

An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term
Evolution [GA: 101096456]

Deliverable 6.2

NANCY Integrated System – Initial Version

Programme: HORIZON-JU-SNS-2022-STREAM-A-01-06

Start Date: 01 January 2023

Duration: 36 Months

NANCY project has received funding from the Smart Networks and Services Joint Undertaking
(SNS JU) under the European Union's Horizon Europe research and innovation programme under
Grant Agreement No 101096456.

D6.2 – NANCY Integrated System – Initial Version

2

Document Control Page

Deliverable Name NANCY Integrated System – Initial Version

Deliverable Number D6.2

Work Package WP6 NANCY System Integration, Validation & Demonstration

Associated Tasks Task 6.1 - Integration plan and facilities, Task 6.2 - Continuous integration

Dissemination Level Public

Due Date 31 January 2025

Completion Date 28 January 2025

Submission Date

Deliverable Lead Partner Netcompany-Intrasoft

Deliverable Author(s) Panos Matzakos (INTRA), Olga Segou (INTRA), Themistoklis Anagnostopoulos
(INTRA), Stylianos Trevlakis (INNO), Lamprini Mitsiou (INNO), Vasileios Kouvakis
(INNO), Theodoros Tsiftsis (INNO), Eirini Gkarnetidou (INNO), Ilias Theodoropoulos
(8BELLS), Stratos Vamvourellis (8BELLS), Alvise Rigo (VOS), Anna Panagopoulou
(VOS), Daniel Raho (VOS), Dimitris Manolopoulos (UBI), Georgios P. Katsikas (UBI),
Miguel Catalan-Cid (i2CAT), Hatim Chergui (i2CAT), Giorgos-Nektarios Panayotidis
(CERTH), Theofanis Xifilidis (CERTH), Dimitris Kavallieros (CERTH), Shih-Kai Chou
(JSI), Carolina Fortuna (IJS), Jean-Paul Truong (TDIS), Ramon Sanchez-Iborra
(UMU), Rodrigo Asensio (UMU), Andrea Wrona (CRAT), Emanuele De Santis
(CRAT), Simone Gentile (CRAT), Valentina Becchetti (CRAT), Grigorios Kalogiannis
(DRAXIS), Cristina Regueiro (TECNALIA), Abir Yasser Barakat (TEI), Marco
Tambasco (TEI), Giuseppe Celozzi (TEI), Antonella Clavenna (ITL), Ioannis Makris
(MINDS), Nikolaos Ntampakis (MINDS), Konstantinos Kyranou (SID), Georgios
Michoulis (SID), Wenting Li, Francisco Javier deVicente Gutierrez (NEC), Panagiotis
Sarigiannidis (UOWM), Thomas Lagkas (UOWM), Athanasios Liatifis (UOWM),
Dimitrios Pliatsios (UOWM), Sotirios Tegos (UOWM)

Version 1.0

Document History

Version Date Change History Author(s) Organisation

0.1 05/11/2024 Initial version

Panos Matzakos,
Olga Segou,
Themistoklis

Anagnostopoulos

INTRA

0.2 20/11/2024
Updates in identified integration

points and integration matrix
(Section 6)

Panos Matzakos INTRA

0.3 02/12/2024
Initial inputs in sections 5, 6.2

and 6.3

Ramon Sanchez-
Iborra, Rodrigo

Asensio, Cristina
Regueiro, Ioannis
Makris, Nikolaos
Ntampakis, Abir

UMU, TECN, MINDS, TEI

 30 January 2025

D6.2 – NANCY Integrated System – Initial Version

3

Yasser Barakat,
Marco Tambasco,
Giuseppe Celozzi

0.4 15/12/2024 Inputs in section 3

Panos Matzakos,
Dimitris

Manolopoulos,
Hatim Chergui,
Francisco Javier

deVicente Gutierrez,
Cristina Regueiro,

Stylianos Trevlakis,
Grigorios

Kalogiannis, Stratos
Vamvourellis

INTRA, UBI, i2CAT, NEC,
TECN, INNO, DRAXIS, 8Bells

0.5 20/12/2024 Inputs in section 4 Panos Matzakos INTRA

0.6 10/01/2025
Final inputs and updates in

sections 5, 6.2, 6.3 and Annex

Panos Matzakos,
Olga Segou,
Themistoklis

Anagnostopoulos,
Stylianos Trevlakis,
Lamprini Mitsiou,

Vasileios Kouvakis,
Theodoros Tsiftsis,
Eirini Gkarnetidou,

Ilias
Theodoropoulos,

Stratos
Vamvourellis, Alvise

Rigo, Anna
Panagopoulou,

Daniel Raho, Dimitris
Manolopoulos,

Georgios P. Katsikas,
Miguel Catalan-Cid,

Hatim Chergui,
Giorgos-Nektarios

Panayotidis,
Theofanis Xifilidis,

Dimitris Kavallieros,
Shih-Kai Chou,

Carolina Fortuna,
Jean-Paul Truong,
Ramon Sanchez-
Iborra, Rodrigo

Asensio, Andrea
Wrona, Emanuele
De Santis, Simone
Gentile, Valentina

Becchetti, Grigorios
Kalogiannis, Cristina

Regueiro, Abir

INTRA, INNO, 8Bells, VOS,
UBI, i2CAT, CERTH, IJS, TDIS,
UMU, CRAT, DRAXIS, TECN,

TEI, ITL, MINDS, SID, NEC

D6.2 – NANCY Integrated System – Initial Version

4

Yasser Barakat,
Marco Tambasco,
Giuseppe Celozzi,

Antonella Clavenna,
Ioannis Makris,

Nikolaos Ntampakis,
Konstantinos

Kyranou, Georgios
Michoulis, Wenting

Li

0.7 13/01/2025
Inputs in introduction and

section 2
Panos Matzakos,

Olga Segou
INTRA

0.8 16/01/2025

Inputs in Executive summary,
section 6.4 and Conclusions;

Updates in sections 2.2 and 2.3,
3.2, 6.2, 6.3, A.22, A.23

Panos Matzakos,
Dimitris

Manolopoulos,
Wenting Li,

Francisco Javier
deVicente Gutierrez

INTRA, UBI, NEC

0.9 20/01/2025
Deliverable version ready for

internal review
Panos Matzakos INTRA

1.0 27/01/2025
Deliverable version after

addressing internal review
comments and quality checks

Panos Matzakos,
Olga Segou, Hatim
Chergui, Grigorios

Kalogiannis, Shih-Kai
Chou, Cristina

Regueiro, Francisco
Javier deVicente

Gutierrez, Panagiotis
Sarigiannidis,

Thomas Lagkas,
Athanasios Liatifis,
Dimitrios Pliatsios,

Sotirios Tegos

INTRA, i2CAT, DRAXIS, IJS,
TECN, NEC, UOWM

Internal Review History

Name Organisation Date

Giorgos-Nektarios Panayotidis,
Theofanis Xifilidis, Dimitris

Kavallieros
CERTH 23 January 2025

Marco Tambasco TEI 22 January 2025

Quality Manager Revision

Name Organisation Date
Anna Triantafyllou, Dimitrios

Pliatsios
UOWM 28 January 2025

D6.2 – NANCY Integrated System – Initial Version

5

Legal Notice

The information in this document is subject to change without notice.
The Members of the NANCY Consortium make no warranty of any kind about this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the NANCY Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.
Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or SNS JU. Neither the European
Union nor the SNS JU can be held responsible for them.

