

An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term
Evolution [GA: 101096456]

Deliverable 5.2

NANCY Security and Privacy Distributed Blockchain-based
Mechanisms

Programme: HORIZON-JU-SNS-2022-STREAM-A-01-06

Start Date: 01 January 2023

Duration: 36 Months

NANCY project has received funding from the Smart Networks and Services Joint Undertaking
(SNS JU) under the European Union's Horizon Europe research and innovation programme under
Grant Agreement No 101096456.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

2

Document Control Page

Deliverable Name NANCY Security and Privacy Distributed Blockchain-based Mechanisms

Deliverable Number D5.2

Work Package WP5 ‘Security, Privacy, and Trust Mechanisms’

Associated Task T5.2 ‘Security & Privacy Blockchain-based Mechanisms’, T5.3 ‘Distributed &
Decentralised Blockchain’

Dissemination Level Public

Due Date 28 February 2025 (M26)

Completion Date 27 February 2025

Submission Date 28 February 2025

Deliverable Lead Partner NEC

Deliverable Author(s) Wenting Li, Javier de Vicente, Giorgia A. Marson, Sébastien Andreina (NEC),
Grigorios Kalogiannis (DRAXIS), Ilias Theodoropoulos (8BELLS), Stratos
Vamvourellis (8BELLS), Rodrigo Asensio (UMU), George Niotis (SID), Konstantinos
Kyranou (SID), George Michoulis (SID), George Andronikidis (SID), George Tziolas
(SID), Anastasios Lytos (SID)

Version 1.0

Document History

Version Date Change History Author(s) Organisation

0.1
29 October
2024

Initial version and table of
contents

Javier de Vicente NEC

0.2
20
December
2024

Initial contributions by partners

Wenting Li, Giorgia
Marson, Javier de
Vicente, Grigorios
Kalogiannis, Ramon
Sanchez-Iborra,
Rodrigo Asesio,
George Niotis,
Konstantinos
Kyranou, George
Michoulis Cristina
Regueiro, Borja
Urquizu

NEC, TEC, UMU, DRAXIS, SID

0.3
22 January
2025

Reviewed and extended
contributions

Javier de Vicente, NEC

0.31
6 February
2025

Contribution regarding the smart
pricing component

Ilias
Theodoropoulos,
Stratos Vamvourellis

8BELLS

0.4
12 February
2025

Final version before external
review (see Internal Review
History)

Wenting Li, Javier de
Vicente, Grigorios
Kalogiannis, Ramon

NEC, TEC, UMU, DRAXIS, SID

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

3

Sanchez-Iborra,
Rodrigo Asesio,
George Niotis,
Konstantinos
Kyranou, George
Michoulis, George
Andronikidis, George
Tziolas, Anastasios
Lytos, Cristina
Regueiro, Borja
Urquizu

0.5
24 February
2025

Final version before Quality
Manager Revision

Javier de Vicente NEC

1.0
27 February
2025

Final version after quality
revisions

Anna Triantafyllou,
Dimitrios Pliatsios

UOWM

Internal Review History

Name Organisation Date

Ramon Sanchez-Iborra UMU 17 February 2025

Konstantinos Kyranou SID 21 February 2025

Quality Manager Revision

Name Organisation Date
Anna Triantafyllou, Dimitrios

Pliatsios
UOWM 27 February 2025

Legal Notice

The information in this document is subject to change without notice.
The Members of the NANCY Consortium make no warranty of any kind about this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the NANCY Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.
Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or SNS JU. Neither the European
Union nor the SNS JU can be held responsible for them.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

4

Table of Contents
Table of Contents .. 4

List of Figures ... 6

List of Tables .. 7

List of Acronyms .. 8

Executive summary ... 9

1 Introduction ... 10

1.1 Relation to Other Tasks and Deliverables ... 10

1.2 Structure of the Document ... 11

2 The NANCY Blockchain .. 12

2.1 Introduction to Blockchain Technologies and Hyperledger Fabric 12

2.1.1 Introduction to Blockchain .. 12

2.1.2 Decentralization and Enhanced Security ... 12

2.1.3 Applications beyond Cryptocurrency .. 13

2.1.4 Hyperledger Fabric .. 15

2.1.5 Attack vectors on Hyperledger Fabric ... 18

2.2 Introduction to the NANCY Blockchain and its Core Components.. 20

2.2.2 NANCY Blockchain Workflows and Relation to the NANCY Architecture 23

2.3 The NANCY Blockchain Core Components .. 33

2.3.1 Smart Contract-based Components .. 33

2.3.2 Oracles and Non-Smart Contract-based Components .. 40

2.4 Other Features of the NANCY Blockchain ... 45

2.4.1 Blockchain Monitoring Dashboard .. 45

2.4.2 Blockchain Scalability Mechanisms ... 46

2.4.3 Data Integrity Mechanisms ... 54

2.4.4 Tokenization of Digital Assets.. 54

2.4.5 Monitoring and Verification of the Transactions .. 59

3 NANCY ID Management Tools ... 62

3.1 Introduction to SSI and wallets ... 62

3.1.1 DID Registry and VC (Revocation) Registry ... 63

3.2 The NANCY Wallet ... 65

3.2.1 PQC Signature Capabilities of the NANCY Wallet .. 65

3.2.2 SSI Capabilities of the NANCY Wallet .. 66

3.2.3 Architecture and Interfaces ... 66

3.3 Further Mechanisms for Ensuring the Security and Privacy of the Users 96

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

5

4 Research on Additional Security Mechanisms .. 101

4.1 Protection of Smart Contracts ... 101

4.2 Lightweight Clients .. 104

4.3 Impact of Decentralization on Security ... 106

5 Conclusions and Future Work ... 110

5.1 Conclusions .. 110

5.2 Future work ... 110

References ... 112

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

6

List of Figures
Figure 1. Energy consumption vs. difficulty ... 13
Figure 2: Fabric transaction flow example ... 18
Figure 3. The updated NANCY architecture ... 24
Figure 4. Detail of the inter-operator domain... 24
Figure 5. Listing services in the marketplace .. 26
Figure 6. Service selection ... 27
Figure 7. Listing services in the marketplace .. 29
Figure 8. Service selection inside the offloading and caching workflow .. 30
Figure 9. Marketplace main interactions .. 35
Figure 10. Marketplace search status ... 37
Figure 11. The high-level architecture of DAC component. .. 41
Figure 12. Blockchain oracles high-level architecture ... 44
Figure 13 Fabric blockchain explorer .. 45
Figure 14 Control panel of chain-splitting ... 46
Figure 15 Lifecycle transactions to update channel information .. 46
Figure 16 Transaction throughput and latency ... 49
Figure 17 Peak throughput achieved by different network size. .. 49
Figure 18 Pseudo-code of random assignment for organizations between parent chain and child chain
 ... 53
Figure 19 Latency of the chain split procedure versus number of organizations in the network. 54
Figure 20. Admin prerequisites ... 55
Figure 21. Smart contract pseudo-lang ... 56
Figure 22. High-level architecture of the NANCY Transaction evaluation .. 61
Figure 23. SSI Architecture with NANCY wallet and NANCY blockchain ... 62
Figure 24: Architecture of the PQC Signature Solution ... 67
Figure 25: Architecture of the PQC Signature Token .. 67
Figure 26: NANCY PQC Java SDK ... 68
Figure 27: Generating a key pair ... 69
Figure 28: Signature Creation .. 70
Figure 29 Architecture of the interaction between the wallet and the NANCY blockchain 71
Figure 30: ABC entities and interaction ... 97
Figure 31: NANCY ID Key hierarchy and Pseudonym generation .. 98
Figure 32. NANCY p-ABC ID management workflow ... 99
Figure 33 Prevalence of Anchor contracts in all the deployed contracts Solana smart contracts...... 103
Figure 34. Novel light client protocol: performance evaluation. .. 106
Figure 35: Impact of the number of nodes on the network delay, for different blockchain designs. 108
Figure 36: Impact of the number of nodes on the probability of preserving security, in different
blockchain designs... 109

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

7

List of Tables
Table 1: Extended functional requirements .. 20
Table 2. Interface description of smart contract SLA Registry .. 33
Table 3. Interface description of smart contract Marketplace ... 37
Table 4. Fabric orderer configuration in configtx.yaml ... 48
Table 5. Invoke vs Query Functions ... 57
Table 6. Interface description of smart contract DIDRegistry ... 63
Table 7. Interface description of smart contract VCRegistry .. 64
Table 8. Vulnerabilities and non-security-related issues (distractions) of the review task 102
Table 9. Number of participants found distractions and security vulnerabilities 102
Table 10. Code review outcomes .. 103

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

8

List of Acronyms
Acronym Explanation

API Application Programming Interface
BFT Byzantine Fault Tolerance
BS Base Station
BSI Bundesamt für Sicherheit in der Informationstechnik

DAC Digital Agreement Creator
ETSI European Telecommunications Standards Institute
FIPS Federal Information Processing Standards
GUI Graphical User Interface
MKT Marketplace
NIST National Institute of Standards and Technology
PFX Personal Information Exchange

PKCS Public Key Cryptographic Standards
PoW Proof of Work
PQC Post-Quantum Cryptography
QMS Quantum Management System

SP Smart Pricing
UE User Equipment

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

9

Executive summary
Blockchain technology, though initially designed for digital currency, is a foundational innovation with
the potential to transform data management, security, and transparency across industries. Its
decentralized architecture, coupled with cryptographic security and immutability, supports
applications that require trust and accountability, such as supply chain tracking, healthcare, and
identity management. Permissioned blockchains further expand blockchain’s capabilities by offering
enhanced security measures suited for regulated environments, enabling secure and efficient data
sharing. As blockchain technology continues to evolve, its implications extend far beyond finance,
positioning it as a key driver of innovation in the digital economy and beyond.

By enhancing security, decentralizing resource management, and promoting transparency, blockchain
provides a robust foundation for the future of B5G services. It ensures a secure, scalable, and user-
centric environment that meets the complex demands of next-generation telecommunications – such
as the case of the scenarios addressed in NANCY.

Functionally, the NANCY Blockchain and its core components realise the inter-operator domain of the
NANCY system (please refer to D6.1 ‘Β-RAN and 5G End-to-end Facilities Setup’). Specifically, they
enable service handovers among operators by means of secure exchange and signature of SLAs. This
document describes these components, their interfaces and workflows, and their relation within the
NANCY Architecture. Data integrity and scalability are necessary features in NANCY and are also
reported.

The NANCY system also offers significant privacy advantages for the users through Decentralized
Identifiers (DID) and other approaches. Specifically, Self-Sovereign Identity (SSI) mechanisms are used,
described in this deliverable. They enable any user to seamlessly generate a digital identity that is
decoupled from its own formal public identity, and for which it has total control during the lifecycle of
said digital identity (generation, binding of any data as attributes, deletion, etc.). NANCY is also proof-
driven and uses decentralized management mechanisms on top of the NANCY Blockchain for managing
the associated identity services (e.g., registration, management and control of associated
cryptographic verification data, etc.).

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

10

1 Introduction
Blockchain and self-sovereign identity (SSI) mechanisms are increasingly recognized as foundational
technologies to ensure privacy and security in B5G service provisioning. As B5G networks aim to
interconnect vast numbers of devices, users, and services with unprecedented speed and low latency,
they face high risks of data breaches, cyberattacks, and privacy violations. Blockchain, a decentralized
and tamper-proof ledger, can provide a transparent, immutable record of transactions across the
network. By distributing data across numerous nodes and securing it cryptographically, blockchain
enhances trust, minimizes single points of failure, and enables traceability without compromising user
privacy.

Blockchain-based marketplaces are decentralized digital platforms where buyers and sellers can
exchange goods, services, or digital assets directly without the need for intermediaries like banks, e-
commerce platforms, or brokers. These marketplaces are used in totally different sectors. For instance,
NFT Marketplaces like OpenSea and Rarible, are used by digital artists and collectors to exchange
unique digital assets. On the other hand – and much more importantly for NANCY – Supply Chain
Marketplaces are platforms that enable traceability and fair-trade verification, allowing consumers to
verify the origin of the products they buy. By leveraging blockchain technology, these marketplaces
enhance transparency, security, and efficiency through smart contracts, peer-to-peer transactions,
and distributed ledger technology. In NANCY, we use a blockchain-based marketplace to securely
register, select and buy B5G services from verified providers, and to transparently agree on Quality of
Service (QoS) service levels that are enforced in the system through blockchain events and signed SLAs.
These SLAs are recorded immutably in the NANCY permissioned ledger, which can be audited by other
components in the architecture. This transparency fosters trust among remote participants.

SSI, a user-centric approach to digital identity management, allows individuals to own, control, and
selectively share their credentials without relying on centralized authorities. This is crucial in a B5G
environment, where personal data will be generated at large scales. SSI ensures that users can verify
their identities in a privacy-preserving manner, reducing the need for data collection by service
providers and limiting the exposure of personal information to unauthorized entities. Through
blockchain-based SSI, individuals can manage access to their data across multiple services securely,
protecting against identity theft and misuse.

In NANCY, Blockchain and SSI align with the privacy-by-design principles fundamental to B5G. By
enabling secure, decentralized authentication and authorization, they lay the groundwork for trust and
compliance with privacy regulations. These mechanisms are essential for safeguarding user data in a
highly interconnected, data-rich B5G ecosystem, ultimately enhancing user autonomy and security in
a digital world where privacy remains a growing concern.

1.1 Relation to Other Tasks and Deliverables

This deliverable is associated with tasks T5.2 ‘Security and privacy blockchain-based mechanism’ and
T5.3 ‘Decentralised blockchain’ inside WP5. Specifically, in T5.2 (1) PQC mechanisms are used for
signing on the blockchain, (2) ID management tools are developed (in particular SSI), and (3) other
Blockchain-based security solutions are investigated (e.g. data integrity, scalability and protection of
smart contracts). In T5.3 (1) the NANCY blockchain is developed and deployed (wallets and ledger)
together with other blockchain-based key components such as the (2) Marketplace and the (3) Digital
Agreement Creator. T5.3 works in close alignment with T5.2. Additionally, T5.1 delivers crucial

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

11

outcomes for T5.2, specifically the PQC Signature modules that enable the NANCY Wallet to sign, using
a PQ-safe key, a service level agreement (SLA) on the NANCY Blockchain. Additionally, outcomes from
WP4 – reported in D4.1 - are used in T5.3 for designing the inter-operator domain workflow.

Outcomes from T5.2 and T5.3 are integrated and used in several WP6 demonstrators (refer to WP6
documentation for details), while its workflows for service selection and agreement incorporate WP4
outcomes (namely the SLA model and task offloading workflow of T4.1 (see D4.1) or the Smart Pricing
module of T4.5) and in return can also inform other components of the NANCY system, external to
WP5, so they e.g. enforce a given SLA or perform measurements to check its compliance.

1.2 Structure of the Document

Beyond its Executive Summary and Introduction sections, the rest of the document is structured as
follows:

• Section 2 – The NANCY Blockchain presents an introduction to blockchain technologies and
Hyperledger Fabric in particular, followed by descriptions of the NANCY Blockchain, its core
components and workflows, and their relation to the NANCY Architecture. Both on-chain and
off-chain components are presented, for the sake of completeness, together with their
architecture and interfaces. Additionally, other features of the NANCY Blockchain are
presented at the end of the section.

• Section 3 – NANCY ID Management Tools delves into the Self-Sovereign Identity and other
privacy-oriented mechanisms in place at the NANCY Wallet. It also describes the NANCY Wallet
itself and its PQC Signature and SSI capabilities.

• Section 4 – Research on Additional Security Mechanisms is a summary of important research
that has been carried out in the framework of NANCY, covering (1) the protection of Smart
Contracts, (2) Lightweight clients and (3) the impact of decentralization on security.

• Section 5 – Conclusions and Future Work summarizes major developments and introduces
future research beyond NANCY in the fields of T5.2 and T5.3.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

12

2 The NANCY Blockchain
This section presents an introduction to blockchain technologies and Hyperledger Fabric in particular,
followed by descriptions of the NANCY Blockchain, its core components and workflows, and their
relation to the NANCY Architecture. Additionally, other features of the NANCY Blockchain are
presented at the end of the section.

2.1 Introduction to Blockchain Technologies and Hyperledger Fabric

2.1.1 Introduction to Blockchain

Blockchain technology, initially popularized by its association with cryptocurrency, represents an
innovative approach to data management, information security, and digital transactions. Blockchain
operates as a distributed ledger system where data is stored across multiple nodes, creating a secure,
transparent, and tamper-resistant record of information [1] [2]. By design, blockchain technology
offers unique characteristics such as decentralization, immutability, and cryptographic security,
making it highly versatile and applicable across industries like supply chain management, healthcare,
and identity verification.

Blockchain’s underlying structure consists of a sequential series of "blocks" containing data batches,
each linked to its predecessor through cryptographic hashes. This chain is distributed across a
decentralized network of nodes, each holding a complete or partial copy of the ledger [3]. Unlike
traditional databases, where data is stored and managed centrally, blockchain data is nearly
immutable. Once recorded, data on a blockchain cannot be altered without network-wide consensus,
making blockchain highly suitable for applications that require secure and trustworthy record-keeping
[4].

2.1.2 Decentralization and Enhanced Security

Decentralization is a cornerstone of blockchain technology, providing security, resilience, and
transparency in data management. In a decentralized blockchain network, data is replicated across
numerous nodes, eliminating single points of failure and reducing the risks associated with central data
storage. Consensus algorithms like Proof of Work (PoW) or Proof of Stake (PoS) enable network-wide
agreement on the validity of transactions without relying on centralized control. For instance, PoW,
used in Bitcoin, requires substantial computational power, making tampering difficult. In Ethereum
and other systems, PoS encourages users to validate transactions based on their stake, ensuring an
honest network [5]. These systems rely on probabilistic consensus algorithms which eventually
guarantee ledger consistency to a high degree of probability but are still vulnerable to divergent
ledgers (“forks”).

However, the mentioned consensus algorithms mainly apply in permissionless blockchains (i.e., public
blockchains open to all users), which should not be the case in a B5G environment. The enhanced
security offered by decentralization also extends to permissioned blockchains, which are particularly
valuable for industries requiring strict data governance. Unlike public blockchains, permissioned
blockchains restrict access to specific participants, allowing organizations to control and monitor who
can contribute to the ledger. These blockchains implement stringent access control, often enforced
through cryptographic measures and multi-factor authentication, ensuring that only verified
participants can interact with the network. Permissioned blockchains also support fine-grained
auditing capabilities, making them suitable for regulated industries like finance, supply chain, and
healthcare, where data privacy and compliance with GDPR is paramount [6].

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

13

Furthermore, permissioned blockchains use consensus mechanisms optimized for private networks,
such as Practical Byzantine Fault Tolerance (PBFT) or Raft, which ensure high transaction speeds and
security without excessive computational requirements. In PBFT, for example, consensus is reached as
nodes communicate their agreement on each transaction, ensuring data validity even in the presence
of some malicious nodes [7]. This mechanism minimizes the risk of tampering, as attackers would need
to control a majority of nodes, a challenging and detectable feat in permissioned environments. In this
way, permissioned blockchains provide a balance between decentralization and security, offering
robust protections against data breaches and unauthorized access while maintaining operational
efficiency [3]. Energy wise, one must understand that resource consumption depends heavily on the
type of blockchain and its consensus mechanism. Lightweight blockchains can add marginal overhead,
but energy-intensive blockchains can drastically increase power consumption. In the case of NANCY,
our lightweight-consensus permissioned blockchain reduces energy consumption by more than
99.99% when compared to Bitcoin’s proof-of-work (see Figure 1). NANCY uses fastBFT as consensus
mechanism, which behaves similarly to PoTS and PRAOS [8] in terms of energy consumption.

Figure 1. Energy consumption vs. difficulty 1

Beyond enhanced security, the transparency afforded by blockchain's decentralized structure fosters
trust among participants, enabling secure data sharing across complex ecosystems. For instance, in
supply chain management, permissioned blockchains facilitate real-time visibility, tracking goods from
suppliers to end consumers and reducing fraud and counterfeiting [9]. With verifiable data trails
accessible only to authorized parties, permissioned blockchains ensure that shared data remains
secure and trustworthy, providing a significant advantage over traditional databases. This is also of
importance in a B5G application, where SLAs can be traced and operators and consumers must be
trusted.

2.1.3 Applications beyond Cryptocurrency

While blockchain's association with digital currency is well-known, the technology is reshaping
numerous sectors by addressing core issues like data integrity, security, and accountability. In
healthcare, blockchain offers solutions to fragmented data systems by enabling unified and secure
patient records. Traditionally, healthcare information is spread across different systems, resulting in
challenges with data interoperability and patient privacy. Blockchain allows for the creation of a
secure, distributed record that patients and authorized providers can access across institutions,
improving care coordination and reducing administrative delays. The immutability of blockchain also

1 Source: https://eprint.iacr.org/2018/1135.pdf

https://eprint.iacr.org/2018/1135.pdf

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

14

ensures that medical records remain tamper-proof, a feature critical for protecting patient data and
maintaining privacy standards [10].

Supply chain management is another field where blockchain’s transparency and traceability have
transformative potential. Counterfeiting, fraud, and inefficiencies in global supply chains have long
challenged industries from pharmaceuticals to luxury goods. By implementing blockchain, companies
can create an immutable, end-to-end record of product movement, enhancing visibility and
accountability across supply chain stages. IBM’s Food Trust blockchain, for example, enables real-time
tracking of food products, which helps reduce food waste, prevent contamination, and ensure
freshness upon delivery. Blockchain’s capacity for recording and sharing verifiable information across
stakeholders has proven particularly valuable for improving quality control and trust among
manufacturers, suppliers, and consumers [9].

Blockchain technology also offers significant advancements in identity verification and data privacy.
Traditional identity management systems, often controlled by centralized authorities, are vulnerable
to fraud and data breaches. In contrast, blockchain enables decentralized identity management,
empowering users to control and share their credentials securely without relying on third-party
verification. This approach minimizes data exposure, as users can selectively share information with
service providers without revealing unnecessary personal details (more on this in Section 3).
Blockchain-based identity solutions like uPort and Sovrin offer self-sovereign identities, giving
individuals greater control over their digital identities while providing enhanced security and privacy
protections [11].

Moreover, blockchain's potential for secure, tamper-resistant voting systems has captured the interest
of governments and organizations alike. The transparency and immutability of blockchain make it an
attractive option for voting applications, where it can record and verify votes with integrity and without
centralized oversight. Estonia has become a leading example, using blockchain-based voting to allow
citizens to cast votes online with minimal risk of fraud. Blockchain ensures that each vote is securely
stored and independently verifiable, which has improved voter trust and engagement. Beyond national
elections, blockchain voting has applications in corporate governance, where stakeholders can
participate in decision-making processes with security and transparency [12].

But there are other applications of blockchain, too. In a B5G environment, blockchain can serve as a
decentralized backbone, allowing service providers to expose and offer services securely while
ensuring users can seamlessly and safely acquire these services. One of blockchain's most valuable
contributions to B5G networks lies in its security and resilience. Given B5G’s projected massive
connectivity and data traffic, blockchain’s immutable ledger ensures that transactions are secure,
verified, and accessible only by authorized parties. The transparency provided by blockchain allows all
participants to verify transactions independently, which is particularly important for B5G’s multi-
stakeholder environments. For example, smart contracts embedded in blockchain can automate SLAs,
ensuring that terms are strictly followed by other parts of the system, reducing dependency on
centralized oversight, and increasing trust between service providers and users.

Blockchain also supports decentralized management of network resources, a crucial benefit as B5G
networks are expected to handle unprecedented amounts of data and devices. By enabling
decentralized transaction handling, blockchain can streamline resource allocation and reduce latency
issues. This approach also reduces the need for intermediaries in service transactions, leading to
quicker service acquisition and lower operational costs. Blockchain can dynamically allocate resources,
adjusting in real-time based on user demand and service requirements, thus supporting the high speed
and low latency that B5G applications require [13].

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

15

Blockchain’s transparency and traceability also benefit users directly, as they can securely access and
pay for B5G services without concerns over data integrity or unauthorized access. By allowing users to
verify the service terms and conditions transparently on the blockchain, the technology addresses
privacy concerns, which is essential for sensitive applications such as telemedicine, remote monitoring,
and financial transactions on B5G networks. Furthermore, and as previously mentioned, blockchain
allows users to manage their digital identities securely, giving them greater control over how their data
is used and shared across 6G services.

2.1.4 Hyperledger Fabric

The Linux Foundation founded the Hyperledger project in 2015 to advance cross-industry blockchain
technologies [14]. Rather than declaring a single blockchain standard, it encourages a collaborative
approach to developing blockchain technologies via a community process, with intellectual property
rights that encourage open development and the adoption of key standards over time.

