an MNO offering higher QoS, such as ultra-low latency for autonomous vehicle 

communication, could justify a higher bid compared to another providing basic connectivity for IoT 

sensors, allowing the SPM to compute prices that balance cost with performance. By leveraging its AI-

driven capabilities, including MARL, the SPM could dynamically assess and weigh QoS factors alongside 

bids, ensuring optimal resource allocation that meets user-specific needs while maintaining 

competitive pricing. 

Lastly, utilizing greater vectorization and parallelism in the environment can accelerate inference by 

reducing redundant computations and improving hardware efficiency. Techniques such as batched 

inference, parallel action sampling, and optimized tensor operations may further enhance 

performance. Regarding the neural network model, pruning, quantization, and distillation could 

reduce computational overhead. Combining some of these methods should help minimize latency and 

improve the real-time responsiveness of the SPM. 
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