D6.2 – NANCY Integrated System – Initial Version

6

Table of Contents
Table of Contents .. 6

List of Figures ... 9

List of Tables .. 10

List of Acronyms .. 11

Executive summary ... 13

1. Introduction ... 14

1.1. Purpose of the Document ... 14

1.2. Relation to other Tasks and Deliverables .. 14

1.3. Structure of the Deliverable .. 15

2. Integration Methodology .. 16

2.1. Continuous Integration/ Continuous Delivery .. 16

2.2. Integration Points Identification, Specification and Testing ... 17

2.3. Communication Channels and Management of Integration Activities 18

3. Instantiation of the NANCY Reference Architecture ... 19

3.1. Overview of NANCY Architecture .. 19

3.2. Deployment of NANCY Architecture ... 20

3.2.1. Central Management Domain ... 21

3.2.2. Inter-operator Domain .. 24

3.2.3. NANCY Testbeds and Demonstrators .. 27

3.3. Reusability of NANCY Solution Towards new Deployment Environments 29

4. NANCY Ιntegration Εnvironment ... 32

4.1. Hetzner Cloud Infrastructure .. 32

4.2. CI/CD system ... 33

4.2.1. Overview of CI/CD Services ... 33

4.2.2. Github Version Control System ... 33

4.2.3. Jenkins Continuous Integration Server.. 34

4.2.4. Harbor Private Docker Container Registry .. 39

4.3. NANCY Central Kubernetes Cluster ... 41

4.3.1. High Level Architecture ... 41

4.3.2. Control Plane Master Nodes ... 42

4.3.3. Worker Nodes ... 43

4.3.4. Kubernetes Networking .. 43

4.3.5. Kubernetes Namespaces ... 44

4.3.6. External Access to the Kubernetes Cluster.. 44

D6.2 – NANCY Integrated System – Initial Version

7

4.4. Security Features of the NANCY Integration Environment ... 46

4.4.1. Secure Communication over HTTPS .. 46

4.4.2. User Authentication and Role-based Access Control .. 47

4.4.3. VPN Configuration ... 48

4.4.4. Firewall Protection of CI/CD and Central Management Infrastructure 48

4.4.5. SSH-key-based Authentication to the Central NANCY Infrastructure 49

5. Functional Testing of NANCY Components ... 50

6. Integration of NANCY Components and Services .. 55

6.1. Integration Τimeline .. 55

6.2. Integration Points Identification ... 57

6.3. Integration Tests .. 63

6.4. Next Integration Steps ... 65

7. Conclusions .. 66

Bibliography ... 67

A. Annex: Integration Points Specifications ... 69

A.1 MRAT-NCP – ID Management ... 69

A.2 ID-Management – Wallet .. 69

A.3 MRAT-NCP – SemCom ... 70

A.4 MRAT-NCP – Models ... 71

A.5 ID Management – VoSySMonitor ... 72

A.6 DAC – Marketplace ... 73

A.7 BC – Wallet .. 74

A.8 BC – Marketplace .. 75

A.9 Wallet – Marketplace .. 75

A.10 AI Virt. - VoSySMonitor ... 76

A.11 AI Virt. - SEMR ... 77

A.12 Marketplace – SPP .. 78

A.13 Models - SEMR .. 79

A.14 Models - Elasticity ... 80

A.15 Models – TFS ... 81

A.16 SEMR – AINQM ... 81

A.17 SEMR – FL-IDS ... 82

A.18 PQC Sign – PQC SecCom .. 82

A.19 AINQM - NIF .. 83

A.20 AINQM - XAI .. 83

A.21 XAI – FL-IDS ... 84

D6.2 – NANCY Integrated System – Initial Version

8

A.22 Wallet – BSS .. 85

A.23 Wallet – Maestro .. 86

D6.2 – NANCY Integrated System – Initial Version

9

List of Figures
Figure 1 Relation of D6.2 to other NANCY tasks. .. 15
Figure 2 NANCY CI/CD infrastructure and execution environments ... 17
Figure 3 Functional and Deployment view of NANCY reference architecture 19
Figure 4 NANCY platform operation domains and deployment of the NANCY architecture 21
Figure 5 High-level view of integration among i2CAT’s Slice Manager and SEMR hosted at IJS
Kubernetes cluster .. 24
Figure 6 Service selection inside the offloading and caching workflow ... 25
Figure 7 Operators using their wallets to list services in the Marketplace ... 26
Figure 8 NANCY project and VMs allocation in Hetzner cloud .. 33
Figure 9 Demo (example) project repository under NANCY Github Organisation................................ 34
Figure 10 NANCY component-specific workspaces in Jenkins CI server ... 35
Figure 11 Select Pipeline option .. 36
Figure 12 Jenkins pipeline creation: Link with specific Github repository .. 36
Figure 13 Retrieve GitHub repository’s URL .. 37
Figure 14 Selection of Github hook trigger ... 37
Figure 15 Configuring consecutive Jenkins jobs .. 38
Figure 16 Jenkins pipeline creation: Further configurations for connecting to the target Github
repository .. 38
Figure 17 Branches to Build ... 39
Figure 18 Wedhooks .. 39
Figure 19 NANCY component-specific projects in Harbor private registry ... 40
Figure 20 NANCY central Kubernetes cluster architecture ... 42
Figure 21 Instances of Kube-system components in central NANCY Kubernetes cluster 42
Figure 22 Setup for external access of the deployed services in the Kubernetes cluster 44
Figure 23 Ingress routing rules enabling external access to deployed services in the Kubernetes
cluster .. 45
Figure 24 Example of Ingress resource configuration for name based virtual hosting 46
Figure 25 SSO access to NANCY CI/CD services via Keycloak .. 47
Figure 26 Access to central NANCY VPN ... 48
Figure 27 Hetzner firewalls to restrict access to Hetzner VMs ... 49

D6.2 – NANCY Integrated System – Initial Version

10

List of Tables
Table 1 NANCY interfaces and the related NANCY architectural components 19
Table 2 Listing of NANCY (WP2-WP5) components and their deployment locations 28
Table 3: NANCY functional testing .. 50
Table 4 NANCY integration timeline .. 55
Table 5 NANCY integration matrix .. 58
Table 6 Integration points specification summary .. 60
Table 7: NANCY integration testing ... 63

D6.2 – NANCY Integrated System – Initial Version

11

List of Acronyms
Acronym Explanation

5G 5th Generation
AI Artificial Intelligence

AI Virt AI Virtualizer
API Application Programming Interface
B5G Beyond 5G
BSS Business Support System

B-RAN Blockchain RAN
CA Certificate Authority

CI/CD Continuous Integration/ Continuous Delivery
CNI Container Network Interface
CSV Comma-separated values
DAC Digital Agreement Creator

DevOps Development and Operations
DID Decentralised Identifier

DSM Design Structure Matrix
DT Digital Twin

ETSI European Telecommunications Standards Institute
FL Federated Learning

FQDN Fully Qualified Domain Name
GRPC gRPC Remote Procedure Call
GSMA GSM Association

GUI Graphical User Interface
HA Highly Available

HTTPS Hypertext Transfer Protocol Secure
JSON JavaScript Object Notation

K8s-aaS Kubernetes-as-a-Service
KPI Key Performance Indicator

LaaS Localisation-as-a-Service
LLM Large Language Model
MEC Multi-Access Edge Computing
ML Machine Learning

MLOps Machine Learning Operations
NBI Northbound Interface

NFVO Network Functions Virtualisation Orchestrator
NI NANCY Interface

NIS NANCY Interface Set
NSaaS Network Slice as a Service
OP-TEE Open Trusted Execution Environment

OSS Operations Support System
P2P Point-to-Point
PQC Post-Quantum Cryptography
RAN Radio Access Network
RIC RAN Intelligent Controller

RBAC Role-Based Access Control
SCM Source Code Management

SEMR Self-Evolving Model Repository
SLA Service Level Agreement

D6.2 – NANCY Integrated System – Initial Version

12

SM Slice Manager
SO Service Orchestrator
SP Smart Pricing
SSI Self-Sovereign Identity
SSL Secure Sockets Layer
SSO Single-Sign-On
TEE Trusted Execution Environment
TLS Transport Layer Security
UE User Equipment

V2X Vehicle-to-Everything
VNF Virtual Network Function
VPN Virtual Private Network
XAI Explainable AI