Hyperledger Fabric is one of the blockchain projects within Hyperledger. Like other blockchain
technologies, it has a ledger, uses smart contracts, and is a system by which participants manage their
transactions.

Where Hyperledger Fabric breaks from some other blockchain systems is that it is private and
permissioned. Rather than an open permissionless system that allows unknown identities to
participate in the network (requiring protocols like “proof of work” to validate transactions and secure
the network), the members of a Hyperledger Fabric network enroll through a trusted Membership
Service Provider (MSP). Several other permissioned alternatives to Hyperledger Fabric exist, but they
are either vendor-dependent (e.g., IBM Blockchain Platform) or do not come with strong enterprise
support (e.g., Multichain, Kaleido) or are oriented to particular sectors outside NANCY (e.g., R3 Corda).

Hyperledger Fabric offers several pluggable options. Ledger data can be stored in multiple formats,
consensus mechanisms can be swapped in and out, and different MSPs are supported.

Hyperledger Fabric also permits to create channels, allowing a group of participants to create a
separate ledger of transactions. This is an especially important option for networks where some
participants might be competitors and not want every transaction they make — a special price they’re
offering to some participants and not others, for example — known to every participant. If two
participants form a channel, then those participants — and no others — have copies of the ledger for
that channel.

Hyperledger Fabric is a natural candidate for the NANCY use cases. Here are some of its features [15]
and how they can contribute towards realizing a solution for a B5G system:

• Pluggable Consensus. Consensus [14] is the process of keeping the ledger transactions
synchronized across the network — to ensure that ledgers update only when transactions are
approved by the appropriate participants and that when ledgers do update, they update with
the same transactions in the same order. Hyperledger Fabric supports a pluggable consensus
model, allowing it to be tailored for different performance and fault-tolerance requirements.
For B5G use cases, where varying types of devices and applications will interact, this
adaptability is a strong advantage.

• Transaction Performance: Fabric’s architecture is optimized for high transaction throughput,
which is essential for the dense device connectivity expected in B5G, where IoT, edge devices,
and mobile units will frequently interact.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

16

• Scalability: As mentioned earlier, Hyperledger Fabric uses “channels” to enable multiple
private ledgers within a single network. This segmentation can significantly reduce congestion
and improve scalability in a high-density B5G environment, enabling parallel processing across
many isolated channels. Also, [15] chaincode execution is partitioned from transaction
ordering, limiting the required levels of trust and verification across node types, and optimizing
network scalability and performance.

• Integration with PKI: Fabric has robust support for Public Key Infrastructure (PKI), enabling
authenticated, secure identities for devices and users.

• Chaincode Functionality: Hyperledger Fabric supports chaincode (its version of smart
contracts), which can be implemented in [14] several programming languages. Currently, Go,
Node.js, and Java chaincode are supported. Smart contracts provide controlled access to the
ledger and support the consistent update of information, but they also enable a whole host of
ledger functions (transacting, querying, etc.). In a B5G case, such as NANCY, chaincode could
automate tasks like service allocation between devices (see section 2.3.1), SLA creation or
authorization of data sharing based on predefined criteria.

• Active Development and Wide Industry Adoption: Fabric's established community 2 and
documentation offer a reliable starting point, plus, being part of the Hyperledger umbrella
under the Linux Foundation, Fabric benefits from continuous updates and support.

Before introducing the NANCY Blockchain and its core components, let us delve further into some of
Fabric’s key concepts, specifically:

• The shared ledger
• Certificate Authorities
• Peers and Orderers
• The transaction flow

Hyperledger Fabric [14] has a ledger subsystem comprising two components: The world state and the
transaction log. Each participant has a copy of the ledger to every Hyperledger Fabric network they
belong to. The world state component describes the state of the ledger at a given point in time. It is
the database of the ledger. The transaction log component records all transactions which have resulted
in the current value of the world state; it is the update history of the world state. The ledger, then, is
a combination of the world state database and the transaction log history.

Everything that interacts with a blockchain network, including peers, applications and admins, acquires
their organizational identity from their digital certificate and their Membership Service Provider (MSP)
definition. Certificate Authorities (CAs) [16] play a key role in the network because they dispense X.509
certificates that can be used to identify components as belonging to an organization. Certificates issued
by CAs can also be used to sign transactions to indicate that an organization endorses the transaction
result – a precondition of it being accepted onto the ledger.

Different components of the blockchain network use certificates to identify themselves to each other
as being from a particular organization. That’s why there is usually more than one CA supporting a
blockchain network – different organizations often use different CAs. But also, certificates issued by
CAs are at the heart of the transaction generation and validation process. Specifically, X.509 certificates
are used in client application transaction proposals and smart contract transaction responses to

2 https://www.lfdecentralizedtrust.org/members

https://www.lfdecentralizedtrust.org/members

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

17

digitally sign transactions. Subsequently, the network nodes who host copies of the ledger verify that
transaction signatures are valid before accepting transactions onto the ledger.

Peers [16] are a fundamental element of the network because they host ledgers and chaincode (which
contain smart contracts) and are therefore one of the physical points at which organizations that
transact on a channel connect to the channel. A peer can belong to as many channels as an organization
deems appropriate. But Hyperledger Fabric [17] features another type of node called an orderer (also
known as an “ordering node”) that effectively does the transaction ordering, which along with other
orderer nodes forms an ordering service. Because Fabric’s design relies on deterministic consensus
algorithms, any block validated by the peer is guaranteed to be final and correct. Ledgers cannot fork
the way they do in many other distributed and permissionless blockchain networks. Orderers also
enforce basic access control for channels, restricting who can read and write data to them, and who
can configure them.

Now that peers and orderers have been introduced, let us explain how the transaction flow works.
Specifically, [17] applications that want to update the ledger are involved in a process with three
phases that ensure all the peers in a blockchain network keep their ledgers consistent with each other.
In the first phase, a client application sends a transaction proposal to the Fabric Gateway service, via a
trusted peer. This peer executes the proposed transaction or forwards it to another peer in its
organization for execution.

The gateway also forwards the transaction to peers in the organizations required by the endorsement
policy3. These endorsing peers run the transaction and return the transaction response to the gateway
service. They do not apply the proposed update to their copy of the ledger at this time. The endorsed
transaction proposals will ultimately be ordered into blocks in phase two.

With the successful completion of the first transaction phase (proposal), the client application has
received an endorsed transaction proposal response from the Fabric Gateway service for signing. For
an endorsed transaction, the gateway service forwards the transaction to the ordering service, which
orders it with other endorsed transactions, and packages them all into a block. Ordering service nodes
receive transactions from many different application clients (via the gateway) concurrently. These
ordering service nodes collectively form the ordering service, which may be shared by multiple
channels.

The third phase of the transaction workflow involves the distribution of ordered and packaged blocks
from the ordering service to the channel peers for validation and commitment to the ledger.

3 Every smart contract inside a chaincode package has an endorsement policy that specifies how many peers
belonging to different channel members need to execute and validate a transaction against a given smart
contract in order for the transaction to be considered valid. Hence, the endorsement policies define the
organizations (through their peers) who must “endorse” (i.e., approve of) the execution of a proposal. See
https://hyperledger-fabric.readthedocs.io/en/release-2.5/policies/policies.html

https://hyperledger-fabric.readthedocs.io/en/release-2.5/policies/policies.html

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

18

Figure 2: Fabric transaction flow example 4

In the example shown in Figure 2 [17], orderer O1 distributes block B2 to peer P1 and peer P2. Peer P1
processes block B2, resulting in a new block being added to ledger L1 on P1. In parallel, peer P2
processes block B2, resulting in a new block being added to ledger L1 on P2. Once this process is
complete, the ledger L1 has been consistently updated on peers P1 and P2, and each may inform
connected applications that the transaction has been processed.

2.1.5 Attack vectors on Hyperledger Fabric

The use of Hyperledger Fabric drastically reduces the attack vectors found in other permissionless
blockchains. However, no blockchain design is completely immune. These are our primary attack
vectors and possible mitigations. The reader should keep in mind nevertheless that in most cases we
are assuming potential malicious behaviour of nodes that are registered and either paying or receiving
funds for services, which is a rather ambitious assumption.

• Vulnerable Smart Contracts (Chaincode): Vulnerable (or even malicious) smart contracts can
cause unauthorized data manipulation or access within the network. To mitigate this, some
strategies are proposed:
- Conduct thorough code reviews and security audits of chaincode.
- Use containerization (e.g., Docker) to isolate chaincode execution.
- Apply runtime policies, such as limiting resource consumption (CPU, memory) of

chaincode.
- Leverage automated tools for vulnerability scanning in chaincode.

• Identity and Certificate Compromise: Although less probable, attackers could target

compromised wallets to steal certificates to impersonate users or nodes. To mitigate this,
some strategies are proposed:
- Use hardware security modules (HSMs) such as TEEs to protect private keys.
- Enforce multi-factor authentication (MFA) for administrative access.
- Regularly rotate certificates and implement certificate revocation policies.
- Monitor for suspicious activity using security information and event management (SIEM)

systems.

• Distributed Denial of Service (DDoS) Attacks: Improbable, since the governance and access
control of a permissioned blockchain are stronger to those found in a public blockchain, here

4 Source: https://hyperledger-fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html

https://hyperledger-fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

19

attackers could flood specific nodes, such as orderer or peer nodes, to overwhelm the network
and disrupt its functionality. To mitigate this, some strategies are proposed, which include the
use of rate-limiting mechanisms and firewalls to prevent excessive requests or to employ load
balancers to distribute traffic evenly across nodes. The NANCY Hyperledger Fabric uses a
membership service provider solution so that all users are authenticated and all
communication channels are secure (i.e., TLS). Therefore, attacks to public blockchains such as
Sybil attack or DoS attack do not practically apply in our case.

• Unauthorized Access: Here, external actors may try to tamper with data stored in the

blockchain or the state database. To mitigate this, some strategies are proposed:
- Use fine-grained access control policies through Fabric's Membership Service Provider

(MSP).
- Encrypt data at rest and in transit using TLS/SSL.
- Implement channel isolation by ensuring private data is only shared with authorized

participants.
- Regularly audit and validate the integrity of data using hashes stored on the blockchain.

• Side-Channel Attacks. In a side-channel attack, a malicious user targets physical or behavioral

characteristics of a hardware system instead of directly attacking cryptographic algorithms.
Although this attack is not actually a blockchain-related attack, it can have an effect on the
blockchain data. Some strategies for mitigation can include:
- Use constant-time algorithms to prevent timing-based side-channel leaks.
- Monitor and limit excessive resource consumption by chaincode or peers.

• Orderer node compromised: Since the orderer service is critical for maintaining consensus, if

compromised it can lead to disruptions or manipulation of transaction ordering. Some
mitigation strategies:
- Use Raft or BFT (Byzantine Fault Tolerance) consensus mechanisms to reduce reliance on

a single node. In fact, the NANCY consensus mechanism is fastBFT.
- Apply strict access controls to limit who can interact with the orderer node.
- Monitor orderer logs for anomalies and implement tamper-evident logging.

Attacks such as double-spending or 50% attack only affect certain types of blockchain
consensus protocols such as PoW. In our case, we use a scalable and yet provably secure
consensus protocol called fastBFT. It tolerates N/2-1 faulty nodes in the network. But
unlike the 50% attack, in which the attack comes from anonymous nodes, all nodes must
first be identified and granted access to our system. Therefore, the assumption of honest
majority is more reasonable. Moreover, unlike PoW, fastBFT provides immediate finality
and therefore eliminates the problem of double-spending.

• Replay Attacks are based on malicious reuse of valid transactions to disrupt the network or
cause inconsistencies. Some mitigation measures (which in fact are already implemented in
NANCY) include:
- Ensure each transaction includes a unique nonce to prevent replay.
- Validate transactions using digital signatures.

By addressing these potential vulnerabilities proactively, a future implementation of NANCY can
significantly enhance the security of its Hyperledger Fabric-based blockchain network.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

20

2.2 Introduction to the NANCY Blockchain and its Core Components

2.2.1.1 Functional Requirements

The NANCY Blockchain and core components developed in tasks T5.2 and T5.3 must fulfil the functional
requirements depicted in Table 1 (adapted and extended from NANCY D2.1):

Table 1: Extended functional requirements

Initial Functional
Requirement (D2.1) Extension/Update (D5.2)

Security and privacy of
users and devices

The NANCY blockchain should offer significant security advantages for
the system through (1) a permissioned blockchain structure, which
restricts network access to verified participants only. This model aligns
with the high-security needs of B5G, enabling secure data exchanges
between diverse devices and stakeholders within the network [18].

The NANCY blockchain should offer significant security advantages for
the system through (2) a modular architecture supporting robust identity
and access management via Public Key Infrastructure (PKI), ensuring that
only authorized devices can access or share sensitive data, a feature
essential for the integrity of 6G networks [19].

The NANCY blockchain should offer significant security advantages for
the system through (3) private channels and data collections, allowing
sensitive information to be shared selectively and securely among
authorized parties, minimizing the risk of data breaches and
unauthorized access in a highly interconnected environment and (4) by
supporting decentralized, authenticated transactions, reducing reliance
on central points of control, which mitigates vulnerabilities to single
points of failure. This is a critical consideration for securing complex,
distributed B5G systems [20].

The NANCY system should offer significant privacy advantages for the
users through (5) Decentralized Identifiers (DID) or similar approaches.
The approach used should enable any user to seamlessly generate a
digital identity that is decoupled from its own formal public identity, and
for which it should have total control during the lifecycle of said digital
identity (generation, binding of any data as attributes, deletion, etc.).
Additionally, the system should be proof-driven and use decentralized
management mechanisms for managing the associated identity services
(e.g. registration, management and control of associated cryptographic
verification data, etc.).

Automated and
traceable secure

transactions, by means
of smart contracts

The NANCY blockchain should offer automated, traceable, and secure
transactions by utilizing smart contract functionalities, which automate
transaction workflows based on predefined business rules.

Each transaction (1) should adhere to specific criteria before execution,
reducing manual intervention and improving efficiency within the
NANCY applications. Additionally, (2) the NANCY ledger should record
each transaction, providing a traceable and verifiable audit trail essential
for compliance and security in complex, high-frequency B5G interactions
[20].

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

21

By assigning unique digital identities to each participant (see previous
row), the NANCY blockchain must also (3) enhance transaction
traceability and accountability, linking each action to an authenticated
source.

Data integrity and
security mechanisms
through a Practical

Byzantine Fault
Tolerance (PBFT)

consensus.

The NANCY blockchain should enhance the data integrity of transactions
by design. Firstly, (1) it should feature a permissioned network model
that restricts participation to verified, trusted entities, reducing the risk
of malicious actors tampering with data.

Additionally, (2) an endorsement policy mechanism must require that a
specified number of trusted peers validate a transaction before it is
committed to the ledger, ensuring that only verified, consensus-backed
data entries are recorded. PBFT algorithms must be considered for
consensus in the NANCY blockchain.

Thirdly, (3) the ledger itself must be immutable and cryptographically
secured (e.g. each block must contain the certificate and signature of the
block creator which is used to verify the block by network nodes),
meaning that once data is written, it cannot be altered or deleted,
preserving a clear and unchangeable transaction history.

2.2.1.2 Core Components briefly described

Besides basic functional requirements, the NANCY Blockchain and its core components must be able
to fulfil stakeholder requirements and processes as described in e.g. NANCY D4.1 and D6.2. Let us
introduce now which core components are available for the NANCY stakeholders (mainly operators
and users), and then in section 2.2.1 the reader will be introduced to their relation within the NANCY
architecture (refer to D6.1).

The NANCY Blockchain

The NANCY Blockchain is a NEC-hosted, Hyperledger Fabric v2.2.0 based blockchain, with some
security and privacy improvements.

Firstly, it implements the fastBFT consensus protocol, which is a fast and scalable BFT protocol. BFT
protocols normally provide a guarantee of transaction finality and high security, but existing BFT
protocols do not scale well. fastBFT, on the contrary, features a novel message aggregation technique
that combines secure hardware with lightweight secret sharing. Combining this technique with several
other optimizations (i.e., optimistic execution, tree topology and failure detection), fastBFT achieves
low latency and high throughput even for large-scale networks.

Additionally, its scalability has been improved by implementing the work presented in
https://arxiv.org/pdf/2109.10302.pdf (“MITOSIS: Practically Scaling Permissioned Blockchains”).
Specifically, [21] it allows the dynamic creation of blockchains, as more participants join the system, to
meet practical scalability requirements. Crucially, it enables the division of an existing blockchain (and
its participants) into two—reminiscent of mitosis, the biological process of cell division. MITOSIS
inherits the low latency of permissioned blockchains while preserving high throughput via parallel
processing. Newly created chains are fully autonomous, can choose their own consensus protocol, and
yet they can interact with each other to share information and assets—meeting high levels of

https://arxiv.org/pdf/2109.10302.pdf

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

22

interoperability. MITOSIS can be ported with little modifications and manageable overhead to existing
permissioned blockchains, such as Hyperledger Fabric.

In addition, a NANCY blockchain monitoring tool has been developed. For each channel, the application
presents ledger-related data: Block and transaction counts, and network congestion indicators like
throughput and mempool transaction count, accompanied by hourly and minute-based transaction
and block graphs.

Lastly, privacy is one of the key requirements for NANCY. Digital privacy prevents the illegitimate use
of users' personal data and automatically improves the reputation of the blockchain owner. The
NANCY wallets feature different SSI methods that enable them to interact with an SSI infrastructure
by possessing one or more verifiable credentials and generating verifiable presentations from them.
Here, the "verifiable" objects are secured in a way that is cryptographically verifiable. These wallets
become holders which feature “selective disclosure” (the ability of a holder to make fine-grained
decisions about what information to share), which largely improves privacy in NANCY.

The NANCY wallets and blockchain adaptors

In the previous paragraph, we have mentioned the NANCY wallets. Section 3 is dedicated to them,
however, we introduce some basic information for the sake of consistency.

The NANCY wallet is a Kotlin GRPC server which exposes calls for working with the NANCY blockchain,
the PQC component and also the SSI infrastructure. The NANCY wallet (or blockchain adaptor, in
certain contexts) also serves as a secure repository for the credentials and identities needed to access
and interact with the Fabric-based NANCY blockchain network. In this sense, the NANCY wallet stores
user identities, which can include (1) X.509 certificates as issued by the Fabric's Certificate Authority
(CA) to authenticate a user or organization's identity, (2) the user’s self-generated DIDs, and (3) private
keys used to sign transactions on behalf of the user. It is important to repeat that the NANCY network
is permissioned, so users must have valid credentials in their wallets to interact with the blockchain.
Once authenticated, the user can e.g. query the ledger or submit transactions by interacting with the
chaincode (e.g. the NANCY Marketplace).

Smart contract-based components

The fundamental smart contract-based component in NANCY is the NANCY Marketplace. By adding
services in the Marketplace, the business support system (BSS) of a given operator can make them
available to other domains. Consequently, any local operator, by means of the wallet of its service
orchestrator, can search for available services in other domains that are able to fulfill an SLA that the
local operator’s capabilities cannot fulfill.

The Marketplace is integrated, through an oracle, with the Smart Pricing (SP) component to securely
identify the best service in terms of price. It is also integrated, through a different oracle, with the
Digital Agreement Creator (DAC) component to generate final agreements between remote operators
(providers) and local operators (consumers), aimed at granting a certain service to a final user (UE, IoT,
others).

The Marketplace is also integrated with the SLA Registry Smart Contract to manage the required
signatures for said agreements.

Oracles are not smart contract-based components, but they are crucial components for enabling
interaction between blockchains and the outside world. They are the bridge between the on-chain and
off-chain data. Since blockchains are isolated by design, oracles act as intermediaries that provide

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

23

external information or trigger actions based on real-world events. In fact, oracles and blockchains
work through blockchain events, which are signals emitted by a smart contract when specific
conditions are met during a transaction. These are used to notify external applications – and oracles
in this case. When the oracle listens to the blockchain event, it can fetch data from external sources
(e.g., the Smart Pricing API), validate the authenticity and accuracy of the data, and inject this data into
the blockchain through specific invokes.

Non-smart contract-based components

The two fundamental non-smart contract-based components that interact with the NANCY Blockchain
are the Smart Pricing and the Digital Agreement Creator (DAC) components.

The Smart Pricing is an AI-driven system that adjusts prices dynamically in a digital marketplace, using
learning algorithms and auction methods to ensure fair competition. It relies on a multi-agent system
where providers compete in a blind reverse auction, with a built-in load-balancing feature that
distributes clients efficiently while keeping prices competitive. The Smart Pricing securely delivers
verified pricing data through a REST API, allowing smooth integration with the Marketplace.

The Digital Agreement Creator is an out-of-the-box software solution for creating Smart Contract code
among NANCY stakeholders. Based on Java language and Spring Boot Framework, the DAC is fully
dockerized. It can receive inputs via a RESTful interface concerning, e.g., providerId, consumerId, price,
service requirements, etc. and then create ad-hoc containers which include the smart contracts code
along with a unique identification number, generated by the DAC itself, and that works as a hash of
the smart contract.

2.2.2 NANCY Blockchain Workflows and Relation to the NANCY Architecture

2.2.2.1 Relation to the Architecture

The revised and updated NANCY architecture was reported in D6.1 (see Figure 3). Two differentiated
vertical domains are shown: The intra-operator domain (left) and the inter-operator domain (right). In
addition to these, the architecture also proposes a set of distributed services to which the local service
orchestrator can access.

Horizontal layers are divided into the infrastructure layer, the control layer, the orchestration layer
and the business layer. Work in tasks T5.2 and T5.3 and, specifically, the NANCY Blockchain and its core
components, belong to the business layer (horizontally) of the inter-operator domain (vertically).

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

24

Figure 3. The updated NANCY architecture 5

However, in addition to the NANCY Blockchain and the core components residing in the inter-operator
domain, wallets (for UEs and IoTs) and blockchain adaptors (analogous to wallets for less resource-
constrained components) reside in the intra-operator domain (see Figure 4). These wallets and
blockchain adaptors enable these components to securely and privately interact with the ledger.

Figure 4. Detail of the inter-operator domain6

2.2.2.2 Basic service selection and agreement workflow (inside the inter-operator domain)

The following workflow was designed during P1 and presented in M18. The reader must note that the
SSI capabilities of the NANCY wallet will be explained Section 3.

The workflow includes three fundamental stages: (1) listing services in the marketplace, (2) service
selection and (3) SLA signature.

1- Listing services in the Marketplace

To interact with a Hyperledger Fabric blockchain using a wallet, the process first involves setting up
and registering identities, obtaining credentials, and configuring the wallet for interaction. This is

5 Source: D6.1
6 Source: D6.1

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

25

common for all the entities wishing to communicate with the NANCY blockchain, but we will briefly
explain it only here.

Every participant in the NANCY network must have a valid identity issued by the NANCY Certificate
Authority (CA). This identity is stored in the wallet and used for authentication and transaction signing.
For this to happen, firstly the network administrator uses their admin identity to register a new user
with the CA. This step associates the new user with a specific role and organization. Then, the user
uses the username and password to enroll with the CA. Enrollment generates the user's X.509
certificate and private key [22]. Now, the user can place its identity files (certificate and private key) in
a structured directory, to then use the Fabric SDK (e.g., Node.js, Java, Go) to create and populate the
wallet programmatically. Once the identity is in the wallet, the user connects to the Fabric network
using a connection profile (YAML or JSON file). Once connected, the user can submit transactions or
query the ledger through the smart contract API.

In our case, a dummy user called the service provider was equipped with a wallet and a valid identity.
In addition, an initial version of the NANCY Marketplace was set up as a smart contract working in the
NANCY Blockchain. Essentially, the Marketplace publishes a list of service providers together with
services they can provide (with given performance indicators) plus minimum and maximum prices (for
said services and indicators) plus the service providers’ reputation (see Figure 5). The following API
methods were designed and developed for the Marketplace:

Providers
• createProvider(JSON String)
• updateProvider(providerId String, JSON String)
• getProvider(providerId String)
• listProvider(JSON String)
• deleteProvider(providerId String)

Services

• createService(JSON String)
• updateService(serviceId String, JSON String)
• getService(serviceId String)
• listService(JSON String)
• deleteService(serviceId String)

Searches

• createSearch(JSON string)
• getSearch(searchID String)
• listSearch(JSON string)
• setSearchPricing(searchID string, JSON string)
• setSearchSLA(searchID string, JSON string)

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

26

Figure 5. Listing services in the marketplace

With this setup, every service provider is able to add, update or delete itself as a provider and to add,
update or delete services using GRPC calls to the Marketplace smart contract, effectively changing the
ledger status. For each service, several key performance indicators (KPIs) are included, like throughput
or response time. These indicators can be considered for later service searches, so this will make
possible the service selection in stage 2. In addition, minimum and maximum prices for each service
are also added – these will later be fed to the Smart Pricing component. Finally, each service provider
starts listening to events coming from the SLA Registry smart contract (see next paragraph), which will
make possible the SLA signature in stage 3.