YAML YAML Ain't Markup Language

D6.2 – NANCY Integrated System – Initial Version

13

Executive summary
This deliverable presents in detail the intermediate results of WP6 tasks: T6.1 - Integration plan and
facilities and T6.2 - Continuous integration associated with NANCY integration activities, which aim to
incorporate the outcomes of the development tasks (WP2-WP5) into a unified NANCY platform.
Building on top of the initial outcomes of T6.1 reported in [1], relative to the definition of the
deployment view of NANCY architecture (initially produced in [2]), the current deliverable reports in
detail on the association of the NANCY components developed in WP2-WP5 with the NANCY platform’s
deployment domains and interfaces defined in [1]. Following a well-defined integration methodology,
it identifies and specifies the bilateral integration points of the platform as pairs of NANCY components
which aim to interact with each other in the context of NANCY use cases, linking them to the NANCY
platform interfaces. It describes in detail the first stage of NANCY functional and integration tests,
performed to validate the intended functionalities per component and interoperability across the
integration points, respectively. Furthermore, D6.2 elaborates on the integration framework guiding
the production of the NANCY platform. It encompasses both methodological aspects and technical
DevOps tools and best practices, aimed at standardizing, facilitating, and ultimately accelerating the
software development and integration cycle.

An overview of the NANCY architecture and its deployment view produced in [2] and [1] is first
presented, detailing the deployment domains defined in the context of NANCY: Central Management,
Inter-Operator and NANCY testbeds/demonstrators, as well as their respective components. In this
context, the associated deployment domain and physical deployment location for each NANCY
component are provided. Reusability aspects of the NANCY platform across different deployment
environments are also covered.

Then, the NANCY integration environment is presented in detail emphasizing different Continuous
Integration/ Continuous Delivery (CI/CD) services that have been put in place, as well as the central
Kubernetes cluster established for NANCY, with a focus on the methods used to isolate execution
environments (e.g., development, staging and operational) through namespaces. Finally, an overview
of the security features of the integration environment is provided.

The functional tests for each NANCY component are subsequently described, outlining the objectives
of the various tests per component. This description is followed by the detailed specification of the
integration plan, including the identification and comprehensive description of the NANCY bilateral
integration points, along with the corresponding planned integration tests, as well as the next steps of
the integration activities.

D6.2 – NANCY Integrated System – Initial Version

14

1. Introduction

1.1. Purpose of the Document

This document presents the preliminary version of the NANCY integrated system. Specifically, NANCY
designs, implements, tests and validates a secure and intelligent architecture for Beyond 5G (B5G)
wireless networks. Through the use of cutting-edge research in Artificial Intelligence, Blockchain,
Orchestration etc. the project enables secure and intelligent resource management, flexible
networking and orchestration. In terms of networking, novel architectures, namely point-to-point
(P2P) connectivity for device-to-device communication, mesh networking, and relay-based
communications, as well as protocols for medium access, mobility management, and resource
allocation are designed and tested within the lifecycle of the project.

The project takes an ambitious approach to the provision of the necessary Beyond 5G functionalities.
It brings together a multitude of disparate and complex technologies to create its core platform, on
top of the three unique experimental testbeds. Multiple technical challenges are involved in deploying
such a variety of complex functionalities; the project thus requires the definition of a methodical
approach of integration, testing and validation. This document discusses the process utilised by the
NANCY consortium towards achieving the first integrated system, up to M25. It covers the Continuous
Integration methodology, the instantiation of the core platform, the integration infrastructure
leveraged by the project and provides detailed information on the main integration points and the
status of integration activities at M25.

1.2. Relation to other Tasks and Deliverables

The Integration task received inputs from the key technical work packages, namely WP2 “Usage
Scenario and B-RAN Modelling, Network Requirements and Performance assessment” for
requirements and modelling of B-RAN and Network Information Framework, WP3 “NANCY
Architecture and Orchestration” for the core artificial intelligence and orchestration components, WP4
“Dynamic Resource Management and Smart Pricing” for the components regarding the computational
off-loading, caching, resource elasticity, cell-free cooperative access, smart pricing and beyond-
Shannon performance, and WP5 “Security, Privacy and Trust Mechanisms” for the quantum key
distribution, blockchain-based security and privacy, self-healing/self-recovery and explainable AI
components. The results of the integration and evaluation process that takes place in WP6 and is in
part reflected in this deliverable (covering developments up to M25), are then provided as inputs to
the technical work packages which in turn can refine and optimize the implementation. Specifically,
this document covers the definition of integration points, the integration of the various services
created in the span of the project and provides an overview of the first functional and bilateral
integration tests.

This work is also strongly related to the work already performed in WP6 and reported in deliverable
D6.1 “B-RAN and 5G End-to-End Facility Setup” [1] on the infrastructure fabric created for NANCY. D6.1
formulates a clear plan for the deployment of the core architectural components of NANCY, as well as
the testbed platforms. This document presents technical work performed in Task 6.1 (B-RAN and 5G
End-to-End Facilities Setup, Operations and Maintenance) and T6.2 (Continuous Integration) and
outputs the integration timeline, test results and next integration steps to the technical work packages,
the interoperability and joint-optimisation task (T6.3) and pilot tasks (T6.4-T6.9), as seen in Figure 1.

D6.2 – NANCY Integrated System – Initial Version

15

Figure 1 Relation of D6.2 to other NANCY tasks.

1.3. Structure of the Deliverable

This document is structured as follows:

• Chapter 1 – Introduction (current chapter) defines the purpose and structure of this
document and contextualises the integration work with respect to the project’s technical
work.

• Chapter 2 – Integration Methodology introduces the overall process followed by NANCY to
deal with challenges in integrating the NANCY subsystems and achieving end-to-end
functionalities. This chapter introduces the CI/CD platform used by NANCY and the process of
integration points identification between the related subsystems.

• Chapter 3 – Instantiation of the NANCY Reference Architecture provides an overview of the
NANCY architecture and delves into the deployment and reusability of its components.

• Chapter 4 – NANCY Integration Environment provides an analytical description of the CI/CD
environment, the deployed services and the Version Control. Furthermore, it describes the
NANCY Central Kubernetes cluster. Finally, it touches upon the security features that are
utilised by the NANCY Integration Environment.

• Chapter 5 – Functional testing of NANCY Components provides an overview of the functional
tests defined and executed by the NANCY partners, per NANCY component.

• Chapter 6 – Integration of NANCY Components and Services provides a detailed view of the
integration process, starting with a timeline of activities. It also provides a listing of integration
tests per integration point and discusses the status of the integration activities in terms of
completion and future work.

• Chapter 7 – Conclusions concludes this document and provides a brief overview of the results
and lessons learnt.

• Annex Sections: The full specifications of the NANCY integration points are included in Annex.

D6.2 – NANCY Integrated System – Initial Version

16

2. Integration Methodology
The objective of the NANCY integration framework is to incorporate the different NANCY components
and services developed in the context of WP2-WP5 into a unified platform that bridges the Edge and
Cloud environments and underlying technologies and instantiates the NANCY architecture in a
versatile and secure manner. The challenges associated with integrating software from diverse
technology pillars (AI, Blockchain, MEC and Orchestration) while aligning with 5G/6G standards and
KPIs have been discussed in [2], and so have the technology-specific plans to overcome them. In the
current section, we describe the basic processes of the NANCY integration methodology, which were
also introduced in [2]. The methodology is based on breaking down the project into smaller,
manageable pieces and employing a structured approach to testing and agile methodologies. This is to
ensure that the process can be efficiently streamlined, while exploiting DevOps tools and best practices
to facilitate, enhance and eventually accelerate the software development and integration cycle.

2.1. Continuous Integration/ Continuous Delivery

To manage the complexity of the NANCY platform in integrating the aforementioned technology
components, a Continuous Integration/Continuous Delivery (CI/CD) strategy is employed. This
approach, is in accordance with DevOps best practices and it fosters smooth collaboration among
development teams, allowing for the efficient streamlining of code releases, the incorporation of
updates, and the automation of testing and integration processes.

The basic principles of Continuous Integration and Continuous Delivery have already been described
in [1]. In the context of NANCY, CI is related to the usage of CI/CD services (described in detail in section
4.2) connected to a central development and testing/staging environment (central Kubernetes
cluster). The objective of this setup is to provide the developers/testers of the different NANCY
components with a common environment that can be used to frequently and automatically test their
code updates, covering different tests which range from unit and functional to integration with other
components deployed at the same environment. This setup is addressed to the NANCY components
which are containerized and thus can easily be deployed and tested in a Kubernetes cluster.

CD is related to centrally triggered deployment and validation of NANCY containerized components in
an operational context. This context can either refer to direct deployment at the different execution
sites (Kubernetes clusters) of the NANCY testbeds and demonstrators, or deployment at the NANCY
central management domain (see section 3.2) which is also hosted in the central Kubernetes cluster,
under dedicated and isolated resources. Furthermore, in the context of CD as described in [1] and
further explained in section 3.2.1, the CI/CD services will also interoperate with the NANCY Service and
Resource Orchestrator to manage deployment service orders towards the distinct Kubernetes clusters
related to the target NANCY demonstrators/testbeds efficiently. Typically, CD takes place after any
development updates at individual component-or integration-level have been validated in the CI
phase.

The NANCY CI/CD system and central Kubernetes cluster are built on top of Linux VMs acquired from
Hetzner public cloud provider [3] (Figure 2), as further explained in section 4.1. In this context, the
specific hardware requirements for the various NANCY software components were initially assessed
to ensure the infrastructure could support them within the CI/CD services and the central NANCY
Kubernetes cluster. It is worth mentioning that the development and testing setup of NANCY aims to
provide a deployment environment that is similar to the different NANCY testbeds and demonstrators.

D6.2 – NANCY Integrated System – Initial Version

17

In this context, the selection of NANCY software containerization (where possible) and Kubernetes
container orchestration platform across the different environments of the project aims to facilitate the
integration efforts.

Two technical workshops were conducted to acquaint the technical partners with the integration
environment and framework created by the INTRA team for the project. Comprehensive
documentation and sample projects were provided to assist the technical partners in developing their
own deployment and testing pipelines for their containerized solutions on the NANCY Kubernetes
cluster.

Figure 2 NANCY CI/CD infrastructure and execution environments

2.2. Integration Points Identification, Specification and Testing

The initial steps of the integration activities included identifying the integration points (section 6.2) as
a comprehensive set of bilateral NANCY components that will interface with each other across the
various pilots. One of the objectives of this step was to update the NANCY architecture’s functional
and deployment view presented in [1] (and provided also in section 3.1 for your convenience), where
the NANCY platform’s interfaces were defined. Specifically, in the current document, each integration
point (set of bilateral NANCY components) is linked to one or more NANCY platform interfaces (section
6.2).

After their identification, the integration points were specified in more detail, including the selection
of suitable protocols/interface technologies to ensure interoperability and the creation of sequence
diagrams to be implemented throughout the integration process (section A). Based on these

D6.2 – NANCY Integrated System – Initial Version

18

specifications, precise testing plans have been executed starting from a NANCY component basis
(functional tests reported in section 5). The objective of these tests is to first validate each
component’s functionality independently to make sure that individual components work as expected
before integration efforts begin.

Following the validation of components’ specific functionalities through functional tests, bilateral
integration tests are taking place to verify and ensure that each pair of components previously defined
as an integration point can work together seamlessly. These tests focus on the interaction and data
exchange between the two components, ensuring that they communicate correctly, function as
expected when integrated, and do not introduce any errors or issues. Bilateral integration tests help
identify and resolve compatibility issues, interface mismatches, and integration-related bugs early in
the development process, thereby improving the overall reliability and stability of the integrated
system. An overview of the full set of bilateral integration tests defined in NANCY for the first release
of the platform is provided in section 6.3.

In the context of the first release of the NANCY platform, most functional tests have been validated
and the bilateral integration tests are ongoing. After these tests are finalised and updated, the plan is
to gradually plan and implement larger-scale (end-to-end) tests. The objective of these tests will be to
validate complete and integrated workflows (technical testing scenarios) of the NANCY platform from
start to finish. These tests will ensure that the involved system components and subsystems interact
correctly and operate together as intended for such technical workflows, providing feedback for
platform refinements. The definition and results of these tests will be reported in D6.3 “NANCY
Integrated System – Final Version”.

2.3. Communication Channels and Management of Integration Activities

To support the NANCY platform’s integration activities, different communication channels have been
established. Regular WP6 meetings are held weekly to monitor the status of ongoing activities, as well
as ad-hoc meetings scheduled to address specific identified challenges, resolve technical issues etc.
Moreover, shared project planning and integration monitoring tools based on Github [4] have been
put in place and will be used extensively to support a common view on the status, blocking issues and
progress of the integration/testing activities among the technical partners. Last but not least,
dedicated NANCY communication channels on Slack platform [5] have been set up, facilitating quick
and effective exchanges for brainstorming and issue resolution among NANCY component providers.

D6.2 – NANCY Integrated System – Initial Version

19

3. Instantiation of the NANCY Reference Architecture

3.1. Overview of NANCY Architecture

Figure 3 visualizes the functional and deployment view of the NANCY architecture. This figure provides
both a horizontal split of the system across domains (from user equipment at the left-hand side to a
core domain at the right-hand side) as well as a vertical split across layers (from the infrastructure layer
at the bottom to the business layer at the top). These domains and layers are explained in detail in
Deliverable D6.1 “Β-RAN and 5G End-to-end Facilities Setup” submitted in M20.

Figure 3 Functional and Deployment view of NANCY reference architecture

Figure 3 also shows all the interfaces among the NANCY platform components. Table 1 lists the NANCY
interfaces (NI) and NANCY interface sets (NIS) visualised in Figure 3. In column 1, each interface is
associated with a unique identifier. NANCY interfaces begin with NI followed by an increasing number,
while NANCY interface sets begin with NIS followed by an increasing number. Column 2 states the high-
level objective of each NI and/or NIS, while column 3 relates the interface with one or more logical
components of the NANCY architecture as shown in Figure 3. Finally, column 4 states the partners
responsible for the implementation of these components and interfaces.

Table 1 NANCY interfaces and the related NANCY architectural components

Interface
ID Interface Objective Related Logical Architecture

Component(s)
Responsible

Partners
NIS1 End user Service Exposure set of APIs Service Orchestrator (NBI) UBI, I2CAT
NIS2 Resource Service Exposure set of APIs Resource Orchestrator (NBI) UBI, I2CAT

NIS3 Service Repository and Registry set of APIs CI/CD Platform,
Service/Resource Orchestrator

INTRA, UBI/
I2CAT

NIS4 O-RAN Orchestration set of APIs SMO NBI

Testbed
owners

(T6.5, Τ6.6,
Τ6.8, T6.9)

D6.2 – NANCY Integrated System – Initial Version

20

NIS5 Service and Resource Telemetry Exposure
set of APIs

Telemetry Infrastructure Service
(NBI)

Testbed
owners

(T6.5, Τ6.6,
Τ6.8, T6.9)

NIS6 Compute slice management set of APIs Compute Controller(s) (NBI)

Testbed
owners

(T6.5, Τ6.6,
T6.7, Τ6.8,

T6.9)

NIS7

Telemetry collection set of APIs from
various domains, including (O-)RAN,

Transport Network, Compute, and Mob.
Core

Telemetry,
Infrastructure (Testbeds)

Testbed
owners

(T6.5, Τ6.6,
T6.7, Τ6.8,
T6.9) and

T2.3
partners

NIS8 (Smart) events/outputs exposure set of
APIs (AI and/or Analytics services) AI/Analytics, Enforcement

Partners in
T2.3-T2.4,
T3.2-T3.4,

T4.4,
T5.4-T5.5

NI9 Secure Product Exposure API Blockchain, BSS NEC, TEC

NI10 Smart Contract deployed on the
blockchain Marketplace, Blockchain TEC, NEC

NI11 Blockchain oracle – server API Marketplace, Digital Agreement TEC, DRAXIS
NI12 Blockchain oracle – server API Marketplace, Smart Pricing TEC, 8BELLS

NIS13
Secure (gRPC) interface between

blockchain and wallet owners (e.g., UEs,
IoTs, etc.)