2- Service selection

The basic service selection consists of several steps (1-9 in Figure 6) and involves different on-chain
and off-chain processes. Here it is worth noting that at M18 the system did not care who the service
consumer and service provider were – inside the NANCY Architecture. The system was designed to
work on its own and demonstrate how the Marketplace, Smart Pricing and Digital Agreement Creator
could handle different events and data. Two smart contracts exist in this workflow: the Marketplace
(for Stage 2) and the SLA Registry smart contract (for Stage 3), where SLAs are registered and verified.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

27

Figure 6. Service selection

We assume that all components have been successfully registered and that stage 1 (listing services in
the Marketplace) has also been successful; thus, the NANCY Marketplace lists services from different
providers. Stage 2 begins with a service consumer interacting with the Marketplace chaincode by
means of its NANCY wallet gateway (step 1). If the service consumer is a user equipment, then (see
Section 3.2) its wallet is equipped with PQC capabilities (for Stage 3) and must register its public key
on chain. Said interaction is done through GRPC commands, specifically searching for a service that
satisfies certain requirements (continuing with the explanation above, these could include throughput,
response time and maximum price). In addition to this, after calling this search, the service consumer
wallet subscribes (starts listening) to blockchain events triggered by the SLA Registry smart contract.
The marketplace searches its stored information to identify those registered services whose
parameters meet the requirements set out in the request.

Step 2 would see the Marketplace smart contract building a response to the search method, and
triggering a blockchain event, which the first oracle would listen to. This is done since the Smart Pricing
component is off-chain, meaning it is not a smart contract and thus cannot be directly called by another
smart contract (the Marketplace, in this case). Step 3 is an HTTPS request to the Smart Pricing
component, but this time only containing the services that the Marketplace considered adequate for
the service consumer’s search – this is, services that met the service consumer’s original criteria. After
the Smart Pricing component (see D4.5 and D5.2’s section 2.3.2) produces its debating processes and
makes its calculations, it is ready to send back, in step 4, the selected service and its conditions to the
first oracle, which in turn (see 2.3.2.3) processes this response to create the suitable transaction to
communicate it back to the Marketplace smart contract (step 5).

Step 6 would see the Marketplace smart contract triggering a blockchain event, which the second
oracle would listen to. This is done since the Digital Agreement Creator component is off-chain,
meaning it is not a smart contract and thus cannot be directly called by another smart contract (the
Marketplace, in this case). Step 7 is an HTTPS request to the Digital Agreement Creator component,
containing specific data about the service that the Smart Pricing considered the best candidate for the
service consumer’s original search, in terms of requirements, and also price. Then, the Digital
Agreement Creator is able to turn these data into an SLA that should satisfy both parties: The service
provider and the service consumer. This SLA is pushed back into the second oracle (step 8), which
processes it to create the suitable transaction to send it back to the Marketplace smart contract in step
9. Then, the Marketplace smart contract calls the SLA Registry smart contract, which registers the SLA
on-chain (step 10). This concludes stage 2.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

28

3- SLA Signature

As introduced in stages 1 and 2, both the service providers and the service consumer are subscribed
(listening) to blockchain events triggered by the SLA Registry smart contract.

If provider X is not selected as the best match, nothing happens; but if provider Y is indeed selected as
the best match by the Smart Pricing component, it will receive – after the Digital Agreement Creator
builds the final SLA – an event for SLA creation. This will also happen for the service consumer, and
both provider Y and service consumer will be asked if they wish to sign the final SLA.

When the provider proceeds, its wallet issues a signing transaction to the blockchain. The transaction
ID serves as a valid signature in the SLA. In the case of the service consumer, if it is a user equipment,
its wallet will issue a transaction with a PQC signature, which can be automatically verified by the SLA
Registry smart contract. Finally, both parties are informed of the signed SLA since they are subscribed
to such events.

2.2.2.3 Extended Service Selection and Agreement Workflow (combining the intra and inter-operator

domains)

The following workflow was designed during P2 and presented in M24. The main difference between
this and the basic service selection and agreement workflow is that now the inter-operator domain
works together with various WP3 and WP4 actors in the intra-operator domain.

The workflow includes three fundamental stages: (1) listing services in the marketplace, (2) service
selection inside the offloading and caching workflow and (3) SLA signature.

1- Listing services in the Marketplace

Listing services in the Marketplace does not change from the basic workflow (see Figure 7). Once
connected to a blockchain (see description of the basic workflow above), any user can submit
transactions or query the ledger through the smart contracts APIs. The main difference is that the
originally called “dummy user” and identified as the service provider is now the Business Support
System (BSS) of a local operator. Hence, it is this BSS the one equipped with a wallet and a valid identity.
The NANCY Marketplace is set up as a smart contract working in the NANCY Blockchain, just as in the
basic workflow. Now, the first step is that all the operators, for each local domain, use the Marketplace
to publish a list of services they can provide, with performance indicators (service requirements), other
data (e.g. computing resources, localization data 7) plus minimum and maximum prices, plus the
operator’s reputation and ID data.

There is no need for extension to the API methods designed and developed for the Marketplace in the
basic workflow, but the reader is referred to 2.3.2 for more details. With this set of methods, every
service provider (local operator) is able to add, update or delete itself as a provider and to add, update
or delete services using GRPC calls to the Marketplace smart contract, effectively changing the ledger
status. For each service, several indicators are included, like throughput or response time. These
indicators can be considered for later service searches coming from other domains. This will make
possible the service selection in stage 2. In addition, minimum and maximum prices for each service
are also added – these will later be fed to the Smart Pricing component. Finally, we assume that at this
stage, each service consumer (final client) and service provider (local operator) are listening to events

7 Fields for computing resources and localization data are being implemented as part of WP6

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

29

coming from the SLA Registry smart contract in the inter-operator domain, which will make possible
the SLA signature in stage 3.

Figure 7. Listing services in the marketplace

2- Service selection inside the offloading and caching workflow

The basic service selection consisted of several steps (1-9 in Figure 6) and involved different on-chain
and off-chain processes, but the system did not care who the service consumer and service provider
were inside the NANCY Architecture. This is different in the extended workflow, as anticipated in Figure
8.

We assume that all components have been successfully registered and that stage 1 (listing services in
the Marketplace) has been also successful; thus, the NANCY Marketplace lists services from different
operators in different domains.

We also assume that a service request from a client (“Client 1”) has been received and analyzed by the
BSS of its local operator (Operator 1). This BSS has created an initial SLA and sent it to the local SO (of
Operator 1). Since – we assume – the local SO is not able to handle the request, a notification is sent
back to the local BSS, which forwards the request to the inter-operator domain.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

30

Figure 8. Service selection inside the offloading and caching workflow

Stage 2 thus begins with the BSS (analogous to the service consumer in the basic workflow) of a local
operator interacting with the Marketplace chaincode by means of its NANCY wallet gateway (step 1)
through GRPC commands, specifically searching in the inter-operator domain for an operator able to
host the service request that satisfies the initial SLA that the local operator cannot fulfil in the intra-
operator domain. We will call this local operator “Operator 1”. Operator 1’s BSS, in the same step, uses
its wallet to subscribe (start listening) to blockchain events triggered by the SLA Registry smart contract
inside the inter-operator domain. Operator 1 will not sign the new SLA, but it must remain informed
when such new SLA – between a remote operator and Operator 1’s client – is signed. This information
can then be used for e.g. billing between operators, or SLA compliance.

Step 2 is similar to that of the basic workflow, and it would see the Marketplace smart contract building
a response to the search method which Operator 1’s BSS called. This response contains a list of services
from different operators in different domains that are able to satisfy the initial SLA. In addition to this,
the Marketplace triggers a blockchain event, which the first oracle would listen to. As explained, the
Smart Pricing component is off-chain, meaning it is not a smart contract and thus cannot be directly
called by another smart contract (the Marketplace, in this case). Step 3 is an HTTPS request to the
Smart Pricing component, only containing the services that the Marketplace considered adequate for
fulfilling the initial SLA. After the Smart Pricing component (see D4.5 and D5.2’s section 2.3.2) produces
its debating processes and makes its calculations, it is ready to send back, in step 4, the selected
service, provider and conditions to the first oracle, which in turn will verify this response before
communicating it back to the Marketplace smart contract (step 5).

Step 6 would see the Marketplace smart contract triggering a new blockchain event, which the second
oracle would listen to. Again, this is done since the Digital Agreement Creator component is off-chain,
meaning it is not a smart contract and thus cannot be directly called by another smart contract. Step
7 is an HTTPS request to the Digital Agreement Creator component, containing specific data about the
original client, the new service provider (new operator) and the service that the Smart Pricing
considered the best candidate for the original search, in terms of requirements and also price. Then,
the Digital Agreement Creator is able to turn these data into a new SLA that should satisfy both parties:

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

31

the new service provider (let us call it Operator N) and the service consumer (Operator 1’s original
client). Note that, even though it was Operator 1’s BSS the one who triggered stage 2, it is not signing
the new SLA. This new SLA is pushed back into the second oracle (step 8), which processes it creates
the suitable transaction to send it back to the Marketplace smart contract in step 9. Then, the
Marketplace smart contract calls the SLA Registry smart contract, which registers the SLA on-chain
(step 10). This concludes stage 2.

3- SLA Signature

Two events can be triggered by the SLA Registry smart contract: “SLA Creation” and “SLA Signature”.
As introduced in stages 1 and 2, both the service provider (Operator N, but actually, any operator that
has listed services in the Marketplace) and the original searcher (Operator 1) are subscribed (listening)
to these blockchain events. However, also the final service consumer – Client 1; this is, Operator 1’s
client – is listening for blockchain events triggered by the SLA Registry smart contract

For any operator different to “Operator 1” or “Operator N” and for any client different to “Client 1”,
nothing will happen after the SLA Registry “SLA creation” event is triggered. But both Operator N and
Client 1 will be asked if they wish to sign the final SLA – as built by the DAC component. The signatures
take place similarly to those explained for the basic workflow. Finally, both parties are informed of the
fully signed SLA since they are subscribed to the “SLA signature” event of the SLA Registry smart
contract, but in addition to them, also Operator 1 receives such event and can act accordingly.

2.2.2.4 About Privacy with Blockchain Smart Contracts

In Hyperledger Fabric, privacy and access control can be applied in different granularity. This is
especially important in the case of NANCY for what pertains to the SLA private data between providers
and consumers (see SLA model defined in D4.1).

First, the Fabric blockchain runs multiple channels, each configured (via configtx.yaml) with a
consortium composed of the organizations that are allowed to participate in the channel
communication. Only nodes presenting certificates that are issued by the CAs from these organizations
can see ordered transactions or emitted events in that channel.

Secondly, each component in the blockchain can specify their access control policies [23]. More
specifically, each organization, orderer service, channel can define their customized polices for
different operations such as transaction READ, transaction WRITE, transaction endorsement, and
administrator.

Moreover, inside each smart contract, the smart contract developers can further define and enforce
access control policies by checking the IDs (i.e., certificates) of the transaction issuer against the state
in the ledger. What’s more, Hyperledger Fabric boasts an additional private data [24] mechanism, that
further restricts the visibility of the data in the ledger. This is, private data is only visible as plaintext in
the ledger hosted on the peers from authorized organizations. For other peers in the same channel,
only the hash of the private data is saved in the ledger. And the private data is presented only by its
hash in the block so that its content is also kept secret from the ordering service (i.e., the consensus
protocol).

In what follows, we describe the privacy measures deployed in the NANCY blockchain to ensure
different data privacy (i.e., not limited but including SLA data). Some of them have been implemented
in the PoC of the workflow.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

32

1. Organization CAs and TLS. All transactions must provide a valid certificate issued by a CA from
an organization defined in a consortium presented in any channel, and all communication is
secured with TLS.

2. Channels. The marketplace and SLA Registry smart contracts are deployed in a channel
composed of the consortium restricted to NANCY partners only. SSI-related smart contracts,
however, are deployed in a channel that is accessible by a much wider public, as all information
is public and anonymous.

3. Privacy of the SLA data. We can apply the private data mechanism on the SLA data. In this way,
only organizations (industrial operators) involved in the SLA contracts can see its content while
the others only witness the hash of the SLA for timestamping purpose. Moreover, since
individual consumers, unlike the providers, are defined as from the same organization, we do
not authorize them access to the private data. Rather, we attach an extra copy of the
encrypted SLA using the public key of the individual consumer, which is retrievable from the
DID registry, so that the consumer can decrypt the SLA and match the hash value that is
publicly visible in the channel. Similar privacy is also enforced in the SLA events (see option
DeliverWirthPrivateData in [25]). Regarding the inter-operator domain scenario described
previously, where a second operator is involved in the service searching process, the same
solution applies. More specifically, Operator 1 searches a service on behalf of Consumer 1 and
the marketplace found Operator N as the best match creates an SLA between Operator N and
Consumer 1. We set SLA as private data between Operator 1 and Operator N, while attaching
the encrypted SLA for Consumer 1. As a result, all three and only these three entities can see
the content of the SLA.

4. Access control to SLA creation and signing. SLARegistry smart contract checks the certificates
of the transaction senders. SLA creation is only allowed if the sender presents a certificate of
the NANCY oracle, and SLA signing is only allowed if the sender is either the provider or the
consumer of the SLA in question.

5. Access control to DIDRegistry and VCRegistry. For write operations such as UPDATE and
DELETE, DIDRegistry checks the certificates of the transaction senders and permits the
operation only when the transaction sender presents the certificate corresponds to the DID in
question. Similarly, the VCRegistry checks that the sender certificate must correspond to the
issuer’s DID in question.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

33

2.3 The NANCY Blockchain Core Components

2.3.1 Smart Contract-based Components

2.3.1.1 SLA Registry

Description

We deployed a smart contract to maintain all the SLA contracts. This smart contract allows
corresponding partners to create, search and sign the SLA contract. The SLA contract data structure is
defined as follows:

type SLA struct {

 Id string `bson:"id" json:"id"`

 Value string `bson:"value" json:"value"`

 ProviderId string `bson:"provider_id" json:"provider_id"`

 ConsumerId string `bson:"consumer_id" json:"consumer_id"`

 ProviderSig string `bson:"provider_sig" json:"provider_sig"`

 ConsumerSig string `bson:"consumer_sig" json:"consumer_sig"`

}

• Id- unique SLA contract ID.
• Value – JSON string of the SLA contract content. This can be flexibly defined by the contract

creator.
• ProviderId – DID of the provider involved in the SLA contract.
• ConsumerId – DID of the consumer involved in the SLA contract.
• ProviderSig – transaction ID used as the signature of the provider, since the transaction is already

signed by the provider using his blockchain credential.
• ConsumerSig – PQC signature of the consumer encoded in HEX string.

Interfaces

The smart contract further defines the following interfaces as described in Table 2. It will emit event
InitSLA and SigningSLA for subscription.

Table 2. Interface description of smart contract SLA Registry

Chaincode Interface Description

InitSLA(id string, value string, providerId string, consumerId string)

creates a new SLA entry in the ledger using the data structure described above and indexed by the
id, which stands for the SLA unique ID. Access control policy is enforced to check whether the ID of
the transaction issuer is “NancyOracle”. At the end, it emits an event InitSLA.

GetSLA(slaId string)

returns the SLA entry given the slaId. If the corresponding SLA does not exist, returns error.

GetSLAByConsumerId(consumerId string)

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

34

returns the list of SLA entries associated with the given consumerId. If the corresponding SLA
does not exist, returns error.

SignSLA(slaId string)

signs the SLA corresponding to the provided slaId without PQC. Access control policy is enforced
to check whether the transaction issuer presents the same ID as the provider or the consumer in
the SLA in question. The function further checks whether the role of the transaction issuer is not
“UE”. Note that the ID and the role of the transaction issuer can be extracted from the sender’s
ECert and the transaction ID is saved as the signature.

Once all the checks have passed, the transaction ID is saved in the providerSig or
consumerSig field. At the end, it emits an event SigningSLA.

SignSLAPQC(slaId string, sigStr string)

signs the SLA corresponding to the provided slaId with PQC. Access control policy is enforced to
check whether the transaction issuer presents the same ID as the provider or the consumer in the
SLA in question. The function further checks whether the role of the transaction issuer is “UE”. Then
it looks up the PQC public key indexed by the same transaction issuer from the didRegistry
chaincode in order to verify the PQC signature sigStr, which covers the value field. Note that the
provided sigStr must be encoded in Hex string.

Once all the checks have passed, the sigStr is saved in either the providerSig or
consumerSig field. At the end, it emits an event SigningSLA.

2.3.1.2 Marketplace

Description

The NANCY marketplace is a business-layer chaincode where operators can engage in the exchange of
services to keep their quality of service for their customers. The idea is to allow the interdomain flow
described in section 2.2.2.3 providing a tool for operators to register (through their BSS) their available
services as well as to consume and offload available services from other operators when needed.

Figure 9 shows key interactions of the marketplace. Since the marketplace is chaincode residing on the
blockchain, any user interacting with the marketplace will use a wallet. This refers to:

• Operators providing information about themselves (Provider Endpoints) and their services
(Service Endpoints) or making requests for searching other available services (Search
Endpoints).

• Oracles. Additionally, the marketplace interacts with oracles through APIs, while the oracles,
which also have a wallet, interact with the marketplace to provide the most suitable service
for a request based on the best price (Smart Pricing Endpoint) and the created digital
agreements from a search (Digital Agreement Creator Endpoint). Moreover, the marketplace
also interacts with the SLA Registry Smart contract (see section 2.3.1.1) through another
oracle, which directly requests the contract to initiate the digital agreement signature process
between the client and the new operator. This oracle is needed because the call from a
chaincode (Marketplace Smart Contract) to another chaincode (SLA Registry Smart Contract)
does not allow the emission of events.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

35

Figure 9. Marketplace main interactions

The marketplace has been designed in a general and adaptable way, so that information of different
data models can be stored. For this reason, there is a base model structure defined as follows:

{

"model_type": "nancy_provider",

 "model_version": "0.1.2",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725538763,

}

• model_type: This refers to the data model for registering information. Three different data

models have been considered in the marketplace: [nancy_provider, nancy_service,
nancy_agreement]. Type: string.

• version: This refers to the version of the specific data model; currently in version 0.1.2, but it
can be updated for dealing with new data models without needing to remove previous
recorded information. Type: string.

• owner: This refers to the id of user who creates the data. Type: string.
• msp_id: This refers to the msp_id of user who creates the data. Type: string.
• timestamp: This refers to the creation timestamp. Type: timestamp

As mentioned, there are three data models in the marketplace:

NANCY Provider

The current data model for NANCY providers, which refers to the information associated to a specific
operator, is:

• id: Operator identifier. Type string.

• name: Name of the provider. Type: string.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

36

• type: Type of provider. Type: string.

This data model could be updated to include additional information related to the operator (i.e.,
resources availability) as needed.

NANCY Service

The data model for NANCY services, which refers to the information associated to the services offered
by the operators in the inter-operator domain and the features required for the SLA according to D4.1,
is:

• providerID: The ID of the operator the service belongs to. Type string

• minPrice: Minimum price. Type float64

• maxPrice: Maximum price. Type float64

• Duration: Duration. Type string

• ResponseTime: Response time. Type string

• Throughput: Throughput. Type string

• Latency: Latency. Type string

This data model could be updated to include additional information about services (i.e., location) based
on the SLA requirements.

NANCY Search

The data model for NANCY search, which refers to the information management for the search of a
new operator in the inter-operator domain, is:

• consumer_ID: The ID of the user making the request. Type string.

• status: The status of the search. Type string. Different types of status:

• INIT: Initial state.

• PRICE: Price state. Ready to set price through Smart Pricing Component.

• SLA: SLA state. Ready to set SLA through DAC Creator Component.

• FINISHED: Search is finished.

• Additionally, ERROR refers to an unrecoverable error occurred.

• services: The suitable services fulfilling the request filters. Type List<JSON>

• pricing: The most suitable service according to the Smart Pricing Component. Type JSON.

• sla: The created filled SLA. Type JSON.

This data model could be updated to include additional information if needed.

As mentioned, the search has different status as it requires the operation of different NANCY
components (marketplace itself, Smart Pricing and DAC Creator) as explained in Figure 10. As a result,
a notification to the SLA oracle is sent to initialize the SLA signature process.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

37

Figure 10. Marketplace search status

Interfaces

The smart contract further defines the following interfaces as described in Table 3 for the different
endpoints shown in red in Figure 9.

Table 3. Interface description of smart contract Marketplace

Provider Endpoints Chaincode Interface Description

createProvider (id string, name string, type string)

Invoke (Write operation). It allows the registration of a new operator in NANCY marketplace providing
the information included in the NANCY Provider data model. It returns the identifier of the registered
operator inside the marketplace.

updateProvider (id string, data string)

Invoke (Write operation). It allows the information update about an already registered operator in
NANCY marketplace. The "id" identifies the operator identifier to be updated while “data” refers to
a JSON with information to be updated (i.e, “name” : “orange”). It returns the identifier of the
updated operator inside the marketplace.

getProvider (id string)

Query (Read operation). It allows to get the registered information about a specific operator
indicated in “id”. It returns the registered details, including id, name and type.

listProvider (id string)

Query (Read operation). It allows to list the complete list of registered operators in the
marketplace. "id": { "$regex": ".*" }, is the way to list all the registered operators. As a result, an

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

38

array with all the registered operators information is obtained. NOTE: this functionality has been
implemented in such a general way that filters could be applied to the list (i.e., "id": { “type":
"operator" }).

deleteProvider (id string)

Invoke (Write operation). It allows to unregister an operator identified by “id” from the
marketplace. It returns the identifier of the removed operator inside the marketplace.

Service Endpoints Chaincode Interface Description

createService (provider_id string, minPrice float64, maxPrice float64,
duration string, responseTime string, throughput string, latency string)

Invoke (Write operation). It allows the registration of a new service in NANCY marketplace providing
the information included in the NANCY Service data model. For example:

• "provider_id": it refers to the operator identifier offering this service (i.e.,
e07ba9cf13653760fd98e3b9553a94a49aa6cb445f4be10789810e2115a1de65).

• "minPrice": it refers to the minimum price for the service to be considered by the smart
pricing component (more details in WP4). (i.e., 35.00).

• "maxPrice": it refers to the maximum price for the service to be considered by the smart
pricing component (more details in WP4). (i.e., 125.00).

• "duration": it refers to the time this service is available (in minutes) (i.e., 60).

• "responseTime": it refers to the response time of the service (in seconds) (i.e., 30).

• "throughput": it refers to the throughtput of the service (in Mbps) (i.e., 50).

• "latency": it refers to the latency of the service (in milliseconds) (i.e., 3).

It returns the identifier of the registered service inside the marketplace.

updateService (id string, data string)

Invoke (Write operation). It allows the information update about an already registered service in
NANCY marketplace. The "id" identifies the service to be updated while “data” refers to a JSON
with information to be updated (i.e, “latency” : “33”). It returns the identifier of the updated service
inside the marketplace.

getService (id string)

Query (Read operation). It allows to get the registered information about a specific service
indicated in “id”. It returns the registered details, including id, provider_id, minPrice, maxPrice,
duration, responseTime, throughput, latency.

listService (id string)

Query (Read operation). It allows to list the complete list of registered services in the marketplace.
"id": { "$regex": ".*" }, is the way to list all the registered services. As a result, an array with all the
registered services information is obtained. NOTE: this functionality has been implemented in such
a general way that filters could be applied to the list (i.e., "id": { “provider_id": "XYZ" }).

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

39

deleteService (id string)

Invoke (Write operation). It allows to unregister a service identified by “id” from the marketplace. It
returns the identifier of the removed service inside the marketplace.

Search Endpoints Chaincode Interface Description

createSearch (consumer_id string, servicequery string)

Invoke (Write operation). It allows the generation of a new search of suitable services in the
marketplace. Internally, communications with Smart Pricing oracle, Digital Agreements Creator
oracle and SLA oracle happens. The parameters are as follows:

• "consumer_id ": it refers to the operator identifier makinfg the services search request (i.e.,
e07ba9cf13653760fd98e3b9553a94a49aa6cb445f4be10789810e2115a1de65).

• "servicequery": it refers to the minimum requirements for the required services (i.e.,
"latency": "32").

It returns the identifier of the current search.