Blockchain, user’s wallet
(can involve PQC)

NEC, TDIS,
WP6

partners

3.2. Deployment of NANCY Architecture

Following the definition of the functional and deployment view of the NANCY architecture presented
in section 3.1, the deployment/operation domains of NANCY architecture, namely: Central
Management, Inter-operator and NANCY testbeds/demonstrators are described here in detail. As
shown in Figure 4, the secure connectivity across the various NANCY deployment domains and their
associated services will be ensured through the establishment of an appropriate VPN fabric.

D6.2 – NANCY Integrated System – Initial Version

21

Figure 4 NANCY platform operation domains and deployment of the NANCY architecture

3.2.1. Central Management Domain

The NANCY Central Management Domain incorporates the end-to-end slicing, service and resource
orchestration services of NANCY, already analysed in [1] and further described below. Moreover, the
CI/CD system that has been put in place supports the efficient central management of the deployments
and testing towards the different clusters/environments of NANCY, as it will be analysed in the
following.

The Orchestration and CI/CD system services are hosted in the central NANCY Kubernetes cluster,
which serves a dual purpose:

• To establish a common development and testing environment for containerized NANCY
components, aiming to verify their functionalities and ensure integration among various
components and services prior to deployment in operational settings (separate Kubernetes
clusters at NANCY testbeds/demonstrators).

• To host NANCY Management domain services, which include as mentioned above
orchestration services that are accessible across different operational environments via secure
VPN tunnels.

The CI/CD Platform

The CI/CD Platform provides DevOps automation capabilities through the configuration of software
build, testing and deployment pipelines for the different NANCY components and services. As it has
been described in [1], it is composed of the NANCY Github organisation which is used as the code
repository and version control system; the Jenkins CI server to configure and execute the software
testing and delivery pipelines; the Harbor private Container registry managing the NANCY container
images and Helm charts. The NANCY CI/CD system is connected to the central NANCY Kubernetes
cluster, supporting the development and testing of NANCY components. The CI/CD system services are
also securely connected to the Kubernetes environments of the different NANCY testbeds and

D6.2 – NANCY Integrated System – Initial Version

22

demonstrators to control the deployments of NANCY containerized components and services either
directly through the CI server or through the MAESTRO service orchestrator.

Detailed descriptions of the NANCY CI/CD system and integration environment are provided in section
4.

Business Support System (BSS):

The role of BSS in NANCY is to translate a product order made by a NANCY stakeholder through the
Marketplace (Inter-operator domain) into a corresponding service order that the BSS will issue towards
the operator's service orchestrator. To do so, the BSS must implement a secure interface with the
Marketplace using a wallet agent. This agent authenticates against the blockchain that resides
underneath the Marketplace to bridge the operator's domain with the inter-operator domain in a
secure and trusted manner.

To realise the translation of a product order into a service order, the BSS must utilise the NBI of the
service orchestrator i.e., TMF 641 service order API of Maestro, or fill in SliceManager NBI for service
orders.

Service and Resource Orchestrator

Maestro

Maestro is a cloud-native service orchestrator designed to manage the lifecycle of end-to-end services
across geo-distributed infrastructures. It facilitates automated deployment, scaling, and lifecycle
management of microservices-based applications. Maestro integrates with Kubernetes and OpenStack
environments to deploy services via containers or virtual machines. It connects with OpenSlice for
resource provisioning and relies on Helm charts for service descriptor generation and deployment on
Kubernetes clusters. Maestro operates in environments involving Kubernetes clusters and integrates
with edge and core infrastructures. It uses Kubernetes-as-a-Service (K8s-aaS) for resource
orchestration. For more details on Maestro see the online documentation [6] and [7]. Maestro
supports Helm [8] and Docker Compose [9] for service packaging. Container images and Helm charts
are managed in the NANCY Harbor container registry, ensuring smooth retrieval of artifacts during
deployment. Service providers onboard containerized services, which are subsequently deployed via
Kubernetes.

OpenSlice

OpenSlice, developed by the ETSI Software Development Group (SDG OSL), is an open-source, service-
based Operations Support System (OSS) designed to deliver Network Slice as a Service (NSaaS). It aligns
with specifications from major standards organisations, including ETSI, TM Forum, and GSMA [10].
OpenSlice is a resource orchestrator responsible for provisioning computational, memory, and storage
resources. It works closely with Maestro by providing the necessary infrastructure-level resource
allocation (e.g., Kubernetes namespace quotas). OpenSlice manages resources in Kubernetes clusters,
ensuring that slices or namespaces are configured with appropriate compute, memory, and storage
limits. OpenSlice's architecture supports the onboarding and management of NFV artifacts. This
process involves managing containerized network functions and their deployment, which can be
facilitated by container registries like Harbor [11]. Harbor could serve as a repository for storing and
managing container images and Helm charts, essential for deploying services in Kubernetes
environments. These components collaborate in the Central Management domain to enable service
orchestration and resource elasticity. Harbor provides the Helm charts and container images that

D6.2 – NANCY Integrated System – Initial Version

23

Maestro utilizes for service deployment, while OpenSlice ensures the underlying resources are
adequately allocated and managed.

AI Virtualizer: The AI Virtualizer (AI virt) is designed to enable dynamic, efficient, and decentralised
resource management. It consists of several interconnected components, including a telemetry server
and agents deployed within each slice (i.e., Kubernetes namespaces). These agents manage CPU
resources and communicate via a Kafka bus deployed in the default namespace, ensuring seamless
coordination across the system.

A key interface of the Virtualizer is the Slice Manager (SM), which operates through API endpoints to
enforce resource allocation actions such as CPU, RAM, and storage assignment. To orchestrate the
resources dedicated to Self-Evolving Model Repository (SEMR) in the distant Kubernetes cluster of IJS,
the Slice Manager---hosted on i2CAT premises---is securely connected to the Kubernetes cluster
hosted by IJS through a dedicated VPN channel using the kubeconfig file [12]. This secure
communication pathway facilitates real-time monitoring and control of the Kubernetes cluster by the
SM, ensuring consistent and reliable orchestration of resources.

Within this architecture, the SM plays a pivotal role by providing granular control over slices—logical
partitions of shared physical and virtual resources. It enables optimal resource allocation based on the
specific requirements of applications or tenants, ensuring resource isolation, scalability, and flexibility
in multi-tenant environments. By governing slices through API calls, the SM supports high-level
management tasks such as slice creation, scaling, and teardown while dynamically adjusting resource
allocations to meet varying workloads and user demands.

Currently, integration between the Slice Manager and the Kubernetes cluster hosting the Self-Evolving
Model Repository (SEMR) which is an AI model orchestrator responsible for managing model lifecycles
and monitoring performance (as detailed in [13]), is achieved via the Slice Manager API, to actuate
infrastructure-level resource management tasks within specific namespaces. The next step in this
evolution involves leveraging AI agents to make autonomous decisions and trigger API calls, enhancing
the intelligence and adaptability of the resource management process (Figure 5).

D6.2 – NANCY Integrated System – Initial Version

24

Figure 5 High-level view of integration among i2CAT’s Slice Manager and SEMR hosted at IJS Kubernetes cluster

3.2.2. Inter-operator Domain

As extensively described in [1], in the NANCY architecture, two differentiated vertical domains are
shown: the intra-operator domain and the inter-operator domain. In addition to these, the
architecture also proposes a set of distributed services to which the local service orchestrator can
access.

Initially, a basic workflow for exclusively working inside the inter-operator domain was presented in
M18. The workflow included three fundamental stages: (1) listing services in the marketplace, (2)
service selection and (3) SLA signature, and it allowed a dummy service provider to effectively expose
different services that could be granted to a dummy service consumer, who eventually – and to access
said services – should sign a new SLA.

An extended workflow has been presented in M24 (see [14]). The main difference between this and
the basic service selection and agreement workflow is that now the inter-operator domain works
together with various WP3 and WP4 actors in the intra-operator domain, rendering a complete
workflow for service handover. For the full workflow, please refer to Figure 6.

Blockchain and wallets

The NANCY wallet (see [14]) is a Kotlin GRPC server which exposes calls for working with the NANCY
blockchain, the PQC component and the SSI infrastructure. The NANCY wallet (or blockchain adaptor,
in certain contexts) also serves as a secure repository for the credentials and identities needed to
access and interact with the Fabric-based NANCY blockchain network. In this sense, the NANCY wallet
stores user identities, which can include (1) X.509 certificates as issued by the Fabric's Certificate
Authority (CA) to authenticate a user or organisation's identity, (2) the user’s self-generated DIDs, and
(3) private keys used to sign transactions on behalf of the user. It is important to repeat that the NANCY
network is permissioned, so users must have valid credentials in their wallets to interact with the
blockchain. Once authenticated, the user can e.g. query the ledger or submit transactions by
interacting with the chaincode (e.g. the NANCY Marketplace).

D6.2 – NANCY Integrated System – Initial Version

25

The NANCY Blockchain is a NEC-hosted, Hyperledger Fabric v2.2.0 based blockchain, with various
security and privacy improvements (see [14]). To interact with a Hyperledger Fabric blockchain using
a wallet, the process firstly involves setting up and registering identities, obtaining credentials, and
configuring the wallet for interaction (see A.22 and A.23 in Annex).

Once connected to a blockchain, any user can submit transactions or query the ledger through the
smart contracts APIs (see A.22 and A.23 in Annex). The main difference is that the originally (basic
workflow) called “dummy user” and identified as the service provider is now (extended workflow) the
Business Support System (BSS) of a local operator. Hence, it is this BSS the one equipped with a wallet
and a valid identity. The NANCY Marketplace (see next section) is set up as a smart contract working
in the NANCY Blockchain.

All these local operators, through their BSS, can publish services in the Marketplace by means of the
createService(JSON String) method. Descriptions for these services include performance indicators
that help the Marketplace chaincode to search the most suitable services and providers for a given
request. In addition to this, the operators can add, update or delete themselves as providers and to
add, update or delete services using GRPC calls to the Marketplace smart contract, effectively changing
the ledger status.

Figure 6 Service selection inside the offloading and caching workflow

In order to trigger the second step in the extended inter-operator domain workflow, we assume that
a service request from a client (“Client 1”) has been received and analysed by the decision engines
inside the offloading and caching workflow [15], and that there is an initial SLA created. This initial SLA
has been forwarded to the service orchestrator (SO) of the local operator receiving the service request.
In addition to this, we assume that the SO of the local operator is unable to fulfil this initial SLA, hence
it needs to contact the inter-operator domain through its wallet. This contact is done using a
createSearch(JSON string) method.

This starts a series of interactions between the Marketplace, its oracles, the Smart Pricing component
and the Digital Agreement Creator (DAC) component. Eventually, a new SLA will be created and,
potentially, signed between the interested parties.

D6.2 – NANCY Integrated System – Initial Version

26

When the provider (operator) proceeds, with the signature, its wallet issues a signing transaction to
the blockchain. The transaction ID serves as a valid signature in the SLA. In the case of the service
consumer, if it is a user equipment, its wallet will issue a transaction with a PQC signature, which can
be automatically verified by the SLA Registry smart contract. Finally, both parties are informed of the
signed SLA since they are subscribed to such events.

Figure 7 Operators using their wallets to list services in the Marketplace

Marketplace

The marketplace is a decentralized application operating on Smart Contracts. These Smart Contracts
are instantiated on the NANCY Blockchain, replicating the marketplace's ledger across all nodes within
the distributed network and improving its security in terms of trustworthiness, transparency and
availability. The interaction with the marketplace happens through the Blockchain wallets that are
deployed on the different users’ premises. In this sense, the BSS interacts with the marketplace
through the Blockchain wallet for the definition and searching of services and products fulfilling given
features.

Additionally, the marketplace requires interaction with the DAC and the SP components for proper
operation. These interactions happen using oracles deployed in combination with the Blockchain
network.

D6.2 – NANCY Integrated System – Initial Version

27

Digital Agreement Creator

The Digital Agreement Creator (DAC) is a software solution that has been designed with the intention
of creating smart contracts among NANCY stakeholders. DAC is based on the Java language and the
Spring Boot Framework and is fully Dockerised. It can receive inputs via its RESTful interface concerning
various parameters, such as providerId, consumerId, service, price, conditions, etc. DAC then creates
ad-hoc containers that hold the smart contracts for relevant parties based on the provided input. These
containers are assigned a unique identification number, generated by DAC, that works as a hash of the
smart contract. The latter containers currently are being deployed to the same place where DAC is
been deployed.

The DAC application has the capability of dynamically generating and managing these ad-hoc
containers, which serve as holders of the smart contracts for the Hyperledger Fabric blockchain, via
REST API requests. Its scalable design and modular architecture allow for concerns to be separated
between the orchestration, generation, and API layers, while its RESTful APIs enable extensibility and
integration with other systems. The component is hosted on DRAXIS premises, with communication
handled via REST APIs and it is built using Java and Maven management and comprehension tools.

Smart Pricing

The Smart Pricing Component is designed to determine optimal pricing strategies between different
providers, ensuring competitive pricing. It operates by receiving data for each provider in a given
region, including information on minimum and maximum prices. Each provider is represented by an AI
agent, and a reverse blind auction is conducted where the agent offering the best price wins. The Smart
Pricing Component interacts with the Marketplace by receiving provider information and sending
auction outcomes. Further details on the functionality can be found in [16].

The component is hosted on Eight Bells' premises, with communication handled via a REST API. It is
built using Python and incorporates reinforcement learning libraries for AI decision-making.

3.2.3. NANCY Testbeds and Demonstrators

As shown in Figure 4, the Central Management and Inter-operator domains connect to the different
testbeds and demonstrators through secure VPN connections. All demonstrators are connected to the
NANCY Blockchain of the inter-operator domain described in section 3.2.2, while the Central
Management domain’s slicing and orchestration components manage the Greek and Spanish testbeds
and demonstrators.

The detailed lists of services provisioned at the different testbeds have been provided in [1]. In the
following, an updated list of the NANCY software components developed in the context of WP2-WP5
and classified as “NANCY Use Case Services” in [1] is provided. This list (Table 2) focuses on the
components’ deployment location, considering the NANCY operational environments. The term
operational in this context refers to the environments which will be used for the end-to-end execution
of the different NANCY use cases across the different testbeds and demonstrators, and it is
differentiated from the testing/staging environments. Table 2 also provides the acronyms of the
NANCY components referenced throughout the document.

In this context, each component is associated with one of the logical deployment domains of NANCY:
Central Management, Inter-operator, Local (indicating deployments at the premises of the different
NANCY testbeds and demonstrators) and Offline. The term Offline is used to describe components of
the NANCY ecosystem which do not directly participate in any real-time operations of the platform but

D6.2 – NANCY Integrated System – Initial Version

28

are rather used to provide offline results (e.g., BRAN model, simulators) based on real datasets, and
possibly feed these results to other components of the NANCY platform.