During its execution, as explained in Figure 10, different events are emitted to notify the oracles to
start with their operation:

• initPricing event, to notify the Smart Pricing oracle to start with the Smart Pricing operation.
• initSLACreation event, to notify the Digital Agreement Creator oracle to start with the SLA

creation process.
• initSLASignature event, to notify the SLA Signature oracle to start with the SLA signature

process (managed by the Sla Registry smart contract).

getSearch (id string)

Query (Read operation). It allows to obtain the status and result of a requested search indicated in
“id”. It returns the services (from PRICE status), pricing (from SLA status) and sla information (from
FINISHED status).

listSearch (id string)

Query (Read operation). It allows to list the complete list of searches done in the marketplace. "id":
{ "$regex": ".*" }, is the way to list all the searches. As a result, an array with all the search details is
obtained.

deleteSearch(id string)

Invoke (Write operation). It allows to remove (stop) a search identified by “id” from the
marketplace. It returns the identifier of the removed search inside the marketplace.

Smart Pricing Endpoint Chaincode Interface Description

setSearchPricing (id string, data string)

Invoke (Write operation). It allows the Smart Pricing Oracle to notify the marketplace the most
suitable service and its price for the search identified by “id”. “data” contains the service identifier
and its suitable price (i.e., "provider_id":"providerX","service_id":"service123","price": 71.3093472).

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

40

Digital Agreement Creator Endpoint Chaincode Interface Description

setSearchSLA (id string, data string)

Invoke (Write operation). It allows the Digital Agreement Creator Oracle to notify the marketplace
created SLA for the search identified by “id”. “data” refers to the information inside the created
digital agreement (i.e., "id": "dacID", “consumer_id":"consumer_id", "provider_id":"providerX",
"service_id":"service123", "price":10000, "service_description":[], "hash_smartcontract": "0x123").

2.3.1.3 Smart Contracts related to SSI

Description

We further defined the DIDRegistry and the VCRegistry smart contracts to enable SSI-compatible
solutions. These smart contracts turn the blockchain to a public data registry for any party to look up
ways to authenticate or verify any identities in a privacy-preserving manner.

We ask readers to refer to Section 3.1.1 for a detailed description of these smart contracts together
with their interfaces.

2.3.2 Oracles and Non-Smart Contract-based Components

2.3.2.1 Digital Agreement Creator

Description

The Digital Agreement Creator (DAC) is an out-of-the-box software solution for creating Smart Contract
code among NANCY stakeholders. Based on Java language and Spring Boot Framework, the DAC is fully
dockerized. It can receive inputs via its RESTful interface concerning e.g., providerId, consumerId,
service, price, conditions, etc. and then create ad-hoc containers that hold the smart contracts for
relevant parties based on the provided input along a unique identification number, generated by the
DAC itself, and that works as a hash of the smart contract.

The application dynamically generates and manages these ad-hoc containers-holders of the smart
contracts for the Hyperledger Fabric blockchain via REST API requests. Its scalable design and modular
architecture separate concerns between orchestration, generation, and API layers while its RESTful
APIs enable extensibility and integration with other systems.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

41

Architecture

Figure 11 represents the high-level architecture of the DAC component.

Figure 11. The high-level architecture of DAC component.

Interfaces

The DAC provides RESTful interfaces to manage ERC721-like tokens on a Hyperledger Fabric network.
It includes the following key endpoints:

Create SmartContract based on a request

A REST API POST method (/DAC/createSLA) that creates a Chaincode for FabricLedger based on the
request and returns the ID and Hash of the Smart Contract.

Example of the request in JSON format:

{

 "provider_id": "c9d1976354f9f069a04600cbb0456713401addc658bd46e50ca6a56392c04a32",

 "consumer_id": "consumer1",

 "price": 72.3444554,

 "service_id": "servieNomehacescaso",

 "service_description": [

 {

 "provider_id": "c9d1976354f9f069a04600cbb0456713401addc658bd46e50ca6a56392c04a32",

 "minprice": 30,

 "maxprice": 115,

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

42

 "duration": "60",

 "responseTime": "30",

 "throughput": "12",

 "latency": "32"

 },

 {

 "provider_id": "c9d1976354f9f069a04600cbb0456713401addc658bd46e50ca6a56392c04a32",

 "minprice": 35,

 "maxprice": 120,

 "duration": "62",

 "responseTime": "32",

 "throughput": "15",

 "latency": "32"

 }

]

}

Get SmartContract by its hash

A REST API GET method (/DAC/getSmartContract/{hash}) that gets (downloads) the SmartContract
based on its Hash.

These interfaces are designed to simplify interactions with the blockchain, enabling developers to
integrate token minting and ownership management into their applications seamlessly. The endpoints
are well-documented with Swagger annotations, making them easy to discover and use.

2.3.2.2 Smart Pricing

The Smart Pricing (SP) component belongs to WP4 and it is briefly included here for the sake of
consistency. The reader is referred to D4.5 for a complete description of the component.

Description

The Smart Pricing (SP) component is an AI-driven system designed to optimize dynamic pricing
decisions within the digital marketplace. By leveraging multi-agent reinforcement learning and game-
theoretic auction mechanisms, the SP ensures competitive and balanced pricing that benefits both
providers and consumers. Hosted securely on Eight Bells premises, the module operates
autonomously, enabling trustworthy resource selection by determining fair market prices. Through
continuous adaptation to market conditions, the SP fosters a competitive environment where
providers adjust their prices dynamically, leading to optimized pricing outcomes.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

43

Architecture

At its core, the SP functions as a multi-agent reinforcement learning system, where individual agents
represent competing providers within the marketplace. These agents undergo training through a self-
play mechanism, refining their pricing strategies over multiple iterations. The pricing process is
governed by a multi-round blind reverse auction, inspired by game theory, where providers submit
bids within predefined price boundaries. During each round, only their rank relative to competitors is
disclosed, allowing them to adjust bids strategically. A key component within the SP is a load-balancing
mechanism, which ensures a fair distribution of clients across providers, based on their quality of
service and available resources. This mechanism favours less busy providers in the auction process,
promoting balanced resource allocation and preventing network congestion. By integrating dynamic
pricing, the SP reduces monopolistic pricing risks while maintaining an optimal balance between
provider profitability and consumer affordability.

Interfaces

The SP shares final pricing decisions through a secure REST API that connects only to the Marketplace.
This API acts as a trusted source of pricing data, which can be integrated into smart contracts or other
digital transactions.

2.3.2.3 Oracles

Description

As previously introduced, the NANCY marketplace requires the interaction with non-Blockchain-based
components. The way Blockchain can interact with these kinds of components is through Oracles.

An oracle is a component that provides a bridge between smart contracts deployed on a Blockchain
network and external data sources. It essentially bridges off-chain and on-chain data. Since smart
contracts cannot access data outside their Blockchain network, oracles are used to securely fetch and
verify this external information. In NANCY, the marketplace requires interaction with two non-
Blockchain-based components. These are the Smart Pricing (SP) and the Digital Agreement Creator
(DAC), so two oracles are needed.

In addition, the marketplace also interacts with the SLA Registry smart contract. This interaction is
usually directly managed inside the chaincode. However, there is a limitation in Fabric chaincode that
avoids the generation of events if a chaincode is invoked from another chaincode. That means that the
marketplace chaincode invoking the SLA Registry chaincode precludes the generation of an event from
the SLA Registry. As this event generation is required in the inter-operator domain as explained in
section 2.2.2.3, this limitation has been solved through the use of an intermediary oracle (SLA
Signature oracle).

Architecture

The NANCY oracles have been implemented from scratch using the Fabric SDK8. Figure 12 shows the
internal high-level architecture of the NANCY oracles.

8 fabricsdk package - github.com/hyperledger/fabric-sdk-go - Go Packages

https://pkg.go.dev/github.com/hyperledger/fabric-sdk-go

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

44

Figure 12. Blockchain oracles high-level architecture

Oracles have an internal Blockchain events listener since the marketplace interacts with them through
Blockchain events. The oracle analyses the received event (initPricing and initSLACreation events),
extracts the required information and notifies the SP and DAC components to start their operation
inside its workflow engine. The interaction with these components is through HTTP requests to their
exposed APIs, so the marketplace creates the required HTTP request to guarantee correct integration
with the SP (API details are gathered in D4.5) and DAC (API details are gathered in section 2.3.2.1).

The SP and DAC components make their internal operation and provide the result as an HTTP response.
This response is also analyzed by the workflow engine, which extracts the required data and processes
it to feed the Blockchain client with the required information. The Blockchain client, which also
contains a wallet, creates and signs the Blockchain transaction needed to interact with the marketplace
and provides the result of the SP and DAC components operations. For this, oracles oversee updating
the information in the marketplace chaincode regarding the SP and DAC responses through specific
“Invokes” (see setSearchPricing and setSearchSLA in section 2.3.1.2).

In the case of the third oracle, which allows the correct interaction between the marketplace
chaincode and the SLA Registry chaincode, it receives the event (initSLASignature event) through the
Blockchain events listener, it extracts and processes the required information in the workflow engine
to feed the Blockchain client where the required transaction needed to interact with the SLA Registry
is created and signed (see InitSLA in section 2.3.1.1).

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

45

2.4 Other Features of the NANCY Blockchain

2.4.1 Blockchain Monitoring Dashboard

As described in Section 2.4.2.3, MITOSIS is a flexible approach to scale the blockchain by splitting a
blockchain channel into multiple sub-channels and assign the nodes randomly to newly created
channels. As more nodes join the system, the bigger size of the validator set will slow down the
consensus process and in turn Impact the performance of the blockchain. Therefore, MITOSIS triggers
“chain division” and creates two blockchains out of one by splitting the (large) set of validators in the
original MITOSIS shard into two smaller subsets, so that the new blockchains have both a sufficiently
small set of validators and can preserve low latency.

To further facilitate the chain-splitting process in MITOSIS, we extend the Hyperledger Fabric explorer
to monitor the growth of the blockchain in real-time. By observing that one chain (i.e., Fabric channel)
in the blockchain has too many peers running, the administrator can decide to split this channel and
as well as to define how many organizations and peers should be assigned to each split channel.

Figure 13 Fabric blockchain explorer

Figure 13 to Figure 15 show a demo of the blockchain monitoring dashboard. Figure 13 shows the
blockchain explorer of the original channel ‘test-channel’ which is composed of 4 organizations and 4
peers. The control panel provides an option shown in Figure 14 to split the chain from the parent
channel, in which the administrator can further define the size (i.e., the number of participants) of the
new channels. Then it triggers a series of channel lifecycle transactions (see Figure 15) to modify the
genesis block of the original channel to update the members in the channel, as well as create a new
channel by assigning the members from the original channel.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

46

Figure 14 Control panel of chain-splitting

Figure 15 Lifecycle transactions to update channel information

2.4.2 Blockchain Scalability Mechanisms

Blockchain scalability refers to the ability of a blockchain network to handle an increasing volume of
transactions without sacrificing performance. As blockchain technology continues to gain popularity,
its ability to scale effectively is one of the most important challenges faced by developers and
businesses.

Blockchain systems rely on a consensus mechanism operated by network nodes to establish a total
order on transactions: by ensuring state changes are applied by all nodes in the same order, it
guarantees that nodes have a consistent view of the blockchain state. In most blockchain systems,
each transaction is processed by all network nodes and can be included in the ledger only if at least a

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

47

(super-)majority of the network nodes approve it. This makes blockchain systems secure but often
slow when the number of users or transactions grows. As the demand for blockchain-based
applications increases, the network must be able to process thousands of transactions per second
(tps).

The main bottleneck in scaling permissionless blockchains such as Bitcoin and Ethereum is rooted in
their relatively weak consistency property: A transaction is more likely to be stable the deeper it is in
the ledger. In other words, although blocks are generated at a regular pace, blockchain participants
cannot be certain that these blocks are stable in the ledger—they can only become more confident
that a given block will not be reverted as more blocks are appended to it. Such a probabilistic guarantee
implies a slow confirmation time—about 10 minutes for Bitcoin and 5 minutes for Ethereum—which
severely limits their throughput (below 100 transactions per second (tx/s)).

Due to the slow confirmation times, permissionless blockchain systems suffer from latency and
throughput limitations when compared to traditional state machine replication (SMR) systems (a.k.a.
permissioned blockchains). For relying on classical consensus protocols, permissioned blockchains
offer finality, meaning once a block is added to the blockchain it is permanent and cannot be rolled
back. This feature makes permissioned blockchains a more appealing and faster alternative for
practical use cases. Moreover, in a permissioned system, access and participation are restricted to
authorized entities, which is ideal for enterprise use. As a result, leading industries and financial
institutions are exploring permissioned blockchains to enhance their services and update their
operations.

Classical consensus protocols, and hence permissioned blockchains, also face scalability challenges
when it comes to the number of consensus nodes, which currently restricts their applicability to small-
and medium-sized scenarios. Indeed, classical consensus protocols require multiple rounds of
interaction among all participants before finalizing blocks in the ledger. Concretely, the communication
complexity of state-of-the-art consensus protocols resilient to Byzantine faults is at least quadratic in
the number of nodes [26].

2.4.2.1 Hardware-Assisted Byzantine-fault Tolerant Consensus

To improve the scalability of permissioned blockchains, different approaches have been explored. One
such approach is to improve the complexity of the underlying consensus protocol by leveraging
additional assumptions, e.g., network synchrony, availability of a public source of randomness, or
trusted hardware. The NANCY blockchain uses fastBFT [27] as its consensus plugin, a BFT consensus
protocol which reduces the communication rounds of PBFT [7] from 3 to 2 rounds and the
communication message complexity from O(n2) to O(n) by means of trusted hardware 9 and
cryptographic tools.

More specifically, the trusted secure hardware provides a trusted execution environment and
confidentiality of sensitive data to desired applications, so that even a powerful adversary who takes
over the whole system cannot read the private data or influence the execution process of the
protected application. In this way, the critical part of the consensus protocol execution is protected
using trusted hardware to limit the capabilities of a byzantine node. More concretely, in fastBFT, a
malicious node cannot equivocate on the sequence number assigned to a produced message, i.e.,
announcing different order of the messages to different nodes. In this way, it reduces communication
rounds during the agreement process. In addition, fastBFT improves the consensus voting process
using lightweight cryptography: the nodes are organized in a tree structure and their votes are

9 In our concrete implementation, we use Intel SGX to fulfil the role of the trusted secure hardware.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

48

aggregated using additional secret-sharing when votes are propagated to the leader node. Additional
secret-sharing only involves XOR operation, which is much faster compared to aggregation based on
digital signatures.

2.4.2.2 Benchmarking for NANCY Blockchain with fastBFT Consensus Plugin

We first integrate fastBFT to Hyperledger Fabric 2.2.4 and conduct the benchmarking using
Hyperledger Caliper 0.4.2 [28]. Caliper is a benchmark framework for multiple blockchain platforms
such as Hyperledger Fabric, Ethereum and FISCO BCOS. It is designed to benchmark transaction
throughput and latency given using real-world application transactions. One can specifically define the
smart contract to benchmark, and different transactions to the contract that involves multiple read or
write operations. One can also define the number of clients that should be simulated and select the
rate control strategy to issue client transactions.

In our benchmark setup, we build a channel composed of only one organization and one peer, so that
the transaction proposal is only submitted to one peer before sending the proposal to the ordering
service. We also use the following configuration (configtx.yaml) of the Fabric transaction batch as in
Table 4, it is a trade-off between throughput and latency. For the benchmarking smart contract, we
use the sample chaincode fabcar, which can be found in fabric-samples project release 2.2 [29].

Table 4. Fabric orderer configuration in configtx.yaml

Orderer Configuration Value

BatchTimeout 3 seconds

BatchSize.MaxMesasgeCount 50

BatchSize.PreferredMaxBytes 512 KB

fabcar is a contract of an application to save and search data of different car models. For read
operations, we call the transaction queryAllCars. Since querying transaction happens locally on a peer
without submitting it to the consensus protocol, we only benchmark this read operation once with fix-
load rate control, and this is around 1500 tx/s. Regarding write operations, we submit the transaction
createCar with random inputs of approximately 100-200 Bytes. Moreover, we issue the transactions
in the benchmark test with a fixed rate from 100 to 1200 tx/s (when applied) and test it on networks
of 3, 5, 9, 15 and 21 orderers respectively. The benchmark test is conducted on one server with CPU
Xeon E-2176G 3.7GHz with 12 vCore and 128 GB of RAM.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

49

Figure 16 Transaction throughput and latency

Figure 17 Peak throughput achieved by different network size.

We observe the measured transaction throughput and latency presented in Figure 16 and the peak
throughput for each network size in Figure 17. With 3 orderers (validators), the write operation can
reach a throughput of 766 tx/s and with 21 orderers. We found that during the benchmark test, the
CPU is only up to 50% busy and RAM 20% occupied in all tests. This means that there can be some
concurrent issues in the Caliper testing framework, which cause the resources to idle and not fully
utilized.

2.4.2.3 Scalability Techniques for Permissioned Blockchains

Another promising technique to improve scalability is blockchain sharding, a general paradigm that
involves using multiple blockchains in parallel, known as "shards," each running an independent
instance of the same consensus protocol in a smaller network (with fewer nodes). The main idea is to
operate parallel blockchain instances so that the transaction throughput increases by approximately a
factor equal to the number of shards.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

50

The NANCY blockchain leverages a variant of blockchain sharding, dubbed MITOSIS, specifically
designed for dynamic environments in which the set of blockchain nodes may expand and shrink over
time [21]. MITOSIS provides a methodology to create new blockchains recursively by splitting an
existing blockchain into two child blockchains.

Similarly to sharding, MITOSIS leverages parallelism to enable higher participation (i.e., a higher
number of blockchain nodes) while preserving the low latency of small-scale systems. Sharding
requires all shards to run the same consensus protocol, and the numbers of shards and participants in
each shard must be set at the protocol onset. In contrast to sharding, MITOSIS offers higher flexibility
by allowing each blockchain in the ecosystem to select the consensus protocol of their choice,
depending on specific requirements and trust assumptions, and it supports arbitrarily many shards and
various shard sizes. By enabling the dynamic creation of heterogeneous shards, MITOSIS provides an
attractive solution to scale permissioned blockchains in dynamic and fast-evolving environments.

MITOSIS facilitates the realization of a blockchain ecosystem with several blockchains running
autonomously. Each such blockchain comprises a set of participants sharing a certain business logic,
the participants comprising: clients, who issue transactions encoding specific service requests, and
validators, who process client requests and include transactions in the blockchain ledger. The
consensus protocol run by the validators in each MITOSIS shard is chosen by the participants of that
shard independently of the other shards in the system, and each MITOSIS shard operates as an
autonomous system. However, different MITOSIS shards can also interact with each other via cross-
chain transactions, e.g., allowing users to exchange assets across shards. Interoperability among the
various MITOSIS shards is enabled through dedicated functionalities to read from or write to
blockchains of other shards.

As more nodes join the system, if the number of validators in a MITOSIS shard becomes significant, the
latency of the underlying consensus protocol will decrease accordingly. In this case, MITOSIS triggers
“chain division” and creates two blockchains out of one by splitting the (large) set of validators in the
original MITOSIS shard into two smaller subsets, so that the new blockchains have both a sufficiently
small set of validators and can preserve low latency.

The main challenge of the chain division process is to prevent faulty nodes from concentrating in one
shard, as this may violate the trust requirements of the shard’s consensus protocol and hence fail to
guarantee security. To prevent this scenario, MITOSIS assigns validators to the two created shards
according to a randomized process.

MITOSIS Implementation

We implemented the idea of MITOSIS on top of Hyperledger Fabric. In what follows, we first give some
background information about how multiple chains are supported and reconfigured in Fabric. Then we
explain our approach to split a chain.

Fabric uses channels to support multiple independent chains. Each channel is configured by a
consortium of organizations who first agree on the configurations of the chain out-of-band, e.g., the
identities, certificates and anchor endpoints of each organization, the consensus protocol
configurations and orderer endpoints, the chaincode endorsement policies, the access control policies,
etc. The consented configuration is then encoded in a genesis block and is sent to the central registry
service of Fabric to bootstrap the channel (chain). After the chain is created, chaincodes can then be

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

51

deployed to the chain and start accepting transactions. In Fabric, a chain can also be reconfigured once
created, and any configuration update must be submitted to the central registry service as well.

Now we describe our approach to splitting a chain. We denominate the original chain as the parent
chain, while the new chain which will be created is denominated as the child chain. Moreover, we
define the size of a chain as the number of ordering service nodes participating in the consensus
process. And we indicate with T the threshold size at which a chain split will be triggered. The threshold
T must be decided by the organizations at chain creation time and depends on the consensus protocol
used.

The general process of chain splitting includes first creating a copy of the ledger state of the parent
chain and then performing a series of configuration updates that re-define the consortium of
organizations in each chain. Then user accounts will be randomly assigned to either of the chains and
therefore, their account state will be migrated to the newly assigned chain and will not have duplicates
in both chains.

To first duplicate the ledger state of the parent chain, we use the SNAPSHOT feature [30] introduced by
Hyperledger Fabric 2.3. SNAPSHOT enables the creation of an exportable representation of the state of
a channel, which can then be used by a peer to join a channel without having to download the entire
blockchain history. We use this feature to efficiently create a new channel at chain splitting time. More
specifically, a snapshot contains:

• Public state of the network, which is in the form of (key,value) tuples which are stored in the
world state database of the blockchain. It includes both application data and the configuration
of the channel, however it does not contain historical values.

• Private data hashes and their configuration collections, which can be used by organizations to
verify the private data that they receive. This is not relevant to our use of the snapshot.

• Past transaction IDs, which the peer uses to avoid accepting duplicated transactions that were
previously broadcasted on the network.

• Metadata about the snapshot, which includes the hashes of the content of the snapshot, which
can be used to verify its integrity, and the hash and number of the last block that was
committed before the snapshot.

To achieve user account migration, a ChainManager chaincode must be first deployed to every chain
that wish to be split in the future. ChainManager stores the configuration of all chains with which the
“resident chain” (the chain in which the chainManager is instantiated) wants to communicate. In fact,
the configurations of other chains are a critical piece of information when performing account
migration, as it contains the information about the nodes and the system endorsement policies of
other chains. With regard to how the configuration updates are sent to the chainManager, the protocol
imposes no limitations; the configuration could be retrieved by communicating with honest peers,
pulled from the centralized registry of configurations or a combination of both approaches. It is
important to note that the configuration updates from other chains are always validated with the
previous configuration. This step enables the chainManager to be sure that the new configuration he
receives is legitimate. The genesis block of other chains instead, is subject to the voting process, since
it cannot be verified with cryptography, and it is used as a root of trust for validating the subsequent
configuration updates. The admins of all organizations need to express their approval of the
relationship genesisBlock ←→ chainID. Once a vote has been expressed by all the organizations of the
resident chain, the genesis block is considered trusted. Other than storing the configurations of other

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

52

chains, chainManager also provides the proof verification logic, which can be used to perform on-
chain proof verification.

The split procedure involves the following steps:

1. Schedule chain split process at a future block B. When the number of ordering service nodes
of a chain reaches the threshold T, we assume that at least one honest peer triggers the start
of the split procedure. This assumption is reasonable since we assume that there is always an
honest quorum of nodes in each chain. The split process is started by proposing a block number
B which indicates the block at which the chain division will actually happen. An endorsement
is then performed on this proposal, thus guaranteeing that all organizations agree on it. Once
the proposal is endorsed by all organizations and thus the consensus on splitting at block B is
reached, all peers autonomously schedule a snapshot to be performed at that block.

2. Halt chain operations once block B − 1 is committed. This means all transactions submitted
after this point will not be endorsed by any peer. Note that block B − 1 will also be used in
subsequent steps for the randomness computation.

3. Construct block B which randomly assigns user accounts to either of the two split chains. This
operation is the only one which can be performed after the stop of the blockchain and before
the actual split of the two chains happens. This is because the data structure representing a
user’s account contains a field which determines to which chain he belongs to. By changing
this field we can change the channel on which the user is allowed to operate, since it is checked
before performing each operation.

4. Create the genesis block of the child chain based on the last configuration block of the parent
chain. More concretely, the last configuration block of the parent chain is fetched and the
channel name in the configuration block is replaced with the name of the child chain.

5. Prepare snapshot for the child chain. Since snapshot is scheduled at block B, we wait for all
peers to complete the snapshot generation process and then modify it to transport the state
of the parent chain to the child chain. More concretely, the “last block hash” field in the
metadata section is replaced with the hash of the previously fetched configuration block and
the “last block number” is set to 0, since it is the start of a new chain.

6. Agree on the hash of the snapshot. At least one honest peer sends the hash of the snapshot to
all organizations in the parent chain. The outcome of this step is a snapshot hash signed by all
organizations, which can be used by newly joining peers to securely join the child chain.
Moreover, both the genesis block of the child chain and the signed snapshot can be stored in
the chainManager chaincodes of other chains, as well as in the central registry of
configurations to increase availability.