Besides the logical deployment domain of each NANCY component, its physical deployment location
is also provided in Table 2. It should be highlighted that according to the integration points
specifications’ requirements (section 6), the secure interconnection of different deployment locations
and corresponding services is or will be performed (e.g., through VPN connections and/or REST API
communications over HTTPS).

Finally, it is worth mentioning that NANCY’s offloading service is not explicitly mentioned in this
components list. The offloading service (comprehensively detailed in [15]) is understood as a series of
mechanisms that permit to encompass the operation and alignment of multiple NANCY components
that do appear in the list, e.g., Orchestrator, Network Information Framework (NIF), Marketplace, DAC,
ID Management (ID_Mgnt), etc. Thus, the offloading functionality will foster the integration and
coordination of such components to enable the end-to-end workflow needed for its realisation. To this
end, the different interfaces and integration points described in the next sections become essential.

Table 2 Listing of NANCY (WP2-WP5) components and their deployment locations

NANCY Component Provider/WP

NANCY Domain
(Central Management,
Inter-Operator, Local,

Offline processing)

Deployment location

MultiRAT-Nomadic
Connectivity Provider

(MRAT-NCP)
UMU/WP4 Local Testbed/Demonstrator

NANCY ID
Management

(ID_Mgnt)
UMU/WP4, WP5 Local Testbed/Demonstrator

Digital Agreement
Creator (DAC) DRAXIS/WP5 Inter-Operator DRAXIS premises

Blockchain (BC) NEC/WP5 Inter-Operator NEC premises
Wallet NEC/WP5 Inter-Operator Testbed/Demonstrator

AI Virtualizer (AI Virt) i2CAT/WP3 Central Management i2CAT premises
B-RAN Model INNO/WP2 Offline processing INNO premises

Semantic
communications

framework
(SemCom)

INNO/WP4 Offline processing INNO premises

QKD Simulator
(QKDSim) INNO/WP5 Offline processing INTRA cloud

VOSySmonitor and
vManager

(VOSySmonitor)
VOS/WP3, WP4 Local Testbed/Demonstrator

Marketplace/BSS TECN/WP5 Inter-Operator NEC premises
MAESTRO Service

Orchestrator and ETSI
Open-Slice Resource

Orchestrator

UBI/WP3, WP4 Central Management INTRA cloud

Models IJS/WP3 Local Testbed/Demonstrator

D6.2 – NANCY Integrated System – Initial Version

29

Self-Evolving Model
Repo (SEMR) IJS/WP3 Local Testbed/Demonstrator

Elasticity IJS/WP4 Local Testbed/Demonstrator
PQC Signature

(PQCSig) TDIS/WP5 Local Testbed/Demonstrator

Throughput
Forecasting Service

(TFS)
CERTH/WP3 Central Management

and Local

For Greek
demonstration: INTRA

Cloud
For Spanish

demonstration:
Testbed/Demonstrator

RIC Manager
(RICMngr) i2CAT/WP3 Central Management i2CAT premises

AI-driven Network
Quality

Module (AINQM)
CERTH/WP2 Central Management

and/or Local

For Greek
demonstration: INTRA

Cloud
For Spanish

demonstration:
Testbed/Demonstrator

Network Information
Framework (NIF) 8Bells/WP2 Offline 8Bells premises

Smart Pricing Policies
(SPP) 8Bells/WP4 Inter-Operator 8Bells premises

eXplainable AI
Toolkit (XAI) MINDS/WP5 Local Testbed/Demonstrator

Federated Learning-
based Anomaly

(Intrusion) Detection
(FL-IDS)

MINDS/WP5 Local Testbed/Demonstrator

Malicious Traffic
Generation

Application and
Resource Monitoring

(MTG-RM)

SSS/WP5 Local Testbed/Demonstrator

PQC Secure
Communication
Library (PQC-SC)

TEI/WP5 Local Testbed/Demonstrator

Distributed Anomaly
Detection and

Mitigation (D-ADM)
CRAT/WP5 Local Testbed/Demonstrator

3.3. Reusability of NANCY Solution Towards new Deployment Environments

The NANCY integration framework strongly depends on cloud-native technologies, following
integration by design techniques. Specifically, containerization has been used to a large extent for
packaging many NANCY software components. This offers many advantages towards the reusability of
NANCY software, leveraging straightforward deployments and testing both in the context of the
NANCY project as well as considering its future use across different research and open-source groups
as described in the following.

D6.2 – NANCY Integrated System – Initial Version

30

• Portability: Containers encapsulate software components, bundling their dependencies,
libraries, and runtime into a unified, standalone unit. This guarantees consistent and reliable
operation across various environments, whether on a developer's machine, a staging server,
or a production environment. By enabling a "build once, deploy anywhere" approach,
containers minimize issues related to environment-specific differences and incompatibilities.

• Consistent runtime: Each container operates within its own isolated runtime environment.
This isolation guarantees that the software functions consistently, regardless of the
underlying host system (e.g., different operating systems, cloud providers, or hardware
configurations).

• Dependency isolation: Containers bundle all the dependencies necessary to execute the
software, functioning independently of the host system. This separation allows multiple
versions of the same component, such as different Python or Java versions for example, to
operate simultaneously without conflicts within the same environment.

• Simplified testing and debugging: Containers ensure that developers, testers, and
operational teams work within the same environment. Test scenarios can be replicated
exactly across environments, ensuring that reusable components behave as expected.
Debugging is more straightforward because the container's environment mirrors production
environments.

• Ease of Collaboration and Sharing: Container registries (e.g., Docker Hub, or private
registries like the one of NANCY described in section 4.2.4) allow teams to share pre-built
container images easily. Developers can reuse these shared containers across different
projects and environments without having to rebuild or reconfigure them.

• Resource efficiency: Containers are more lightweight than traditional virtual machines
(VMs), enabling more efficient resource utilisation. A single host can support multiple
containers, making them highly practical for reuse across a variety of workloads.

Moreover, the use of Kubernetes as target deployment and container orchestration environment
across the NANCY central management and several testbed/demonstrator domains offers significant
advantages in the sense of integrating the NANCY components and services in a powerful unified
platform. As a powerful open-source container orchestration platform, Kubernetes natively supports:

• Portability across environments: Standardised configuration based on declarative YAML/JSON
configuration files or Helm chart is used to define deployments, services, and other Kubernetes
resources. Such blueprint files can be used across different execution environments (e.g.,
development, staging, production) with minimal modifications. Moreover, Kubernetes is
platform-agnostic allowing workloads to be deployed on any cloud provider (AWS, Azure, GCP)
or on-premises infrastructure (like in the case of NANCY) without changes.

• Microservices-Oriented: Each service in Kubernetes can be containerized and reused
independently, allowing developers to share and redeploy modular components.

• Scalability and Flexibility: Kubernetes can automatically scale applications according to
workload, ensuring that services are reused efficiently across environments with different
demands.

• CI/CD and automation: Kubernetes easily integrates with CI/CD systems, facilitating the
implementation of deployment pipelines and automation for the reuse of services and
applications across separate deployment environments. As described in sections 2.1 and 3.2.1
and will be further explained in sections 4.1- 4.3, NANCY benefits from such an integration
through its dedicated CI/CD system and its connection to the different Kubernetes clusters of
the project.

D6.2 – NANCY Integrated System – Initial Version

31

In those configurations where containerization was not the ideal solution to offering a flexible
deployment and orchestration environment, alternative solutions have been explored, having
nevertheless in mind portability and, in general, the reusability of the technologies being used. This is
the case of the edge/far edge environment, where low-power ARM devices are a more suitable choice
compared to power-hungry systems embedding Intel or AMD architectures. In these cases, the
partitioning of the hardware using the firmware-level VOSySmonitor [2] [15] was considered. To
answer the need for portability, reusability and interoperability, the vManager system service was
developed to open the resulting partitioning technology to the libvirt orchestration/virtualisation
library [17], which in turn allows the orchestration of the partitions via solutions like OpenStack [18].
libvirt allows as well to wire this partition technology to CI/CD systems, allowing complex automated
pipelines that seamlessly deploy tests to both virtual machines and partitions.