7. Bootstrap the child chain. Organizations can now join the child chain by using the configuration
block produced at step 4 as the genesis block. It is important to note that at this moment the
world state of the child chain, which contains both application and configuration data, is
exactly the same as the world state of the parent chain by using the snapshot. The parent chain
has been successfully duplicated to the child chain.

8. Randomly assign organizations to either chains. We use the hash of block B-1 as the seed to
perform the assignment randomly so that we can have a balanced and unbiased division of
the organizations between the parent and the child chain. The pseudo-code of the algorithm
can be referred to in Figure 18.

9. Update configurations of both chains. The configurations of both chains are now updated with
the new assignment of organizations according to the previous step. Each configuration
update is stored on the central registry and in the chainManager of both chains.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

53

10. Resume chain operations. Now that the chain has been successfully split, both can be restarted
and resume their operations.

 randomness = Hash(block)
 list_parentchain = []
 list_childchain = []
 parent_chain_full = child_chain_full = false
 for orgID in sort(orgIDs):
 assignation = Hash(randomness | orgID)
 if assignation is odd:
 list_parentchain.append(orgID)
 else
 list_childchain.append(orgID)
 if len(list_parentchain) == (total_number_of_orgs / 2):
 parent_chain_full = true
 break
 if len(list_childchain) == (total_number_of_orgs / 2):
 child_chain_full = true
 break
 if parent_chain_full == true:
 child_chain.append(remaining_orgs)
 if child_chain_full == true:
 parent_chain.append(remaining_orgs)

Figure 18 Pseudo-code of random assignment for organizations between parent chain and child chain

Note that to enable the above chain split procedure, some modifications to the code base of
Hyperledger Fabric are necessary and the following components have been modified:

• Configuration system chaincode. We added a function to reach a consensus on the hash of a
snapshot. It receives a channel ID and a block number, which together identify univocally the
snapshot, as well as the hash of the snapshot. If the hash computed based on the local copy
of the snapshot matches the input, the function returns true.
Moreover, a function is added to compute at which block to perform the snapshot. The
function takes a positive integer as input as the offset, and the sum of the current block height
and the offset would be where the snapshot will be scheduled.

• Lifecycle system chaincode. We modify it to enable the commit of transactions coming from
the cscc system chaincode.

We further evaluate the time it takes to complete the chain-splitting process. Note that during the
chain split, the liveness of the original blockchain suffers an interruption. Therefore, the performance
result gives an indication of how long the blockchain service is not available to process any transactions.
The resulting plot is provided in Figure 19. We see that the latency increases linearly with the size of
the organization consortium. Since chain split is an occasional event, the interruption of several
minutes is still acceptable.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

54

Figure 19 Latency of the chain split procedure versus number of organizations in the network.

2.4.3 Data Integrity Mechanisms

To provide data integrity for activities in the use cases, we use blockchain to timestamp any type of
data for all partners to, later on, refer to the logged data. More specifically, we deploy a smart contract
to simply record the id and the message digest of the data as a transaction without really saving them
in the state. The message digest of the data must be yielded through a cryptographic hash function to
avoid collision. The interface CreateLog only returns OK without recording the data in the state.
When the submitted transaction is successfully validated, the partner must save the returned
transaction Id for further reference. To later refer to the data, the partner can provide the transaction
Id, which is timestamped in the blockchain and shows that the message digest of the data matches.

Chaincode Interface Description

CreateLog(dataMD string)

Returns OK.

2.4.4 Tokenization of Digital Assets

Tokenization of digital assets is a valuable sub-component for the NANCY blockchain to provide secure
and flexible asset management. This sub-task focuses on enabling the creation, representation, and
management of digital assets through tokenization mechanisms, adhering to blockchain standards for
interoperability and transparency.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

55

Description

The tokenization process provides a mechanism to digitally represent real-world or virtual assets as
tokens on the blockchain. The key functionalities include:

1. Smart Contract Development:
• Implementation of an ERC-721 compliant smart contract compatible with Hyperledger

Fabric to enable non-fungible token (NFT) creation.
• Definition of token attributes such as ownership, metadata, and uniqueness to represent

digital assets accurately.
2. Asset Storage Integration:

• Data is stored as assets in a decentralized file system (e.g., IPFS) while linking this data with
the token on the blockchain.

• Seamless access is ensured for tokenized assets through blockchain references.
3. Asset-Token Association:

• Enable the binding of asset metadata to tokens using unique identifiers, ensuring
traceability and authenticity.

• Support for operations such as transfer of ownership, metadata updates, and token
revocation.

Figure 20. Admin prerequisites

Regarding the deployment of the contract, as shown in Figure 20, an Admin user can upload the digital
assets to the IPFS and collect the corresponding CID (Content Identifier). Then, deploy the smart
contract in the private network and associate the smart contract’s minted (created) assets with the
CIDs

Architecture

The tokenization system integrates smart contracts and a decentralized storage system to realize the
tokenization module. More specifically, the following components:

• Smart Contracts: They reside on the blockchain network and handle token lifecycle
management, including minting, transferring, and burning tokens.

• Decentralized Storage: Asset data can be securely stored in IPFS (or another decentralized
storage solution), with references stored on the blockchain.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

56

Figure 21. Smart contract pseudo-lang

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

57

Interfaces

• Blockchain Smart Contracts: These smart contracts effectively manage the token lifecycle and
ensure compliance with the tokenization standards like ERC-721 and ERC-1155 token
standards.

• Storage Layer (IPFS): Provides persistent storage for digital assets while maintaining
decentralization and security.

The smart contract, with all the inherent functions in pseudo-language, is shown in Figure 21.

In Hyperledger Fabric, the primary distinction between invoke functions and query functions lies in
their interaction with the blockchain ledger (see Table 5). Invoke functions are designed to modify the
state of the ledger by performing operations such as creating, updating, or deleting records. These
functions require endorsement and consensus from the network peers before the changes are
committed to the blockchain, ensuring that all modifications are permanent and consistent across the
network. On the other hand, query functions are read-only operations that retrieve data from the
ledger without altering its state. They execute on a single peer and do not involve consensus, making
them lightweight and efficient for data retrieval tasks such as checking ownership, balances, or
metadata. While invoke functions are essential for state-changing operations like minting or
transferring tokens, query functions are crucial for providing insights and visibility into the ledger’s
current state without impacting its data.

Table 5. Invoke vs Query Functions

Aspect Invoke Functions Query Functions

Effect on Ledger Modify the ledger state Do not change the ledger state

Transaction
Process

Require endorsement and
consensus Do not require consensus

Persistence Results are persisted to the
blockchain Results are transient (read-only)

Performance
Impact Involves full transaction lifecycle Lightweight, executed on a single

peer

Usage Examples Minting tokens, transferring
ownership

Checking balances, retrieving
metadata

Let us present a more specific overview of the invoke and query functions displayed on the smart
contract. The functions are categorized based on their types:

Invoke Functions

1. initialize(name: String, symbol: String)
• Purpose: Sets the name and symbol of the token collection and ensures the contract is

initialized only once.
• Usage: Called during the deployment of the smart contract to define the collection's

identity.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

58

• Key Checks: (i) Prevents re-initialization. (ii) Only authorized entities can initialize the
contract.

2. mint(tokenId: String, tokenURI: String, owner: String)
• Purpose: Creates a new NFT with a unique identifier (tokenId) and assigns it to an owner.
• Usage: Used to tokenize a new digital or physical asset.
• Key Actions: (i) Ensures tokenId is unique and not already minted. (ii) Associates metadata

(via tokenURI) with the token for descriptive purposes. (iii) Updates the owner's balance
and token mappings.

Example: Tokenizing a digital artwork by assigning it a “tokenId” and linking it to a metadata
URI.

3. transfer(from: String, to: String, tokenId: String)
• Purpose: Transfers ownership of an NFT from one user to another.
• Usage: Called when the current owner wants to transfer or sell the NFT.
• Key Actions: (i) Validates that the sender is either the owner or an approved operator. (ii)

Updates ownership in the ledger. (iii) Clears any existing approvals for the token. (iv) Emits
a Transfer event for traceability.

4. approve(operator: String, tokenId: String)
• Purpose: Grants approval to a third-party operator to manage a specific NFT.
• Usage: Allows the operator to transfer the token on behalf of the owner.
• Key Actions: (i) Verifies that the caller is the token owner. (ii) Updates the approval status

in the ledger. (iii) Enables the operator to act on the owner's behalf for the specified token.
5. burn(tokenId: String)

• Purpose: Permanently removes an NFT from the ledger.
• Usage: Used to retire tokens that are no longer needed or have fulfilled their purpose.
• Key Actions: (i) Validates ownership. (ii) Deletes the token from the ledger. (iii) Emits a

Transfer event indicating the token was burned.

Query Functions

6. isApprovedForAll(owner: String, operator: String)
• Purpose: Checks whether an operator is authorized to manage all NFTs owned by a specific

user.
• Usage: Provides flexibility for users to delegate NFT management to trusted operators.
• Key Actions: (i) Looks up the owner-operator approval mapping. (ii) Returns true if the

operator has been granted global approval by the owner.
7. getNFT(tokenId: String) -> NFT

• Purpose: Retrieves the details of a specific NFT, including its owner and metadata.
• Usage: Used by clients or external systems to query the state of a token.
• Key Actions: (i) Checks if the tokenId exists. (ii) Returns the NFT data if found.

8. getOwner(tokenId: String) -> String
• Purpose: Returns the owner of a specific NFT.
• Usage: Helps verify ownership during transactions or external queries.
• Key Actions: (i) Fetches the owner information for the specified tokenId.

9. getMetadata(tokenId: String) -> String
• Purpose: Retrieves the metadata URI associated with an NFT.
• Usage: Provides descriptive details about the asset, such as its name, image, or other

properties stored off-chain.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

59

• Key Actions: (i) Ensures the token exists. (ii) Returns the TokenURI.
10. getBalance(owner: String) -> List of NFT

• Purpose: Retrieves all NFTs owned by a specific user.
• Usage: Enables users to query their portfolio of NFTs.
• Key Actions: (i) Looks up all tokens associated with the given owner.

11. NFTExists(tokenId: String) -> Boolean
• Purpose: Checks whether an NFT with the given tokenId exists.
• Usage: Ensures that operations like transfers or updates are only performed on valid

tokens.
• Key Actions: (i) Queries the ledger for the token's existence.

Lifecycle events are notifications or logs emitted by a blockchain smart contract to indicate significant
actions or state changes in the lifecycle of an asset or transaction. These events provide transparency,
traceability, and integration capabilities by broadcasting important updates to off-chain systems or
users. In the context of the ERC-721 Smart Contract, lifecycle events play a crucial role in managing
and tracking the state of non-fungible tokens (NFTs). They ensure that stakeholders are informed
about key actions, such as minting, transferring, or approving tokens, and enable external systems
(e.g., applications, marketplaces) to react or synchronize with these changes.

Lifecycle Events

1. Mint Event (Transfer with from = 0x0):
a. Triggered when a new NFT is created.
b. Indicates the initial assignment of ownership.

2. Transfer Event:
a. Triggered when ownership of an NFT changes.
b. Provides details of the sender, recipient, and token.

3. Approval Event:
a. Triggered when a third party is approved for a specific token or all tokens owned by a

user.

The implementation of ERC-721 compliant smart contracts within the NANCY blockchain offers a
robust and scalable solution for the tokenization of digital assets. By leveraging the unique capabilities
of non-fungible tokens (NFTs), this approach guarantees secure ownership, traceability, and seamless
interoperability of assets, whether digital or physical. To enhance privacy and monitoring capabilities,
the solution is deployed on a private blockchain network, ensuring robust data protection while
allowing comprehensive oversight of the network. This design effectively balances security, privacy,
and functionality, enabling efficient asset management without compromising sensitive information.

2.4.5 Monitoring and Verification of the Transactions

Monitoring and verification are integral to the NANCY blockchain, ensuring transaction integrity,
correctness, and transparency. Verification involves simulating transaction proposals on peers to
validate compliance with endorsement policies and ensure ledger consistency, preventing invalid or
unauthorized transactions from advancing. Monitoring complements this by tracking transaction
activities, logging validation outcomes, reasons for rejections, and performance metrics, thereby
enabling real-time visibility, auditing, and debugging.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

60

In the NANCY blockchain, clients submit transaction proposals directly to peers for validation,
bypassing the orderer and avoiding unnecessary computational overhead. Immediate feedback is
provided to the client application, while a user-friendly Swagger UI and robust logging mechanisms
enable users to query results, analyze metrics, and maintain full traceability. By integrating these
mechanisms, the monitoring and verification processes ensure a secure, efficient, and accountable
network, forming a critical foundation for the integrity and reliability of the NANCY blockchain system.

Description

The key functionalities of the proposed NANCY’s monitoring and verification of transactions include:
• Transaction Proposal Validation: This enables client applications to create transaction

proposals and send them to the appropriate peers for simulation and endorsement. Peers
execute the transaction logic, validating (i) the endorsement policy compliance and (ii)
read/write consistency with the current ledger state.

• Result Feedback: Collects the simulation results and endorsements from the peers. Moreover,
it provides feedback to the client application on whether the transaction meets all validation
criteria.

• Transaction Metrics Logging: Logs metrics for each validation attempt, such as the number of
validated and rejected transactions, reasons for failure, and simulation results.

• Efficient Monitoring: Uses APIs exposed via a Swagger UI to enable users to interact with the
system for querying transaction statuses, validation results, and other metrics.

Architecture

The architecture for the monitoring and verification system in the NANCY blockchain can be seen in
Figure 22.
The system is designed to ensure secure, efficient, and transparent transaction validation by
integrating key components at various layers. The Client Application Layer serves as the interface for
generating transaction proposals and sending them to the blockchain peers for simulation. After
validation, the client app receives feedback, including endorsements and validation results, to
determine if the transaction can proceed to the orderer.

The Blockchain Peers handle the simulation and validation of transaction proposals. These peers
execute the smart contract logic to validate compliance with endorsement policies and check ledger
consistency, returning results to the client app without committing transactions to the ledger.

A Metrics Logging mechanism captures validation results and performance metrics, storing them in a
centralized database for auditing, debugging, and performance analysis. Users can interact with the
system through a Swagger UI, which exposes APIs for querying transaction statuses, validation
outcomes, and detailed metrics.

• Client Application Layer: The client app generates transaction proposals and sends them to
the appropriate peers for simulation. After validation, it receives feedback from the peers to
determine if the transaction can be submitted to the orderer for ordering.

• Blockchain Peers: These peers simulate and validate the transaction proposal without
committing it to the ledger. Then, the results of the simulation are returned, including
endorsements and validation errors, to the client app.

• Metrics Logging: Validation results and metrics are logged in a centralized database for
auditing and performance analysis.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

61

Interfaces

• Client Application: The client app sends the transaction proposals to peers for validation. It
also receives simulation results and endorsements to decide on further actions.

• Blockchain Peers: Executes smart contract logic and validates the transaction proposal
without committing it.

• Swagger UI: This swagger provides APIs for querying transaction validation results and fetching
metrics and simulation outcomes.

Figure 22. High-level architecture of the NANCY Transaction evaluation

By allowing transaction proposals to be validated without submission to the orderer, this task ensures
the correctness and security of operations while reducing unnecessary computational overhead. The
integration of a client application for transaction proposal evaluation, coupled with a Swagger UI for
querying results, provides users with a streamlined and transparent interface for interaction.
Furthermore, the logging and indexing mechanisms ensure complete traceability, enabling effective
debugging, auditing, and performance analysis.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

62

3 NANCY ID Management Tools
This section delves into the Self-Sovereign Identity and other privacy-oriented mechanisms researched
in NANCY. It also describes the NANCY Wallet itself and its PQC Signature and SSI capabilities.

3.1 Introduction to SSI and wallets

Self-Sovereign Identity (SSI) is an approach to allow individual users to manage and control their own
identities through a decentralized identity management system. In contrast to existing traditional
identity management systems, where a centralized party (usually issuers), manage all the identities
and credentials of a user and provides requested authentication services for the user to other
application services (i.e., verifiers), SSI allows users to generate their own identities and keep the
corresponding credentials locally, e.g., in a digital wallet, and handle authentication or authorization
process directly with any application services. In this way, credential issuers will not be involved in
every authentication process and thus improve efficiency as well as user privacy.

W3C has proposed corresponding standards for SSI systems, namely, the Decentralized Identifiers
(DIDs) [31] and the Verifiable Credentials (VCs) [32]. DID provides a standardized approach to uniquely
identifying users or subjects in decentralized systems, and VC describes a way to manage credentials,
i.e., digitally signed attestations regarding a subject's attributes or affiliations, by leveraging DIDs for
trust and interoperability. The standards propose an architecture where a user holds DIDs and VCs in
his own digital wallet, requests issuers to acquire VCs, and interacts with verifiers to get authenticated
by presenting Verifiable Presentations (VPs) derived from his VCs without disclosing his credentials.
Meanwhile, all parties upload the public part of their identifiers and schemas in a verifiable data
registry for other parties to lookup information (see the architecture in Figure 23).

Figure 23. SSI Architecture with NANCY wallet and NANCY blockchain

The NANCY project functional requirements on privacy suggest the deployment of an SSI system for all
providers and consumers. In this project, we use the NANCY blockchain as the verifiable data registry.
All entities register their DIDs and the associated verification public keys in the blockchain. Issuers also
publish the revoked or suspended VCs in the blockchain. We also provide every player with a wallet to
manage their DIDs and VCs. Furthermore, the wallet also keeps the blockchain credentials used to
interact with the NANCY blockchain, as it is a permissioned blockchain. For organizations such as

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

63

operators, the wallet also acts as a gateway that manages identities for multiple members from the
same organization.

3.1.1 DID Registry and VC (Revocation) Registry

Description

As a verifiable data registry, the NANCY blockchain manages DID registration and VC revocation
through two smart contracts. The DID registration is handled by smart contract DIDRegistry, which
records DIDs and public keys associated with the DIDs. Meanwhile, another smart contract, VCRegistry,
keeps a list of all revoked VCs for verifiers to look up during authentication.

Note that all smart contracts are implemented as Fabric chaincode in Golang. As introduced in Section
2.2, Fabric is a permissioned blockchain where all transaction issuers must first register by the CA of
their organization to acquire an enrollment certificate (ECert) for contract invocations or queries. For
both of our smart contracts, where access control policy is applied, we require that the identities
registered in the ECert, i.e., CommonName, must align with the DIDs of the corresponding records that
the transaction issuer wishes to access. More specifically, while DID is the form of
did:<did_method>:<id>, the CommonName of the certification must be <did_method>-<id>.

Interfaces

In what follows, we present the interfaces of these smart contracts (see Table 6).

Table 6. Interface description of smart contract DIDRegistry

Chaincode Interface Description

DIDRegistry(didMethods []string)

is the constructor of the chaincode that defines a list of DID methods that are allowed to be
recorded by this chaincode instance.

DID methods are the mechanism by which a particular type of DID and its associated DID
document are created, resolved, updated, and deactivated. See more explanations in W3C
standards.

DIDMethods()

returns the list of DID methods that are allowed to be recorded by this chaincode instance.

register(did string, didDocument string)

adds a record of DID and its corresponding DID document (JSON string) in the registry. The
chaincode must enforce access control decision that the transaction issuer possesses a valid ECert
who is the controller of the corresponding DID. The input didDocument can be a boilerplate of
the corresponding DID document.

resolve(did string)

returns the complete DID document of the queried DID did in JSON string.

update(did string, attrs …string)

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

64

updates the record of did in the ledger with the supplied list of new attributes. The list of attrs are
supplied in pairs (attr, value), in which attr is the path to an attribute in the DID document;
and value is a JSON string that is used to overwrite the value of attr.

The chaincode must enforce access control decision that the transaction issuer possesses a valid
ECert who is the controller of the corresponding DID. And update is not allowed to overwrite the
"id" field of the DID document.

delete(did string)

removes a record of did from the ledger. The chaincode must enforce access control decision that
the transaction issuer possesses a valid ECert who is the controller of the corresponding DID.

Now we define the VCRegistry chaincode to save the records of revoked or suspended Verifiable
Credential (VCs).

Note that records of the registry are intended to be publicly accessible, we should take into
consideration that the privacy of the VC content should not be compromised, even though they are
revoked or suspended. For example, a revoked VC of a driver license still contains valid information
about the name and birthday of a user; and we must leave this information out of the blockchain.
Therefore, we only store a reference of the VC, for example, a cryptographic hash value of the VC, in
the blockchain.

The constructor of the VCRegistry chaincode can define the criteria of the issuers, e.g., based on the
attributes in their certificates, to apply finer access control rules on who is allowed to revoke VCs in
this chaincode instance (see Table 7).

Table 7. Interface description of smart contract VCRegistry

Chaincode Interface Description

revoke(vcRef string, issuerDID string)

records that a VC with vcRef is revoked by the issuer issuerDID. The chaincode must enforce
access control decision that the transaction issuer possesses a valid ECert that is issued to
issuerDID. Then the revoked vcRef is recorded in the ledger, along with the issuerDID. Note
that issuerDID must be stored along, as the chaincode cannot verify if the input issuerDID is
indeed the issuer of the corresponding VC of the input vcRef. It is the responsibility of the querier
to validate this information when retrieving the revocation list.

suspend(vcRef string, issuerDID string)

records that a VC with vcRef is suspended by issuer issuerDID in a similar way as revoke.

lookupVCStatus(vcRef string, issuerDID string)

returns the status of VC, whether it is revoked, suspended or NA. NA means the queried VC is
neither revoked or suspended as recorded in the registry.

getRevocationList(issuerDID string)

returns a list of vcRef that are revoked by issuerDID. The input issuerDID is optional and if
empty, retu1rn the full revocation list.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

65

getSuspensionList(issuerDID string)

returns a list of vcRef that are suspended by issuerDID. In a similar way as
getRevocationList.

3.2 The NANCY Wallet

The NANCY Wallet WALLETGATEWAY creates and holds the DIDs and credentials for the users, i.e.,
providers and consumers. In addition, the wallet, as integrated with each relevant component (e.g.
UEs, SOs, BSS, others), runs a gRPC service to communicate with the blockchain. As explained in 2.3.1
and 3.1.1, the NANCY wallet gateway has defined specific gRPC methods to interact with the
marketplace and the DID registry smart contracts.

Users can interact with the wallet gateway service with any gRPC implementation, for example,
grpcurl. To improve the usability, we also provide a wallet client implementation WALLETCLIENT so
that users can talk to the wallet with command line options. The usage of WALLETCLIENT is defined in
Section 3.2.3.4.

The NANCY wallet has two roles: (1) User Equipment (UE) wallet or (2) non-UE wallet. Note that
consumer users can be UE or non-UE, depending on whether the consumer is an operator, but
providers are all non-UEs.

Each wallet is initialized with a uid provided by the user, where the uid has to be locally unique in
each wallet storage. The uid is used as an alias for the user to restart the wallet later. When a wallet
is initialized with a uid, it automatically creates a DID in the form of did:nancy:<uid>-
<pubkey_md>. pubkey_md is the message digest (the first 16B of the Base58 encoding of SHA256)
of the public key of the DID key pair, where the DID key pair for verification is either randomly
generated based on ECDSA256 for a non-UE wallet, or retrieved from the PQC hardware token by
querying through the specified APIs defined in Section 3.2.3.1 if it is a UE wallet. Note that each UE
wallet holds only one PQC key pair and thus all associated DIDs will refer to the same PQC key material.
The message digest of the public key is salted with a random value before being hashed, so that the
combined DID string is anonymous as well as globally unique. Since Fabric certificates (ECert) refrain
from the usage of some special symbols including “:”, the full DID string cannot be used as the identity
of a Fabric certificate, therefore, we escape the prefix and only use nancy-<uid>-<pubkey_md>
as the enrollment id of the ECert.

As a gateway to the blockchain, the wallet serves as a registrar of the CA, and it registers as well as
enrolls each user to the blockchain. The enrollment certificates that the wallet acquires from the
blockchain are saved to the local /wallet/ directory.

3.2.1 PQC Signature Capabilities of the NANCY Wallet

A PQC Digital Signature Solution was developed, composed of:

• PQC Signature Token: it consists of a smart card integrating a quantum-resistant digital
signature algorithm. TDIS follows the ongoing initiative from NIST to standardise a set of
quantum-resistant algorithms 10 . This feature can be used to ensure the integrity and
authentication of NANCY blockchains. For this purpose, asymmetric key pairs are used: the

10 Post-Quantum Cryptography | CSRC (nist.gov)

https://csrc.nist.gov/projects/post-quantum-cryptography

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

66

private keys are stored in the token and used to sign. The signature is internally processed and
based on the digest of the block data. On the other hand, the associated public keys allow the
receiver to check the signature and, thus to verify the authenticity and integrity of the block.

• PQC Signature Middleware: this middleware (or driver) provides minimal services to the
NANCY wallet for interfacing with the token.

• JAVA SDK: this toolkit provides the necessary wrappers as the NANCY wallet is developed in
Java language.

The PQC Digital Signature Solution presents the following features:

• Frugal implementation of PQC Digital Signature on tiny CPU devices environment (32bits
CPU, 24kB RAM)

• Selected PQC algorithm: Crystals Dilithium-SHAKE targeting security level level 3 as
recommended by NIST agency

• High secure implementation of the cryptographic algorithm including countermeasures
against state-of-the-art attacks (side channel, fault injection attacks)

• Acceptable performance compared to classical cryptography
• Hybrid concept that consists of a combination of pre-quantum and post-quantum

cryptographic algorithms

Extended information can be found in NANCY D5.1.

3.2.2 SSI Capabilities of the NANCY Wallet

For each user account created in Wallet, an anonymous DID is automatically created for that user in
form did:nancy:<uid>-<pubkey_md> and registered in the blockchain via DIDRegistry. Moreover,
the wallet provides standard interfaces for manual management of DIDs and VCs. More details can be
found in Section 3.2.3.2 and the interface description in Section GRPC API for SSI.

3.2.3 Architecture and Interfaces

This section includes descriptions of the architecture and interfaces for the:
- PQC capabilities of the NANCY wallet
- SSI capabilities of the NANCY wallet

3.2.3.1 Architecture overview for the PQC capabilities of the NANCY wallet

As shown in Figure 24, the solution is composed of two basic elements:

• PQC Signature Token: smart card implementing the PQC digital signature
• PQC Signature Middleware: contains the Driver offering easier access to the token from

the upper Applications

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

67

Figure 24: Architecture of the PQC Signature Solution

PQC Signature Middleware

The PQC Signature Middleware published to the Application layer a set of APIs commonly used in PKI
systems namely PKSC#11 11 and used for digital signature purposes. The provided PQC Signature
Middleware is running on a Linux PC. Resource Manager & PC/SC drivers are the market low-layer
drivers to facilitate access to the smart cards. The communication interface with the smart cards can
be Contact (ISO/IEC 7816) or Contactless RFID (ISO/IEC 14448).

PQC Signature Token

Figure 25: Architecture of the PQC Signature Token

Figure 25 represents the architecture of the PQC signature device. At the top of the diagram, we see
the application layers, including the target electronic signature application, named QSign (Quantum

11 Workspace Home - OASIS (oasis-open.org)

https://groups.oasis-open.org/home

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

68

Signature) managing all the PKI operations. This application will rely on JavaCard APIs (standard and
proprietary), implemented by the upper layers of the Operating System.

At the lower layers, we find the cryptographic primitives Dilithium and Kyber. Finally, we find the
Hardware Chip containing the CPU, RAM and NVM memories, Cryptographic hardware accelerations,
security sensors, etc. The communication interface with the external system can be contacted (ISO/IEC
7816) or contactless RFID (ISO/IEC 14448).

As shown in Figure 26, a Java SDK provides the necessary Java to Native wrappers since the NANCY
wallet is developed in Java language.

Figure 26: NANCY PQC Java SDK

PQC Signature Middleware Communication Interfaces

The PQC Signature Middleware publishes a set of APIs allowing the upper application to:
• Generate a new key pair
• Create a Signature

Figure 27 represents the sequence diagrams for the communication during a key pair generation. This
sequence is not used in NANCY Demonstrators as PQC Signature Tokens are personalized at TDIS
factory, but it is shown here since the project has researched it for a real deployment.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

69

Figure 27: Generating a key pair

Figure 28 represents the sequence diagram for the PQC signature capability.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

70

Figure 28: Signature Creation

3.2.3.2 Architecture overview for other capabilities of the NANCY wallet (SSI and interaction with the

Marketplace, including SLAs)

Figure 29 illustrates the interaction between the wallet client, the wallet gateway, and the smart
contracts in the NANCY blockchain. WALLETGATEWAY maintains all the credentials for a user and runs a
gRPC service that can issue transactions to or query data from the blockchain. Users can access the
wallet via any gRPC clients such as grpcurl and Postman. We provide a WALLETCLIENT implementation
that simplifies the queries.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

71

Figure 29 Architecture of the interaction between the wallet and the NANCY blockchain

WALLETGATEWAY Interfaces

In what follows, we first present in the gRPC methods of the WALLETGATEWAY service, which can be
queried using any gRPC implementation such as grpcurl. Then we present the usage of the
command line tool WalletClient that can talk with the WALLETGATEWAY service through the gRPC
methods described.

3.2.3.3 gRPC Service of WALLETGATEWAY

The wallet gateway service is called dlt.DltGatewayService. It has defined the following gRPC
methods:

GRPC API for SSI

o Issuer Methods
CreateCredential

Creates a verifiable credential with the provided properties for the holder with the given
holderDID.

Request: dlt.CredentialParam
- `string holderDID` - The holder's DID.
- `string properties` - The properties in JSON format.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

72

Example of properties in JSON format:

{

 "name":"Bob",

 "surname":"Smith",

 "age":24,

 "gender":"non-binary

}

Response: dlt.Credential
- `string vcRef` - The credential reference.
- `string credential` - The credential in JSON format.
- `string error` - The error message if any.

Example of credential in JSON format:

{

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://www.w3.org/2018/credentials/examples/v1"

],

 "type": [

 "VerifiableCredential",

 "NancyCredential"

],

 "id": "VerifiableCredential-1725877365488",

 "issuer": "did:nancy:issuer-A",

 "issuanceDate": "2024-09-09T10:22:45Z",

 "expirationDate": "2029-06-17T18:56:59Z",

 "credentialSubject": {

 "id": "did:nancy:holder-1",

 "userType": "userEquipment",

 "priority": "high",

 "budget": "1000"

 },

 "proof": {

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

73

 "type": "EcdsaSecp256k1Signature2019",

 "created": "2024-09-09T10:22:45Z",

 "domain": "example.com",

 "nonce": "T1m8G52e5oiNjLA",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "did:nancy:issuer-A#key-1",

 "jws":
"eyJiNjQiOmZhbHNlLCJjcml0IjpbImI2NCJdLCJhbGciOiJFUzI1NksifQ..1EcFzoO95atggYsKZje5l3DLaphWhBwKP
Miuvq2_XwIaDNh8UChkx7yx6UBMSX4r7lY68yAZleFUSIiHdhyx7g"

 }

}

ListCredentials
Returns a serialized JSON list of the credentials created by the queried issuer.
Request: google.protobuf.
An empty request parameter

Response: dlt.Response
- `string value` - List of credentials in JSON format.
- `string error` - The error message if any.
Example of the list of credentials in JSON format.

[

 {

 "holderDID": "did:nancy:holder-1",

 "properties": "{\"userType\":\"userEquipment\",\"priority\":\"high\",\"budget\":\"1000\"}",

 "vcRef": "6dc687a9dd37119497029fb018bcb160a3bba7e3fc59629667fa80752b5403d7",

 "revoked": true

 },

 {

 "holderDID": "did:nancy:holder-2",

 "properties": "{\"userType\":\"userEquipment\",\"priority\":\"low\",\"budget\":\"4000\"}",

 "vcRef": "5556dc6ddegrg54dd37119497029fb018bcb160a3bba7e3fc5962wefewfgtehg",

 "revoked": false

 }

]

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

74

RevokeCredential
Revokes a credential that was issued by the queried issuer.
Request: dlt.Request
- `string value` - The credential reference (the vcRef received returned in CreateCredential
method).

Response: dlt.Response
- `string value` - Empty.
- `string error` - The error message if any.

o Holder Methods

CreatePresentation

Creates a verifiable presentation. It is necessary to get the nonce from the verifier before.

Request: dlt.PresentationParam
- `string credential` - The credential in JSON format.
- `string nonce` - The nonce.

Response: dlt.Response
- `string value` - The presentation in JSON format.
- `string error` - The error message if any.

Example of presentation in JSON format:

{

 "@context": [

 "https://www.w3.org/2018/credentials/v1"

],

 "type": [

 "VerifiablePresentation"

],

 "verifiableCredential": {

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://www.w3.org/2018/credentials/examples/v1"

],

 "type": [

 "VerifiableCredential",

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

75

 "NancyCredential"

],

 "id": "VerifiableCredential-1725877365488",

 "issuer": "did:nancy:issuer-A",

 "issuanceDate": "2024-09-09T10:22:45Z",

 "expirationDate": "2029-06-17T18:56:59Z",

 "credentialSubject": {

 "id": "did:nancy:holder-1",

 "userType": "userEquipment",

 "priority": "high",

 "budget": "1000"

 },

 "proof": {

 "type": "EcdsaSecp256k1Signature2019",

 "created": "2024-09-09T10:22:45Z",

 "domain": "example.com",

 "nonce": "T1m8G52e5oiNjLA",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "did:nancy:issuer-A#key-1",

 "jws":
"eyJiNjQiOmZhbHNlLCJjcml0IjpbImI2NCJdLCJhbGciOiJFUzI1NksifQ..1EcFzoO95atggYsKZje5l3DLaphWhBwKP
Miuvq2_XwIaDNh8UChkx7yx6UBMSX4r7lY68yAZleFUSIiHdhyx7g"

 }

 },

 "proof": {

 "type": "EcdsaSecp256k1Signature2019",

 "created": "2024-09-09T10:23:30Z",

 "domain": "example.com",

 "nonce": "IerPI5rCX7Ap",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "did:nancy:holder-1#key-1",

 "jws":
"eyJiNjQiOmZhbHNlLCJjcml0IjpbImI2NCJdLCJhbGciOiJFUzI1NksifQ..x0kUqk66E2aAcIjVXO8vZ1hnmqAWfOVr2
FYb0T0z9iAdke1c_8e8qlxVMsUkSHPfUF0FWBJmTwWPK3-9-JkaEQ"

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

76

 }

}

o Verifier Methods
VerifyCredential

Verifies a credential. It is necessary that GetNonce is first called for the holder associated with the
requested VP.

Request: dlt.Request
- `string value` - The verifiable presentation in JSON format.

Response: dlt.Verification
- `string error` - The error message (e.g. Network error, Blockchain error)
- `string cause` - The reason for failure (e.g. the credential was revoked, the signature is wrong).
- `bool result` - The result of the verification.

GetNonce

The verifier creates a nonce associated with the queried holderDID so it will be used for verification
of the VP later on.

Request: dlt.Request
- `string value` - The DID.

Response: dlt.Response
- `string value` - The nonce associated to the queried DID.
- `string error` - The error message if any.

Following are the GRPC methods for interacting with the Marketplace (providers and services).

GRPC API for Marketplace
o Methods to manage providers:

The data model for providers is:

• name: Name of the provider. Type: string. Ex: "vodafone"
• type: Type of providers. Type: string. Enum with values: ["operator", "publisher"]

The search component keeps track of the status of the request of a user for Service.

CreateProvider
Registers a new provider.
Request: dlt.Request
- `string value` - The provider details in JSON string.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

77

Example of JSON:
{

 "id": " did:nancy:123-CwDuTckhy2D5VicHSFbVQG ",

 "name": "orange",

 "type": "publisher"

}

Response: dlt.Response
- `string value` - The provider in JSON string.
- `string error` - The error message if any.
Example of response ”value” in JSON format:
{

 "id": " did:nancy:123-CwDuTckhy2D5VicHSFbVQG ",

 "model_type": "nancy_provider",

 "model_version": "0.1.2",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725538763,

 "name": "orange",

 "type": "publisher"

}

GetProvider
Returns the provider details given the provider ID.

Request: dlt.Request
- `string value` - The provider id.

Response: dlt.Response
- `string value` - The provider in JSON string.
- `string error` - The error message if any.
Example of provider in JSON format:
{

 "id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG",

 "model_type": "nancy_provider",

 "model_version": "0.1.2",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

78

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725538763,

 "name": "orange",

 "type": "publisher"

}

UpdateProvider
Updates the attributes of a provider.

Request: dlt.Provider
- `string providerId` - The provider id.
- `string json` - A request with the following format. Type JSON.
{

 "type": "operator2"

}

Response: dlt.Response
- `string value` - The provider details in JSON format.
- `string error` - The error message if any.

ListProvider
Lists all providers that match the filter.

Request: dlt.Request
- `string value` - The filter to apply for retrieving the list of providers.
Example of filter JSON:
{

 "id": { "$regex": ".*" }

}

Response: dlt.Response
- `string value` - The list of filtered providers in JSON format.
- `string error` - The error message if any.
Example of list of providers:
[

 {

 "id": " did:nancy:123-CwDuTckhy2D5VicHSFbVQG",

 "model_type": "nancy_provider",

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

79

 "model_version": "0.1.0",

 "owner":
"eDUwOTo6Q049dXNlcjEub3JnMC5uYW5jeS5kZXYsT1U9Y2xpZW50K09VPW9yZzErT1U9ZGVwYXJ0bWVudD
E6OkNOPWNhMS5vcmcwLm5hbmN5LmRldixPPW9yZzAubmFuY3kuZGV2LEw9UmFsZWlnaCxTVD1Ob3J0aC
BDYXJvbGluYSxDPVVT",

 "mspi_id": "",

 "timestamp": 1721771340,

 "name": "vodafone",

 "type": "operator"

 },

 {

 "id": " did:nancy:456-GzerZ4WEgEM2Avx9zmMRUr",

 "model_type": "nancy_provider",

 "model_version": "0.1.0",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1721773759,

 "name": "vodafone",

 "type": "operator2"

 }

]

DeleteProvider
Deletes a provider given the provider ID.

Request: dlt.Request
- `string value` - The provider id.

Response: dlt.Response
- `string value` - The provider id.
- `string error` - The error message if any.

o Methods to manage services
The data model for services is:

• providerID: The ID of the provider the service belongs to. Type string
• minPrice: Minimum price. Type float64
• maxPrice: Maximum price. Type float64
• Duration: Duration. Type string

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

80

• ResponseTime: Response time. Type string
• Throughput: Throughput. Type string
• Latency: Latency. Type string

CreateService
Creates a service under a given provider.

Request: dlt.Request
- `string value` - The service request in JSON format.
Example of service in JSON format:
{

 "provider_id":" did:nancy:123-CwDuTckhy2D5VicHSFbVQG",

 "minPrice": 40.00,

 "maxPrice": 120.00,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

}

Response: dlt.Response
- `string value` - The service in JSON format.
- `string error` - The error message if any.

Example of service in JSON format:
{

 "id": "36e6049e9a8546a65344da94969ee9123f9df9e01d7b8ffab0eb4e30e0625a47",

 "model_type": "nancy_service",

 "model_version": "0.1.3",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725538790,

 "provider_id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG",

 "minPrice": 40,

 "maxPrice": 120,

 "duration": "60",

 "responseTime": "30",

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

81

 "throughput": "0.75",

 "latency": "32"

}

GetService
Returns the service details given the service ID.

Request: dlt.Request
- `string value` - Service id.

Response: dlt.Response
- `string value` - The service in JSON format given the id.
- `string error` - The error message if any.

Example of service in JSON format:

{

 "id": "36e6049e9a8546a65344da94969ee9123f9df9e01d7b8ffab0eb4e30e0625a47",

 "model_type": "nancy_service",

 "model_version": "0.1.3",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725538790,

 "provider_id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG",

 "minPrice": 40,

 "maxPrice": 120,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

}

UpdateService
Updates the attributes of a given service.

Request: dlt.Service
- `string serviceId` - The service ID.
- `string json` - The updated service details in JSON format.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

82

Example of update service in JSON format:

{

 "Latency": "33"

}

Response: dlt.Response
- `string value` - The service in JSON format.
- `string error` - The error message if any.

DeleteService
Deletes a service given the service ID.

Request: dlt.Request
- `string value` - The service id.

Response: dlt.Response
- `string value` - The service id.
- `string error` - The error message if any.

ListService
Lists services based on the provided filter.

Request: dlt.Request
- `string value` - The filter to apply for retrieving the list of services.

Example of filter in JSON format:

{

 "latency": "32"

}

Response: dlt.Response
- `string value` - The list of filtered services
- `string error` - The error message if any.

Example of list in JSON format:

[

 {

 "id": "0355534650b3d3b5fe8d35fcb4a91bf175fab6a50534766738167425294bf5f3",

 "model_type": "nancy_service",

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

83

 "model_version": "0.1.2",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725281251,

 "provider_id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG",

 "minPrice": 35,

 "maxPrice": 115,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 },

 {

 "id": "212dee4384ec40d35c6af8adec5c7dab40cd481f206777c156b14c103f0cf707",

 "model_type": "nancy_service",

 "model_version": "0.1.2",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725281240,

 "provider_id": "did:nancy:456-4Efs7QsNAaRNYQRDfu2HAn",

 "minPrice": 30,

 "maxPrice": 120,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 }]

o Methods to manage search

The data model for search is:

• consumer_ID: The ID of the consumer. Type string.
• status: The status of the search. Type string. Different types of status:

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

84

o `INIT`: Initial state.
o `PRICE`: Price state. Ready to set price.
o `SLA`: SLA state. Ready to set sla.
o `ERROR`: Unrecoverable error was happen.
o `FINISHED`: Search is finished.

• services: The result to query services using __service_query__. Type List\<JSON\>
• pricing: Price data of the search. Type JSON.
• sla: SLA data of the search. Type JSON.

CreateSearch

Generates a new search from a consumer with specified parameters. Each search is assigned a new
ID and returns the matched services to the consumer. This function further triggers the process for
smart pricing and SLA generation.

Request: dlt.Request
- `string value` - A request with the following format. Type: JSON

Example:

{

 "consumer_id": "consumer1",

 "service_query": {

 "latency": "32"

 }

}

Response: dlt.Response
- `string value` - The search object created, containing the list of services and the status of the
request.
- `string error` - The error message if any.

Example of list in JSON format:

{

 "id": "35a11b669999fbac7ee279d2fdcbe1357c9e4b102a987e5613876e40472e787d",

 "model_type": "nancy_search",

 "model_version": "0.1.2",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725609228,

 "status": "PRICE",

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

85

 "services": [

 {

 "id": "828e26f6e0f97967e3bf6e8691cc469179a324c031c8af1491a2f9ceec632832",

 "model_type": "nancy_service",

 "model_version": "0.1.3",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725360787,

 "provider_id": " did:nancy:123-CwDuTckhy2D5VicHSFbVQG",

 "minPrice": 35,

 "maxPrice": 115,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 },

 {

 "id": "a0aab45fef5f1e6cd23173727b81e6758510f27bd281a2221b69f725a98abbd4",

 "model_type": "nancy_service",

 "model_version": "0.1.3",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725360776,

 "provider_id": " did:nancy:456-4Efs7QsNAaRNYQRDfu2HAn",

 "minPrice": 30,

 "maxPrice": 110,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 }

],

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

86

 "consumer_id": "consumer1",

 "pricing": {

 "provider_id": "",

 "service_id": "",

 "price": 0

 },

 "sla": {

 "provider_id": "",

 "service_id": "",

 "price": 0,

 "id": "",

 "consumer_id": "",

 "hash_smartcontract": "",

 "service_description": null

 }

}

GetSearch
Returns the search details given the search ID.

Request: dlt.Request
- `string value` - Search id.

Response: dlt.Response
- `string value` - The search object given the id.
- `string error` - The error message if any.

Example of list in JSON format:

{

 "id": "35a11b669999fbac7ee279d2fdcbe1357c9e4b102a987e5613876e40472e787d",

 "model_type": "nancy_search",

 "model_version": "0.1.2",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725609228,

 "status": "FINISHED",

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

87

 "services": [

 {

 "id": "828e26f6e0f97967e3bf6e8691cc469179a324c031c8af1491a2f9ceec632832",

 "model_type": "nancy_service",

 "model_version": "0.1.3",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725360787,

 "provider_id": " did:nancy:456-4Efs7QsNAaRNYQRDfu2HAn ",

 "minPrice": 35,

 "maxPrice": 115,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 },

 {

 "id": "a0aab45fef5f1e6cd23173727b81e6758510f27bd281a2221b69f725a98abbd4",

 "model_type": "nancy_service",

 "model_version": "0.1.3",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725360776,

 "provider_id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG ",

 "minPrice": 30,

 "maxPrice": 110,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 },

 {

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

88

 "id": "ae91f68b7b543645e83c2e7487d31f6f12572612298b0ff852651b84010fee4d",

 "model_type": "nancy_service",

 "model_version": "0.1.3",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725538784,

 "provider_id": "f17c521890ec74a5990b96923bbf7b5635b82ebf5e14c84edcabfcf21d04c86e",

 "minPrice": 40,

 "maxPrice": 120,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 },

 {

 "id": "d59fcc44d847f6d5f5ed1cc58a20ea4cd82d83e254722661ae3964f89c047d3a",

 "model_type": "nancy_service",

 "model_version": "0.1.3",

 "owner": "54f23c05b8c66125c870cd0c89bf7c08978fcc28c0cce126be78c5ad0887ef78",

 "mspi_id": "org0-nancy-dev",

 "timestamp": 1725360797,

 "provider_id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG ",

 "minPrice": 40,

 "maxPrice": 120,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 }

],

 "consumer_id": "consumer1",

 "pricing": {

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

89

 "provider_id": "f17c521890ec74a5990b96923bbf7b5635b82ebf5e14c84edcabfcf21d04c86e",

 "service_id": "828e26f6e0f97967e3bf6e8691cc469179a324c031c8af1491a2f9ceec632832",

 "price": 86.0606208

 },

 "sla": {

 "provider_id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG ",

 "service_id": "828e26f6e0f97967e3bf6e8691cc469179a324c031c8af1491a2f9ceec632832",

 "price": 86.0606208,

 "id": "186",

 "consumer_id": "consumer1",

 "hash_smartcontract": "0x2424353",

 "service_description": [

 {

 "id": "",

 "model_type": "",

 "model_version": "",

 "owner": "",

 "mspi_id": "",

 "timestamp": 0,

 "provider_id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG ",

 "minPrice": 35,

 "maxPrice": 115,

 "duration": "60",

 "responseTime": "30",

 "throughput": "0.75",

 "latency": "32"

 }

]

 }

}

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

90

GRPC API for SLA Operations

The following JSON object represents an SLA (Service Level Agreement) information with various
attributes:

{

 "id": "unique-sla-id",

 "value": "sla value in json format",

 "provider_id": "provider-id",

 "consumer_id": "consumer-id",

 "provider_sig": "provider signature",

 "consumer_sig": "consumer signature"

}

The id of the SLA and the value field are assigned by the Digital Agreement Creator component,
where value is a serialized JSON object of the SLA contract.

After the provider or consumer signed the SLA, their signature is saved in provider_sig and
consumer_sig. When one entity is PQC-enabled, the signature field saves the PQC signature;
otherwise, it saves the transaction ID that triggers the SLA signing action. This is sufficient as the
transaction itself is already signed by the entity.

GetSLA
Returns the SLA content given the SLA ID.

Request: dlt.Request
- `string value` - The SLA id.

Response: dlt.Response
- `string value` - The SLA information in JSON format.
- `string error` - The error message if any.

GetSLAByConsumerId
Returns the list of SLAs corresponding to the consumer ID.

Request: dlt.Request
- `string value` - The consumer id.

Response: dlt.Response
- `string value` - The list SLA information in JSON format.
- `string error` - The error message if any.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

91

SlaSign

Signs the SLA given the SLA ID using the identity corresponding to uid. The wallet first retrieves the
SLA on the blockchain given the slaId. If the wallet is registered as a UE, it produces a PQC signature
(needs to call external token to get the signature) on the SLA and sends the PQC signature as a
transaction payload to the blockchain; if the wallet is non-UE, then the wallet simply invokes signSLA
transaction to the blockchain. The smart contract verifies the signatures and if successful, and stores
the signature (UE) or txId (non-UE) to the SLA entry. Note that for PQC signature verification, the PQC
pubkey must first be registered to DIDRegistry.

Request: dlt.Request

- `string value` - JSON string of the following format where uid is the signer and must match either the
ProviderId or the ConsumerId of the SLA referred by slaId:

{

 "slaId": "slaId",

 "uid": "userDid"

}

Response: dlt.Response
- `string value` - Empty.
- `string error` - The error message if any.

SubscribeToSLAInit
Subscribes to SLA initialization events.

Request: google.protobuf.Empty

Response: stream dlt.DltRecordEvent
- `string name` - The name of the event.
- `string payload` - The payload of the event, which contains the SLA information in JSON format.

SubscribeToSLASigning
Subscribes to SLA signing events.

Request: google.protobuf.Empty

Response: stream dlt.DltRecordEvent
- `string name` - The name of the event.
- ` string payload` - The payload of the event, which contains the SLA information in JSON format.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

92

3.2.3.4 Using WALLETGATEWAY and the command-line tool WALLETCLIENT

The usage of WALLETGATEWAY is shown as follows:

$ walletGateway –help

usage: [-h] [--uid UID] [-p PORT] [--UE]

optional arguments:

 -h, --help show this help message and exit

 --uid UID Id of the user, will serve as the prefix of the DID [default: nancy-uid-123]

 -p PORT, Port of the gateway service

 --port PORT

 --UE Role is either UE or Non-UE [default: non-UE]

 --sim Use PQC simulation library, otherwise using the token

Note that role of the wallet can also be defined via the environment variable export
WalletRole=UE or export WalletRole=non-UE.

To start a wallet service, we simply appoint an address for the wallet service to listen on:

$ walletGateway --port 5000

If the wallet runs as an UE wallet, then we specify it on the command line:

$ walletGateway --port 5000 --UE

Note that since the wallet service is deployed in a docker container. We first import the docker image
of the wallet and then start the wallet gateway service using the docker-compose configuration file:

$ docker load -i nancy-nec-wallet_0_1_0.tar

Edit docker-compose-wallet.yaml for the options of the wallet service

Start the wallet service
$ docker-compose -f docker-compose-wallet.yaml up wallet-service

Once the wallet is running, we can use any tool such as grpcurl according to the gRPC methods
defined in the section above to ask the wallet to talk to the blockchain. For example, suppose the
wallet is running on address localhost:5000:

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

93

Create a provider
$ grpcurl -v -plaintext -d '{"id": "did:nancy:123-CwDuTckhy2D5VicHSFbVQG", "value":
"{\"name\":\"vodafone\",\"type\":\"publisher\"}"}' localhost:5000 dlt.DltGatewayService/CreateProvider

List all providers
$ grpcurl -v -plaintext -d '{"value":"{\"id\":{\"$regex\": \".*\"}}"}' localhost:5000 dlt.DltGatewayService/ListProvider

To make this communication easier, we further provide a command-line tool WALLETCLIENT, and we
present the usage of this tool as follows.

$ walletClient <action> --help

usage: [-h] -p PORT [-a ADDRESS] [--provider-id PROVIDER_ID]

 [--service-id SERVICE_ID] [--search-id SEARCH_ID] [--sla-id SLA_ID]

 [--consumer-id CONSUMER_ID] [-w] [JSON_STR]

required arguments:

 -p PORT, --port PORT Port of the wallet gateway service

optional arguments:

 -h, --help show this help message and exit

 -a ADDRESS, Address of the wallet gateway service

 [default: localhost]

 --address ADDRESS

 --provider-id PROVIDER_ID provider id supplied to create a service or

 get/delete/update a provider

 --service-id SERVICE_ID service id supplied to get/delete/update a

 service

 --search-id SEARCH_ID search id supplied to get a service

 --sla-id SLA_ID SLA id supplied to get an SLA

 --consumer-id CONSUMER_ID Consumer id supplied to get an SLA

 -w, --wait4event wait for SLA event after issuing the request

positional arguments:

 JSON_STR Input in json string

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

94

We must first specify an action:

Must first specify an action:

createProvider | getProvider | listProvider | updateProvider| deleteProvider |
createService | getService | listService | updateService | deleteService |
createSearch | getSearch |
getSLA | getSLAByConsumerId | signSLA | listenSLAEvent

For example, we can use the WALLETCLIENT to create a provider and create a service referring to the
previous provider.

The provider starts his wallet on his machine (executable)
$ walletGateway –port 5000 --uid provider1

The provider starts his wallet on his machine (docker container, update configuration docker-compose-
wallet.yaml for the uid)
$ docker-compose -f docker-compose-wallet.yaml up wallet-service

Wallet service of NonUE starts listening on port 50000...

>>>> Non-UE Wallet <<<<

DID: did:nancy:provider1-FBPWEWXzwu26ZKnxWKX1Wh

EnrollmentId: nancy-provider1-FBPWEWXzwu26ZKnxWKX1Wh

Successfully enrolled user admin and imported it into the wallet

Successfully enrolled user 'nancy-123-FBPWEWXzwu26ZKnxWKX1Wh' with role 'non-UE' and imported it into
the wallet

Server started, listening on port 50000...

[WARNING] Using default DID of the wallet gateway 'did:nancy:provider1-FBPWEWXzwu26ZKnxWKX1Wh' as
provider_id

Subscription request to SLA Signing event.

Subscription request to SLA Init event.

The provider registers itself on the blockchain, the provider ID is by default set as the DID 'did:nancy-provider1-
FBPWEWXzwu26ZKnxWKX1Wh' of the wallet gateway service running on localhost:5000; otherwise must be
specified via option –-provider-id.
$ walletClient createProvider --address localhost --port 5000 '{"name":"vodafone", "type":"operator"}'

Or
$ docker-compose -f docker-compose-wallet.yaml run wallet-client java -cp wallet.jar WalletClientKt
createProvider --address localhost --port 5000 '{"name":"vodafone", "type":"operator"}'

The provider now registers a service

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

95

$ walletClient createService -w --address localhost --port 5000 --provider-id 'did:nancy:123-
CwDuTckhy2D5VicHSFbVQG' '{"minPrice": 150, "maxPrice": 250, "Duration": "43", "responseTime": "30",
"throughput": "0.75", "latency": "15"}'

Or
$ docker-compose -f docker-compose-wallet.yaml run wallet-client java -cp wallet.jar WalletClientKt createService
-w --address localhost --port 5000 --provider-id 'did:nancy:123-CwDuTckhy2D5VicHSFbVQG' '{"minPrice": 150,
"maxPrice": 250, "Duration": "43", "responseTime": "30", "throughput": "0.75", "latency": "15"}'

Now wait for SLA notification...and you will be asked if agree to sign

Then create a search from the consumer side.

The consumer starts his wallet on his machine
$ walletGateway -p 60000 --UE –uid consumer1

Or with docker container, update configuration docker-compose-wallet.yaml for the port and uid
$ docker-compose -f docker-compose-wallet.yaml up wallet-service

Wallet service of UE starts listening on port 6000...

>>>> UE Wallet <<<<

number of slots: 1

PKCS#11 Simulator

number of keys: 1

PQC PubKey:
1A89B4896DF55A4BD1F857D7ACBECD23C49AF8E230091D205BADDFEAEC7C63C49398A67C51F6219F52
201531BD62F17E602977143A5605200B7A0223B09DC6633CE1A2F6979710C6B93EF92BC4C81644DF30230
C2A0EE6F387BF84A89E847ED7369C2E090B16C46640EF9A579E3ECD06D1DFCB5B4FBC4507F9016E08B8
9A798197DC2686978152EEF5934BFBE05479B1CA9D50333FEFF686D1B0C5162D5F0D598F086C3B88DF75
7F3B6E40B98BA226F402ACFF684878D84862C7E2FE7CFB3E517C8FE2D9FDCF4DA5246D09BF21ABB487B
DC183…

DID: did:nancy:consumer1-8vu6EbxKhiBUauNFZMUMH4

EnrollmentId: nancy-consumer1-8vu6EbxKhiBUauNFZMUMH4

An identity for the admin user 'admin' already exists in the wallet

Successfully enrolled user 'nancy-consumer1-8vu6EbxKhiBUauNFZMUMH4' with role 'UE' and imported it into
the wallet

Server started, listening on port 6000...

[WARNING] Using default DID of the wallet gateway 'did:nancy:consumer1-8vu6EbxKhiBUauNFZMUMH4' as
consumer_id

Subscription request to SLA Init event.

Subscription request to SLA Signing event.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

96

Now the customer can search for the service by providing his consumerId and the searching criteria
$ walletClient createSearch -w --port 6000 '{"consumer_id": "consumer1", "service_query": {"throughput": "0.75"}}'

Or
$ docker-compose -f docker-compose-wallet.yaml run wallet-client java -cp wallet.jar WalletClientKt createSearch
-w --port 6000 '{"consumer_id": "consumer1", "service_query": {"throughput": "0.75"}}'

Now wait for SLA notification...and ask if agree to sign

After the consumer creates a search, the marketplace will trigger the smart pricing component and
digital agreement contract component to create a draft of SLA and register the draft contract in the
blockchain (SLARegistry). Then users listening to the SLAInit event will get informed and get asked to
sign the SLA if they wish. Signed SLA will also emit the event to inform the relevant parties.

3.3 Further Mechanisms for Ensuring the Security and Privacy of the Users

Privacy-preserving Attribute Based Credentials (p-ABC) are digital certificates that allow the owner to
disclose only the minimum information necessary to prove his access right to a resource or service. For
every resource, a policy defines what attributes are necessary to be proofed to permit access to it. For
instance, the policy could demand proof the requester is over certain years old, e.g. “over 18 years
old? yes or no”. By using p-ABC certificate, the owner could prove the possession of the property
without disclosing the actual value of the attribute. ABC frameworks require certain actors (user,
issuer, verifier, revocation authority, registry, inspector). This authentication and authorization (AA)
scheme is omitted on the current mobile networks. But its integration is feasible and empowers with
privacy the 6G perception. Currently, AA of 5G is based on a shared secret between the user and the
system, kept on both sides in a tamper-proof environment, the USIM, and in the Subscription Database
of the mobile network. Therefore, subscriptions belong to a certain mobile network operator. To use
other mobile network services, the roaming procedure enables remote authentication to users, where
the shared secret never leaves the home operator. Only derived keys are provided to the serving
network for performing the security of the access stratum (AS) and non-access stratum (NAS)
protocols.

In NANCY, we design the integration of p-ABCs in future networks, the subscriber does not need to
belong to any network operator, but instead may purchase “attributes” to access different services,
including cellular networks. The issuer will grant the user with a p-ABC credential, which later can be
used to authenticate against the service providers. Thanks to the use of the p-ABC technology, this
process can be carried out in a privacy-preserving way, particularly against the network the user is
accessing. Enabling advanced privacy-preserving techniques is a fundamental need for the incipient
designs for 6G networks.

p-ABC framework requires that all participants in the framework actors (user, issuer, verifier,
revocation authority, registry, inspector) provide their public key in a registry, which may be a
decentralized ledger such as a blockchain, in line with current decentralization and self-sovereignty
trends. All parties will have access to this information so that they can retrieve the corresponding
public keys of the other participants in the communication, if required.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

97

Figure 30: ABC entities and interaction

The relationship between all p-ABC entities is shown in Figure 30. Note that, in specific instantiating of
an p-ABC system, some of the roles, such as inspection and revocation authority, may be assumed by
the same entity. The user retrieves a credential from the Issuer, who is also exchanging information
with the Revocation Authority to set the revocation information for the credential. The User can use
the credential to generate presentation tokens for the Verifier, who can ask the Inspector for token
inspection and the Revocation Authority for the revocation information. The credential can be revoked
if e.g. it is misused, expires or some parameters are exceeded.

The prerequisite for network access is the retrieval of suitable p-ABC credentials from the p-ABC Issuer
after the onboarding procedure, i.e. devices can connect to an onboarding network for authentication
and secure connection setup as well as the secure provisioning of the long-term credentials. The
devices are initially attached to an onboarding network with default credentials and then retrieve their
long-term credentials in the form of privacy-preserving Attribute Based Credentials from a provisioning
server. The p-ABC credentials can be seen as a digital identity of the device that can be used for
different purposes such as authenticating itself in untrusted sub-networks or deriving proofs of its
attributes that might be needed to access to net-apps, 6G services, an even authenticating and access
directly to other previously unknown devices (as long as they also trust the Issuer) in a D2D interaction.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

98

Figure 31: NANCY ID Key hierarchy and Pseudonym generation

To achieve selective linkability, a user may generate a pseudonym from the attributes embedded in
the credential during the presentation of the credential to the verifier, i.e., the service owner. In our
setting, the device may generate an unlimited number of pseudonyms from the public key as shown
in Figure 31. Particularly, scope-exclusive pseudonyms present an interesting alternative, as they can
be reused for scopes based, e.g., on the verifier identity and timing data, while remaining unlinkable
with any other pseudonym generated by the user.

We now explain how ID management is applied within the NANCY ecosystem to enable privacy-
preserving access to third-party services. Figure 32 illustrates the process of credential issuance and
access requests to third-party services.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

99

Figure 32. NANCY p-ABC ID management workflow

To retrieve the credential, the UE must first connect to the Data Network. This step is accomplished
using a regular 5G connection with the home operator (Step 1). Utilizing a 5G connection is an ideal
approach since a shared secret is inherently embedded in the system between the SIM card and the
5G Core. Thus, the keys used for 5G authentication can be leveraged to derive a NANCY key for PSK
authentication in an autonomous manner (Steps 2-3). Following this, EAP-PSK authentication takes
place between the UE and the Credential Issuer (Step 4).

If the process involves bootstrapping credential generation, the Issuer generates the UE’s Distributed
Identifier (DID), registers it for blockchain access, and writes the UE’s DID onto the blockchain (Steps
5-6). The Issuer then checks the UE's subscription and extracts the relevant attributes. It generates the
credential by incorporating the UE’s public key (Pk) and packaging the extracted attributes. The
credential is signed using the Issuer’s private key (Sk) and forwarded to the UE (Step 7). At this point,
the credential generation process is complete.

Let us explain how the credential is used to access third-party services while preserving privacy. When
the UE wants to access a third-party service, it first requests the service provider to specify the
attributes required for authorization. The service provider may request one or more attributes, such
as “Access to offloading services,” “Access to video processing,” or “Access to Nomadic Connectivity
Provider” (see Deliverables 4.1 or 4.3). The UE then performs a mathematical operation to transform
the original attribute into a pseudonym (Step 8). Pseudonyms conceal the real identity of the UE but

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

100

allow the verifier to confirm that the attribute corresponds to a derivative of the requested attribute
and that it has been signed by the Issuer (Step 9). This ensures that the UE has the appropriate
credentials to access the service.

To achieve this, the third-party provider must have a verifier to handle authentication. The verifier
retrieves the Issuer’s Pk to validate the signature. Additionally, before granting access to the service,
the request with the pseudonym is forwarded to the Original Issuer (Step 10). The Issuer checks for
revocation and initiates an accounting mechanism (Step 11). The updated information is returned to
the service provider, which can use a caching mechanism to streamline future access for the same
pseudonym (Step 12).

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

101

4 Research on Additional Security Mechanisms
Section 4 provides a summary of important research that has been carried out in the framework of
NANCY, covering (1) the protection of Smart Contracts, (2) Lightweight clients and (3) the impact of
decentralization on security.

4.1 Protection of Smart Contracts

Smart contracts with Turing-complete languages have introduced new attack vectors to blockchains.
In addition to traditional vulnerabilities such as integer overflow and missing access control, studies
[33] [34] [35] on Ethereum smart contract security have shed light on new types of vulnerabilities in
smart contract programming such as exception handling, transaction-ordering dependency,
reentrancy and front-running. However, with the emergence of new popular blockchains, it is
challenging for smart contract programmers to catch on with the awareness of prominent
vulnerabilities in those blockchains.

To answer this, we investigated smart contract programming in Solana blockchain [36]. With its launch
in 2020, Solana has quickly grown to become one of the most widely used platforms for deploying
decentralized applications (DApps) and non-fungible tokens (NFTs). In fact, Solana is among the top 10
blockchain platforms in terms of total market capitalization. Unlike Ethereum’s monolithic smart
contract execution environment (the EVM), Solana decouples the execution logic from the state of the
smart contract and relies on the programming language Rust. Although Rust poses certain challenges
for developers, its security features have been praised and increased developers’ confidence during
development. With the Solana execution environment, new vulnerability patterns were introduced
that are not captured by existing EVMbased analysis tools [37]. One of the most recent major hacks,
the Wormhole hack [38], resulted in the loss of 325 million USD due to a missing key check issue. In
particular, attacks exploiting missing ownership and signer checks (that exploit the lack of validation
to bypass access control), and cross-program invocation (that exploits the lack of call target validation
during cross account calls), seem to be quite intrinsic to the very nature of the Solana execution
environment. Compared to Ethereum, there is a lack of understanding of why these vulnerabilities
exist, how Solana smart contract developers handle security, what challenges they encounter, and how
this affects the overall security of the ecosystem.

Therefore, we set forth to understand the challenges faced by developers during the development of
Solana smart contract and to explore the following research questions:

• RQ1: Do Solana smart contract developers recognize prominent security vulnerabilities in
smart contracts?

• RQ2: What challenges do developers encounter that impact the development of secure smart
contracts?

• RQ3: Given these challenges, what is the prevalence of vulnerabilities in Solana smart
contracts?

To address these research questions, we first conducted a developer study, which sheds light on how
the developers of the Solana ecosystem handle security and the corresponding challenges they face.
Our study comprised a 90-minute code review study with 35 participants (from Upwork,
Freelancer.com and Solana Community Insider) and follow-up interviews with a subset of seven
participants. We asked participants to write code reviews for a smart contract split into three parts,

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

102

each involving one of the most common [34] types of security vulnerability: MSC (Missing Signer
Check), IB (Integer Bugs), and ACPI (Arbitrary Cross-Program Invocation). The smart contracts that
contain those vulnerabilities are all relatively small and we added multiple non-security-related issues
in the smart contract (distraction tasks) to make the review task more realistic and security issues less
obvious. Moreover, we set the participants into two groups (A and B) and presented the files in
different orders to them.

Table 8. Vulnerabilities and non-security-related issues (distractions) of the review task

Participants assessed their knowledge about these vulnerabilities and explained what challenges they
pose in the context of securing smart contracts. Our analysis showed that none of the participants
spotted all vulnerabilities in the code review tasks despite their claimed confidence in addressing them;
and almost 83% of participants have approved vulnerable code for release. Additionally, participants
referred to a shortage of qualified Solana developers, leading to the hiring of inexperienced individuals.
The lack of documentation, code reviews, audits, testing, and the complexity of Rust were reported as
the main challenges for developers, leading them to adopt alternative frameworks such as Anchor [39].

Table 9. Number of participants found distractions and security vulnerabilities

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

103

Table 10. Code review outcomes

*The numbers in round brackets show the answers of those who found a valid vulnerability for that file, while

numbers in curly brackets exclude the five participants that misunderstood the task.

Given the results of the developer study, one would expect that it would lead to a highly vulnerable
ecosystem in Solana. However, recent studies [40] showed that only 52 (0.8 %) projects were found to
be vulnerable in Solana. To further confirm those results, we built a framework using symbolic
execution to detect the Arbitrary Cross-Program Invocation (ACPI) vulnerabilities in currently deployed
Solana smart contracts. These vulnerabilities were among the most challenging to detect by
developers, according to our study. Using our tool, we then automatically analysed all 6,324 smart
contracts deployed on Solana. Fortunately, our findings corroborate the results [40] and show that
only 14 (0.2 %) deployed smart contracts are vulnerable to ACPI.

To conclude, our analysis suggests two conflicting results. On the one hand, Solana developers do not
seem to have domain expertise in addressing security challenges when developing smart contracts. On
the other hand, the prevalence of security vulnerabilities is fortunately not severe in current Solana
smart contracts. Our developer study suggests, however, that the popular Anchor framework provides
a healthy tooling environment for developers and is probably one of the most important reasons for
the low prevalence of vulnerabilities in the Solana smart contract ecosystem. In fact, our analysis
shows that more than 88% of existing Solana smart contracts are currently developed with the help of
the Anchor framework without direct native Rust support (see Figure 33 for the trends of using Anchor
framework for smart contract development since 2021).

Figure 33 Prevalence of Anchor contracts in all the deployed contracts Solana smart contracts.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

104

4.2 Lightweight Clients

A blockchain-based distributed ledger essentially consists of an append-only data structure replicated
across network nodes. Because the ledger keeps growing, storing a copy of the blockchain comes at
relatively high costs in terms of computation, memory, and bandwidth. A client who wishes to interact
with a blockchain system must either bear the costs of downloading, storing, and verifying the entire
blockchain history, or forgo the security guarantees of the blockchain and rely on third-party
intermediary servers. The resources required to interact with a blockchain might be prohibitive for
some users: for instance, IoT devices are lightweight by design and might not have sufficient memory
and CPU for blockchain storage and validation; similarly, typical mobile users have limited bandwidth
and may be unable to maintain an up-to-date copy of the blockchain.

This problem was already recognized in the original Bitcoin whitepaper which also proposed the
concept of light client as a possible remedy and a corresponding realization called Simple Payment
Verification (SPV) [1]. Loosely speaking, light clients allow lightweight devices to interact with a
blockchain network without storing a local copy of the whole blockchain, while allowing to preserve
as much security as possible [41].

More specifically, a light client protocol between a client and one or more full nodes (i.e., nodes which
store a copy of the blockchain but do not necessarily participate in the consensus process) allows the
full node(s) to share the current blockchain state with the client. Clearly, a solution in which a full node
would share the whole blockchain would be computationally unfeasible for most clients. It is hence
crucial that the protocol is efficient and minimizes communication, computation, and storage
overhead for the client (and ideally also on the full node). In practice, light client protocols typically
have full nodes that provide a digest of the current blockchain state along with a cryptographic proof
that convinces the client of the correctness of such state.

Several solutions for blockchain light client implementations have been proposed within the
blockchain space. For instance, the Bitcoin community provides various implementations for the SPV
method. In contrast to verifying full blocks, an SPV light client verifies the chain of proof of work
solutions based only on the block headers; to verify that a given transaction is valid, it needs to interact
with an honest full node (i.e., additional trust is assumed). Although an SPV light client uses much
fewer resources than a full node, its communication complexity is linear in the number of block
headers to be verified, which is still impractical for computationally weak environments such as mobile
or browser-based clients.

Modern blockchain systems, including Ethereum, are shifting away from Bitcoin's proof of work model
towards more environmentally friendly designs, where block generation is regulated through proof of
stake or other virtual resources. In these systems, block confirmation is ensured when enough
members of an elected committee have signed the block. A similar approach to Bitcoin's SPV light
client can be applied to these blockchains, though it comes with the same limitations. Recent proposals
for light clients aim to optimize the (linear) communication complexity of this basic SPV design by
leveraging additional trust assumptions or offloading computation onto full nodes. Among these
proposals, the Proof-of-Proof-of-Stake (PoPoS) design stands out as the most communication-efficient
light client implementation in a proof-of-stake context, requiring only O(log(m)) messages to verify m
consecutive block headers [42].

A closer look at state-of-the-art light client solutions for committee-based blockchains, such as the
PoPoS protocol, reveals that while the improvements significantly enhance the basic SPV design, most
light client systems are designed with long offline phases in mind, catering to scenarios where the

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

105

number m of consecutive block headers to be verified is quite large (i.e., in the order of weeks). In a
setting in which clients can connect to the blockchain with relatively high frequency, solutions designed
to operate for large offline periods may be an overkill. For instance, empirical analysis of Bitcoin shows
that over a third of light client requests query only a single block (approximately 10 minutes behind),
while more than half ask for updates within about 2 hours. Moreover, these protocols often assume
that the block headers being verified are signed by continuously rotating committees. While some
proof-of-stake designs indeed do use rotating committees (e.g., Ethereum [43] and Algorand [44]),
most permissioned blockchains including Hyperledger Fabric as well as some committee-based
permissionless systems (e.g., Cosmos [45] and Polkadot [46]) have nearly static committees (i.e.,
changes in the committee are rare). Therefore, there is an opportunity to leverage the reduced
complexity of an almost static committee, in contrast to the case of a rotating committee, to optimize
the light client protocol.

Novel light client protocol for committee-based blockchains

As part of the research activities of the project, novel techniques were explored to improve the
efficiency of light client solutions, particularly in the context of permissioned systems which are more
suitable for industrial deployments. A novel light client design was proposed to specifically balance
efficiency, security, and low trust assumptions in blockchain deployments that rely on committee-
based blockchains where validator sets are generally stable. This design is particularly suitable for
blockchain deployments based on Hyperledger Fabric or variants thereof, as is the case for the NANCY
blockchain. The proposed light client protocol is specifically designed to minimize computation and
communication costs for both clients and full nodes in committee-based blockchain systems, in the
case of (i) a static quorum of validators and (ii) clients being rarely offline for more than a week
(henceforth we refer to such operational scenario as “the common case”).

In a committee-based blockchain, the set of validators in charge of validating blocks (i.e., a
“committee”) may change over time, however, changes in the committee may only be triggered at
pre-determined times called “end of epochs”. In other words, a committee is guaranteed to remain
static within an epoch. Consider m consecutive epochs in which a client was offline. When the client
is online again, during epoch m+1, it interacts with a full node to verify the latest signed digest of the
blockchain state. A light client protocol specifically describes this interaction, and it should ensure that
upon completion, the client is convinced about the current blockchain state.

A strawman solution would have each epoch’s committee sign end-of-epoch blocks containing the
next epoch’s committee and require the full node to share these signatures with the client. Then, a
client who knows the committee of epoch 1 and then goes offline for epochs could later be convinced
of the current blockchain state by (i) receiving a quorum of validators’ signatures for each epoch, so
that she can determine the current epoch’s committee, and (ii) receiving a digest of the blockchain
state signed by a quorum of the current epoch’s committee. This strawman solution would imply a
communication and computation overhead of O(m) (for receiving and verifying a constant number of
signatures per epoch).

Leveraging the peculiarities of the “common case”, the light client solution developed within the
NANCY project can greatly improve the communication and computation costs of the strawman
solution outlined above.

Briefly, the proposed design requires validators to sign epoch blocks (i.e., blocks indicating the end of
an epoch) using a special signature scheme, the so-called transitive signature, that later allows
untrusted full nodes to efficiently prove to clients that a given subset of validators in a committee
remained static. The gist of the idea is that using this special signature scheme, the signatures

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

106

generated by the validators in the static subset of the committee can be aggregated over subsequent
epochs. As a result, instead of verifying O(m) signatures as would be the case for a committee being
replaced in each epoch, the client only needs to verify O(1) in the best case of a committee being static
over the m epochs. The actual light client protocol can offer constant communication and computation
at the client also in the “common case” of a “relatively static” committee: indeed, only a static quorum
and not the whole committee is required for the client to verify the blockchain state.

Putting it all together, the proposed light client protocol exhibits communication complexity which is
asymptotically linear in the number of periods where a quorum of validators remains stable.

 Performance comparison with state-of-the-art light client protocols

The performance improvements of the proposed light client solution were demonstrated by means of
empirical evaluation and comparison with two state-of-the-art proposals, PoPoS [42] and CSSV [47], in
terms of proof size, proof creation time and end-to-end update latency.

A selection of the results is summarized in the Figure 34:

Figure 34. Novel light client protocol: performance evaluation.

To compare the performance of the protocols in scenarios reflecting different clients’ behaviours, the
plots depict measured performance as the number of epochs m (during which the client is offline)
increases. Notice that while the term “epoch” denotes a specific timeframe, the value of such
timeframe depends on the specific blockchain implementation.

As the proposed solution was designed for committee-based blockchains in which the committee does
not change drastically over time, in the experiment the length (in epochs) of the period during which
a static quorum is present was set to 2000 based on best practices. In such scenarios, the results
confirm that the proposed light client protocol outperforms state-of-the-art solutions in terms of both
proof size and end-to-end latency, for the “common case” of a client being offline for a relatively short
time (m < 218).

4.3 Impact of Decentralization on Security

Pioneered by the Bitcoin cryptocurrency demonstrating the feasibility of realizing Internet-scale digital
payments in a decentralized manner, blockchain platforms today provide a general approach to deliver
decentralized services. The primary goal of pursuing decentralization is to minimize the reliance on a
few trusted central entities: intuitively, removing single points of failure enhances the resilience of the
system to attacks. In other words, decentralization is expected to improve the security of the system.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

107

The main technical innovation introduced by Bitcoin is arguably its underlying consensus protocol, the
so-called Nakamoto-style consensus, providing the first realization of distributed consensus in a
permissionless system (i.e., among anonymous participants who do not know each other’s identities).
Nakamoto-style consensus provides a general approach for designing permissionless consensus
protocols and has indeed been adopted in several other blockchain systems after Bitcoin.

Due to its fundamental significance and practical relevance, Nakamoto-style consensus has received
in-depth scrutiny, from both academics and practitioners, leading to numerous theoretical analyses
and empirical studies evaluating its security and resilience under different attacker models. The
general design of Nakamoto-style consensus includes a probabilistic leader-election protocol (e.g.,
PoW or PoS) and a method to resolve potential forks, such as the longest chain rule. Intuitively, these
two ingredients together guarantee liveness, i.e., new blocks are included in the blockchain at a regular
pace, and consistency, i.e., all honest nodes agree on the same sequence of blocks, as long as the
majority of resources (computing power in PoW and stake in PoS) is held by honest nodes. To be more
precise, Nakamoto-style consensus only provides probabilistic guarantees, meaning that consistency
and liveness are guaranteed to hold with a certain probability depending on several operational
parameters, and it additionally requires that the underlying network is synchronous, i.e., messages
sent across the network must be delivered within a known timeframe.

Several academic studies have formally analysed and refined the necessary and sufficient conditions
for achieving security in Nakamoto-style consensus, thereby improving our understanding of
permissionless blockchain designs. However, these approaches only partially reflect the original
concept of decentralization, as they fail to consider important aspects of how the scale of the network
(i.e., the number of nodes n) affects the security of the system. Specifically, while it is commonly
understood that an increase in n leads to higher network delays (i.e., larger Δ), the exact impact of
these delays on security remains unclear. On the other hand, increasing decentralization naturally
leads to enhanced security, as individual nodes hold less relative power. However, current security
models typically assume that adversarial power remains unaffected by n, overlooking the beneficial
effect of network scale in reducing adversarial influence. A further shortcoming in prior studies is that
they abstract away various peculiarities that impact real-world blockchain deployments. For example,
simply assuming a synchronous network (as is the case in existing analyses) neglects that the gossip
protocols deployed in different Nakamoto-style blockchains, e.g., Bitcoin and Ethereum classic,
provide different levels of robustness to adversarial attacks.

Within the research activities of the project, an analytical and empirical investigation was conducted
to study how the security of Nakamoto-style consensus is affected by relevant operational parameters:
the number of nodes in the network, the maximum network delay, and the relative power controlled
by the adversary. Below we summarize the main outcomes of this research.

Extended security model and theoretical analysis

To investigate the impact of decentralization---expressed by the number of blockchain nodes n---on
the security of Nakamoto-style blockchains, a new corruption model was introduced to formally
express the intuitive idea that increasing decentralization (i.e., larger n) should make the task of
controlling a significant amount of power more difficult for an adversary. While previous security
models for Nakamoto-style blockchains assume the relative power controlled by an adversary is upper
bounded by a fixed value 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎, the proposed model instead allows the adversary to probabilistically
corrupt nodes independently of each other and with potentially different corruption probabilities,

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

108

capturing realistic scenarios in which, for instance, validators holding large amounts of computing
power of stake are better protected and hence harder to corrupt.

Using the newly introduced corruption model, prior results on the security of Nakamoto-style
blockchains were extended to capture the intuition that higher decentralization can also have a
positive impact on security. Concretely, prior security analyses were extended to provide a more
accurate relationship between the number n of nodes in the system, the maximum network delay Δ,
and the relative adversarial power 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 , the main outcomes being that increasing n causes a
logarithmic increase in the maximum delay Δ, and on the other hand, it also decreases the probability
that the adversary can successfully corrupt nodes amounting to a certain relative power. (The exact
relation between n and 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 Is rather complex to be expressed concisely without further context, due
to the use of probabilistic bounds and the dependency of various technical parameters, and we refer
to the published paper for the details [48]). Overall, the proposed security model and extended analysis
allow us to express the two opposite trends of how decentralization can harm and benefit security
simultaneously in Nakamoto-style blockchains.

Large-scale evaluation

To validate the results of the theoretical analysis, a further empirical evaluation was conducted by
simulating different designs of Nakamoto-style blockchains: Bitcoin [49], Monero [50], Cardano [51],
and Ethereum Classic [52]. To establish a precise relation between the number of nodes n and the
maximum network delay Δ in each of the considered blockchain deployments, large-scale experiments
were conducted simulating message propagation, using the gossip protocols deployed in each
blockchain design, in a network comprising hundreds of thousands of nodes. A selection of the results,
confirming the logarithmic relation between Δ and n and demonstrating how different gossip
protocols can lead to diverse network delays, are shown in Figure 35:

Figure 35: Impact of the number of nodes on the network delay, for different blockchain designs.

The empirically measured delays for increasing n can further serve as a tool to evaluate how the
network scale n concretely affects the overall security of the system. Towards this end, one can
combine the empirical results on the network delay with the probabilistic analysis evaluating the
probability that an attacker corrupts sufficient resources to break security, again varying the number
of nodes n. The results, illustrated in Figure 36, show the relation between n and the probability, over
the adversary’s corruption attempts, that the honest parties still hold sufficient power to preserve the
security of the system, for each of the considered blockchain designs. The value 𝑝𝑝∗ is a parameter

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

109

encoding the average provability of corrupting an individual node. For the selected plot 𝑝𝑝∗ was set to
0.16, for instance, the plots show that Bitcoin and Monero scale better in n compared to Cardano and
Ethereum classic, in the sense that security can be preserved for larger values of n (because of the
message-propagation delays induced by the respective gossip protocols).

Figure 36: Impact of the number of nodes on the probability of preserving security, in different blockchain designs.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

110

5 Conclusions and Future Work

5.1 Conclusions

Although originally developed for digital currencies, blockchain technology represents a foundational
innovation with the capacity to revolutionize data management, security, and transparency across
various industries. Its decentralized structure, combined with cryptographic security and immutability,
makes it well-suited for applications requiring trust and accountability, including communications and
identity management. Permissioned blockchains further extend these capabilities by providing
enhanced security features tailored to regulated environments, facilitating secure and efficient data
exchange.

From a functional perspective, the NANCY Blockchain and its core components support the inter-
operator domain of the NANCY system (refer to D6.1 and D4.1). Specifically, they facilitate service
handovers between operators through the secure exchange and digital signing of Service Level
Agreements (SLAs). This is done by means of several newly designed smart contracts (the NANCY
Marketplace, the NANCY SLA Registry) and other components (Digital Agreement Creator, Smart
Pricing component) that interact through Oracles and the NANCY Wallet.

Furthermore, the NANCY system is designed to offer significant privacy benefits to users through
Decentralized Identifiers (DID) or similar frameworks. In this context, Self-Sovereign Identity (SSI)
mechanisms, as outlined in D5.2, are employed. These mechanisms are materialized through, again,
newly designed smart contracts (DIDRegistry and VCRegistry) and their corresponding interfaces in the
NANCY wallet. They enable users to create a digital identity that remains independent of their formal
public identity, granting them full control over its lifecycle, including generation, attribute binding, and
deletion. Additionally, NANCY employs a proof-driven approach and utilizes decentralized
management mechanisms atop the NANCY Blockchain to oversee identity-related services, such as
registration, management, and cryptographic verification data control.

This report reflects the work of T5.2 and T5.3 and provides a detailed overview of these components,
their interfaces, workflows, and their integration within the NANCY Architecture. Additionally, data
integrity and scalability—both essential features of NANCY—are also addressed.

5.2 Future work

At the time of submission, the consortium is already working on improving and extending the work of
tasks T5.2 and T5.3 so that our developments can be used in all use cases in WP6. Namely, WP6
demonstrators will use the blockchain-based components in different, but interconnected, ways.

Firstly, some use cases will make use of NANCY’s SSI capabilities (e.g., Italian Outdoor Scenario). For
this, an SSI infrastructure will be deployed including verifier, holder and issuer roles, together with
code examples. In addition to this, realistic credentials for each use case will be created.

Other use cases will employ the NANCY blockchain and related components to showcase different uses
of the inter-operator domain workflow (e.g,. Greek In-lab Scenario). For this, the consortium is
investigating new fields which enhance the service and provider descriptions. This would include not
only service requirements – as those already in place and reported in D5.2 – but also computing
resources and localization. The objective is for the NANCY Marketplace to perform a more powerful
search, and to determine the best candidates for service handover using more parameters. This work
involves not only enhancements to the NANCY Marketplace intelligence but also to the NANCY Wallet
interfaces.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

111

Other work will focus on studying the decentralization of practical information about SLA enforcement.
For instance, at the time of writing, the particular endpoint for the client (known after the chosen
operator’s SO enforces the final SLA) that must be sent to the original operator is only known using the
central Service Manager. However, in the future, this and other centralized information could be
added to the NANCY blockchain, and privately associated to the final SLA.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

112

References

[1] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2008. [Online]. Available:
https://bitcoin.org/bitcoin.pdf .

[2] D. &. T. A. Tapscott, Blockchain revolution: How the technology behind bitcoin is changing
money, business, and the world, Penguin, 2016.

[3] M. Pilkington, "Blockchain technology: Principles and applications. In F. X. Olleros & M. Zhegu
(Eds.),," in Research handbook on digital transformations, Edward Elgar Publishing, 2016, pp.
225-253.

[4] J. Yli-Huumo, D. Ko, S. Choi, S. Park and K. Smolander, "Where is current research on blockchain
technology?—A systematic review.," PLOS ONE, 11(10), e0163477., 2016.

[5] V. Buterin, "A next-generation smart contract and decentralized application platform. Ethereum
White Paper," 2014. [Online]. Available: https://ethereum.org/.

[6] Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, "An overview of blockchain technology:
Architecture, consensus, and future trends.," IEEE International Congress on Big Data, pp. 557-
564, 2017.

[7] M. Castro and B. Liskov, "Practical Byzantine Fault Tolerance and proactive recovery," ACM
Transactions on Computer Systems (TOCS), vol. 20(4), pp. 398-461, 1999.

[8] B. David, P. Gazi, A. Kiayias, and A. Russell, "Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain," EUROCRYPT (2), ser. Lecture Notes in Computer Science,
vol. 10821, no. Springer, p. 66–98, 2018.

[9] N. Kshetri, "Blockchain's roles in meeting key supply chain management objectives.,"
International Journal of Information Management, no. 39, pp. 80-89, 2018.

[10] P. Zhang, J. White, D. C. Schmidt and G. & Lenz, "Applying software patterns to address
interoperability in blockchain-based healthcare apps," Blockchain in Healthcare Today, no. 1, pp.
1-11, 2018.

[11] C. Allen, "The path to self-sovereign identity.," 2016. [Online]. Available:
https://www.lifewire.com/https://www.lifewithalacrity.com/article/the-path-to-self-
soverereign-identity/. [Accessed November 2024].

[12] M. Nofer, P. Gomber, O. Hinz and D. Schiereck, "Blockchain," Business & Information Systems
Engineering, vol. 59, no. 3, pp. 183-187, 2017.

[13] Y. Liu, S. Peng, M. Zhang, S. Shi and J. Fu, "Towards secure and efficient integration of blockchain
and 6G networks.," https://doi.org/10.1371/journal.pone.0302052, vol. 19, no. 4, 2024.

[14] The Hyperledger Foundation, "What is Hyperledger Fabric?," [Online]. Available:
https://hyperledger-fabric.readthedocs.io/en/release-2.5/blockchain.html. [Accessed
November 2024].

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

113

[15] The Hyperledger Foundation, "Hyperledger Fabric Model," [Online]. Available:
https://hyperledger-fabric.readthedocs.io/en/release-2.5/fabric_model.html. [Accessed
November 2024].

[16] The Hyperledger Foundation, "How Fabric networks are structured," [Online]. Available:
https://hyperledger-fabric.readthedocs.io/en/release-2.5/network/network.html.

[17] The Hyperledger Foundation, "The Ordering Service," [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html. [Accessed November
2024].

[18] Androulaki, E., et al., "Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains," Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18., 2018.

[19] Lombardi, L., et al. , "Enhancing Blockchain Security and Privacy in 5G and 6G Networks," IEEE
Access, vol. 9, pp. 24539-24548, 2021.

[20] Gorenflo, C., et al. , "FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Second,"
IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2020.

[21] G. A. Marson, S. Andreina, L. Alluminio, K. Munichev, G. Karame, "Mitosis: Practically Scaling
Permissioned Blockchains.," Proceedings of the 37th Annual Computer Security Applications
Conference (ACSAC '21). Association for Computing Machinery, 773–783.
https://doi.org/10.1145/3485832.3485915, New York, NY, USA, 2021.

[22] The Hyperledger Fabric Foundation, "Certificates Management Guide," [Online]. Available:
https://hyperledger-fabric.readthedocs.io/en/release-2.5/certs_management.html.

[23] Fabric, "Hyperledger Fabric Docs - Policies," [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/latest/policies/policies.html. [Accessed 09 Jan 2025].

[24] Fabric, "Hyperledger Fabric Docs -- Private Data," [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/latest/private-data/private-data.html. [Accessed 09 Jan 2025].

[25] Fabric, "Hyperledger Fabric Docs -- Peer channel-based event services # Available services,"
[Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/latest/peer_event_services.html#available-services. [Accessed 09 Jan
2025].

[26] P. Civit, S. Gilbert, R. Guerraoui, J. Komatovic, A. Paramonov, M. Vidigueira, "All Byzantine
Agreement Problems Are Expensive," in Proceedings of the 43rd ACM Symposium on Principles
of Distributed Computing (PODC '24), New York, NY, USA, 2024.

[27] J. Liu, W. Li, G. O. Karame, N. Asokan, "Scalable Byzantine Consensus via Hardware-Assisted
Secret Sharing," IEEE Transactions on Computers, vol. 68, no. 1, pp. 139-151, 2019.

[28] H. Caliper, "Hyperledger Caliper," [Online]. Available: https://hyperledger-
caliper.github.io/caliper/. [Accessed December 2024].

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

114

[29] "Hyperledger Fabric Samples," [Online]. Available: https://github.com/hyperledger/fabric-
samples. [Accessed December 2024].

[30] H. F. Docs, "Taking ledger snapshots and using them to join channels," [Online]. Available:
https://hyperledger-fabric.readthedocs.io/en/latest/peer_ledger_snapshot.html. [Accessed Feb
2025].

[31] W3C, "Decentralized Identifiers (DIDs) v1.0 -- Core architecture, data model, and
representations," 19 July 2022. [Online]. Available: https://www.w3.org/TR/did-1.0/.

[32] W3C, "Verifiable Credentials Data Model v2.0," 27 Jan 2025. [Online]. Available:
https://www.w3.org/TR/vc-data-model-2.0/.

[33] M. Rodler, W. Li, G. Karame and D. Lucas, " Sereum: protecting existing smart contracts against
re-entrancy attacks.," Proceedings 2019 Network and Distributed System Security Symposium,
2019.

[34] S. Cui, G. Zhao, Y. Gao, T. Tavu and J. Huang, "Vrust: automated vulnerability detection for solana
smart contracts," 2022 ACM SIGSAC Conference on Computer and Communications Security,
2022.

[35] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel and G. Vigna, "SAILFISH: Vetting Smart Contract State-
Inconsistency Bugs in Seconds," 2022 IEEE Symposium on Security and Privacy (SP), 2022.

[36] S. Andreina, T. Cloosters, L. Davi, J.-R. Giesen, M. Gutfleisch, G. Karame, A. Naiakshina and H.
Naji, "Defying the Odds: Solana's Unexpected Resilience in Spite of the Security Challenges Faced
by Developers," Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, 2024.

[37] Neodyme.io, " Solana smart contracts: common pitfalls and how to avoid them.," 20 August
2021. [Online]. Available: https://neodyme.io/en/blog/solana_common_pitfalls/.

[38] C. Team, "Lessons from the Wormhole Exploit: Smart Contract Vulnerabilities Introduce Risk;
Blockchains’ Transparency Makes It Hard for Bad Actors to Cash Out," 30 January 2023. [Online].
Available: https://www.chainalysis.com/blog/wormhole-hack-february-2022/.

[39] A. Ferrante and M. Callens, "Anchor Framework," [Online]. Available: https://www.anchor-
lang.com/. [Accessed 1 6 2023].

[40] S. Smolka, J.-R. Giesen, P. Winkler, O. Draissi, L. Davi, G. Karame and K. Pohl, "Fuzz on the beach:
fuzzing solana smart contracts," Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, Copenhagen, 2023.

[41] P. Chatzigiannis, F. Baldimtsi, K. Chalkias, "SoK: Blockchain Light Clients," Financial Cryptography
and Data Security, Grenada, 2022.

[42] S. Agrawal, J. Neu, E. N. Tas, D. Zindr, "Proofs of Proof-Of-Stake with Sublinear Complexity," 5th
Conference on Advances in Financial Technologies (AFT), Princeton, NJ (USA), 2023.

D5.2 – NANCY Security and Privacy Distributed Blockchain-based Mechanisms

115

[43] E. Foundation, "Ethereum whitepaper," [Online]. Available: https://ethereum.org/. [Accessed 23
December 2024].

[44] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand,” Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, pp. 51–68, Oct. 14, 2017.

[45] "Cosmos," [Online]. Available: https://cosmos.network/.

[46] "Polkadot," 2024. [Online]. Available: https://polkadot.com/.

[47] O. Ciobotaru, F. Shirazi, A. Stewart, and S. Vasilyev, "Accountable Light Client Systems for {PoS}
Blockchains," Cryptology {ePrint} Archive, 2022.

[48] J. Albrecht, S. Andreina, F. Armknecht, G. Karame, G. Marson, and J. Willingmann, “Larger-scale
Nakamoto-style Blockchains Don’t Necessarily Offer Better Security,” 2024 IEEE Symposium on
Security and Privacy (SP), pp. 2161–2179, 2024.

[49] "Bitcoin," [Online]. Available: https://bitcoin.org/en/.

[50] "Monero," [Online]. Available: https://www.getmonero.org/.

[51] "Cardano," [Online]. Available: https://cardano.org/.

[52] "Ethereum Classic," [Online]. Available: https://ethereumclassic.org/.

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Executive summary
	1 Introduction
	1.1 Relation to Other Tasks and Deliverables
	1.2 Structure of the Document

	2 The NANCY Blockchain
	2.1 Introduction to Blockchain Technologies and Hyperledger Fabric
	2.1.1 Introduction to Blockchain
	2.1.2 Decentralization and Enhanced Security
	2.1.3 Applications beyond Cryptocurrency
	2.1.4 Hyperledger Fabric
	2.1.5 Attack vectors on Hyperledger Fabric

	2.2 Introduction to the NANCY Blockchain and its Core Components
	2.2.1.1 Functional Requirements
	2.2.1.2 Core Components briefly described
	2.2.2 NANCY Blockchain Workflows and Relation to the NANCY Architecture
	2.2.2.1 Relation to the Architecture
	2.2.2.2 Basic service selection and agreement workflow (inside the inter-operator domain)
	2.2.2.3 Extended Service Selection and Agreement Workflow (combining the intra and inter-operator domains)
	2.2.2.4 About Privacy with Blockchain Smart Contracts

	2.3 The NANCY Blockchain Core Components
	2.3.1 Smart Contract-based Components
	2.3.1.1 SLA Registry
	Description
	Interfaces

	2.3.1.2 Marketplace
	Description
	Interfaces

	2.3.1.3 Smart Contracts related to SSI
	Description

	2.3.2 Oracles and Non-Smart Contract-based Components
	2.3.2.1 Digital Agreement Creator
	Description
	Architecture
	Interfaces
	Create SmartContract based on a request
	Get SmartContract by its hash

	2.3.2.2 Smart Pricing
	Description
	Architecture
	Interfaces

	2.3.2.3 Oracles
	Description
	Architecture

	2.4 Other Features of the NANCY Blockchain
	2.4.1 Blockchain Monitoring Dashboard
	2.4.2 Blockchain Scalability Mechanisms
	2.4.2.1 Hardware-Assisted Byzantine-fault Tolerant Consensus
	2.4.2.2 Benchmarking for NANCY Blockchain with fastBFT Consensus Plugin
	2.4.2.3 Scalability Techniques for Permissioned Blockchains
	MITOSIS Implementation

	2.4.3 Data Integrity Mechanisms
	2.4.4 Tokenization of Digital Assets
	Description
	Architecture
	Interfaces

	2.4.5 Monitoring and Verification of the Transactions
	Description
	Architecture
	Interfaces

	3 NANCY ID Management Tools
	3.1 Introduction to SSI and wallets
	3.1.1 DID Registry and VC (Revocation) Registry
	Description
	Interfaces

	3.2 The NANCY Wallet
	3.2.1 PQC Signature Capabilities of the NANCY Wallet
	3.2.2 SSI Capabilities of the NANCY Wallet
	3.2.3 Architecture and Interfaces
	3.2.3.1 Architecture overview for the PQC capabilities of the NANCY wallet
	PQC Signature Middleware
	PQC Signature Token

	3.2.3.2 Architecture overview for other capabilities of the NANCY wallet (SSI and interaction with the Marketplace, including SLAs)
	3.2.3.3 gRPC Service of walletGateway
	GRPC API for SSI
	GRPC API for Marketplace
	GRPC API for SLA Operations

	3.2.3.4 Using Walletgateway and the command-line tool walletClient

	3.3 Further Mechanisms for Ensuring the Security and Privacy of the Users

	4 Research on Additional Security Mechanisms
	4.1 Protection of Smart Contracts
	4.2 Lightweight Clients
	4.3 Impact of Decentralization on Security

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future work

	References