Finally, interoperability and reusability are core principles of NANCY’s innovative approach that
addresses the diverse needs of state-of-the-art networks. NANCY designs a security-oriented B-RAN
architecture that is capable of operating across both O-RAN (facilitating its use by research groups and
open-source communities) and commercial 5G network deployments; thus, achieving significant
flexibility. This improves its interoperability and ensures that NANCY technologies can support a wide
range of deployment scenarios; thus, enhancing cross-vendor collaboration and reducing vendor lock-
in risks. Furthermore, NANCY reinforces reusability and flexibility by deploying 6
testbeds/demonstrators, specifically 3 focused on O-RAN (Greek and Italian testbeds, Spanish
demonstrator) and 3 on commercial 5G (Greek and Italian demonstrators, extension of the Spanish
demonstrator).

This approach offers numerous advantages. For network operators, interoperability guarantees
compatibility with current infrastructure, facilitating seamless integration and minimizing downtime
during implementation. The reusability of NANCY solutions facilitates technology developers in
growing across many network types, hence augmenting market reach and adoption potential. Finally,
NANCY fosters innovation and collaboration within the telecommunications sector by integrating open
and commercial ecosystems, hence enhancing the security and resilience of the 5G and future 6G
environments. The capacity to modify the same technologies for various deployment contexts reduces
the necessity for expensive redevelopment and expedites the implementation process in new
networks.

D6.2 – NANCY Integrated System – Initial Version

32

4. NANCY Ιntegration Εnvironment
The NANCY platform employs a diverse set of open-source DevOps tools, carefully chosen for the tasks
of building, testing, and deploying its various software components. These tools are integrated through
a robust Continuous Integration/Continuous Delivery (CI/CD) framework. This framework not only
unifies the different components of the NANCY software but also sets up the necessary environments
for development and release processes.

This chapter provides an in-depth examination of the stack components, detailing the installation and
configuration procedures as implemented in the NANCY project. Each tool within the stack is discussed,
emphasizing its role and contribution to the overall project workflow.

Additionally, the CI/CD pipeline of the NANCY platform has been successfully deployed in a cloud-
based environment, transforming it into an automated build system. This automation greatly improves
the efficiency of the development process, allowing developers and engineers working with the NANCY
toolset to integrate and manage their services seamlessly. This seamless integration is crucial for
maintaining consistency and reliability throughout the development lifecycle.

4.1. Hetzner Cloud Infrastructure

Cloud hosting is a service model where computing and storage capabilities are outsourced to an
external provider. This provider offers its infrastructure on a flexible, pay-as-you-go basis, allowing
clients to scale resources horizontally as needed while ensuring high reliability. For the NANCY project,
the software components are hosted on virtual machines provided by Hetzner Cloud [3], a well-known
public cloud service.

Hetzner Cloud operates its servers in data centers located in Germany. These servers are equipped
with advanced technology, including AMD EPYC™ 2nd Gen and Intel® Xeon® Gold processors, along
with fast NVMe SSDs for optimal performance. This setup ensures that the NANCY platform benefits
from high-speed and reliable infrastructure.

The cloud infrastructure provided by Hetzner includes several valuable features, such as the ability to
take snapshots, perform regular backups, and maintain strict data protection protocols. These features
are essential for ensuring the integrity and availability of the NANCY software.

Figure 8 illustrates the specific project allocation for Hetzner Cloud's hosting services dedicated to the
NANCY platform. It also shows some of the virtual servers that are integral to the Continuous
Integration/Continuous Delivery (CI/CD) stack and the NANCY Kubernetes cluster. As the platform
evolves and expands, additional virtual hosts might need to be added. The operating system chosen
for these virtual machines is Ubuntu 22.04 LTS, an open-source enterprise operating system.

D6.2 – NANCY Integrated System – Initial Version

33

Figure 8 NANCY project and VMs allocation in Hetzner cloud

4.2. CI/CD system

4.2.1. Overview of CI/CD Services

As previously mentioned, a Continuous Integration and Continuous Delivery (CI/CD) system, which
includes a collection of tools designed to support the entire software lifecycle from development to
the deployment of well-tested and fully functional systems, has been implemented within the NANCY
software components. This system incorporates essential services such as GitHub, Jenkins, and Harbor.

To facilitate better understanding and effective use of the NANCY Continuous Integration/Continuous
Delivery (CI/CD) Platform and the Development and Integration Environment among project team
members, a "CI/CD User Guide" has been distributed to the NANCY technical partners, and two training
workshops have been organised. This guide provides in-depth information on managing both the
development and production phases of the CI/CD pipeline. It contains detailed instructions on the
overall system architecture, the specific software tools used, and their operational processes to ensure
efficiency and best results. Detailed instructions are given through sample projects, covering the cases
of full-development (targeting technical teams who are willing to share their code) and testing-only
workflows (targeting technical teams who do not wish to share their codes and can only share
container images of their components for deployment). Specifically, the guide covers the configuration
and usage of GitHub for Source Code Management (SCM) (section 4.2.2), the Jenkins continuous
integration server (section 4.2.3), the Harbor container registry (section 4.2.4), and the configuration
of Kubernetes clusters and deployments (section 4.3), along with the relevant deployment protocols.
Furthermore, the user guide provides some practical implemented examples that illustrate the step-
by-step process of building, deploying, and testing.

4.2.2. Github Version Control System

GitHub is used as the version control system for the NANCY software, utilizing its robust, web-based
platform to support software development and version control capabilities through Git. GitHub not
only provides the essential distributed version control and Source Code Management (SCM)
functionality of Git, but also improves these features with its own unique set of tools designed to

D6.2 – NANCY Integrated System – Initial Version

34

streamline the development process. The platform's distributed version control system allows multiple
developers to work on the NANCY software simultaneously, enabling them to clone the entire
repository, make changes locally, and push their updates back to GitHub. This system ensures that
there is always a complete version history and backup, which helps maintain the integrity and
consistency of the project.

Furthermore, GitHub offers advanced access control mechanisms to enforce confidentiality. These
enable NANCY project administrators to manage who can view or edit the project, ensuring that
sensitive parts of the software are accessible only to authorised members. This is especially important
in collaborative environments where multiple partners or contributors are involved in the project.
Collaboration is further improved by GitHub's suite of features designed to support team collaboration
and project management. Bug tracking allows team members to report, monitor, and resolve issues
efficiently, ensuring that bugs are addressed promptly.

A GitHub NANCY organisation (see Figure 9) has been created and is accessible via:
https://github.com/NANCY-PROJECT.

Figure 9 Demo (example) project repository under NANCY Github Organisation

Every technical partner who aims to push source code to a NANCY code repository must have a GitHub
account and be a member of the NANCY organisation. Additionally, to improve collaboration and
streamline project management, separate GitHub teams have been created for each technical partner
involved in the project. This organisational approach ensures that each partner has a dedicated space
for their contributions, allowing for better management of permissions, more focused technical
discussions, and access to relevant repositories and workflows.

4.2.3. Jenkins Continuous Integration Server

Jenkins has been selected as the Continuous Integration (CI) server within the CI/CD stack for the
NANCY platform. The Jenkins server for NANCY is hosted as a Docker container on one of the virtual
hosts provided by Hetzner Cloud, accessible via the URL: https://jenkins.nancy.rid-intrasoft.eu/.
Additionally, Let’s Encrypt [19] has been used to serve as a trusted certificate authority for the CI
server, allowing secure access to Jenkins over HTTPS.

The Continuous Integration process on this platform is structured as follows:

• Local Development: Software engineers modify the source code in their local repositories.

https://github.com/NANCY-PROJECT
https://jenkins.nancy.rid-intrasoft.eu/

D6.2 – NANCY Integrated System – Initial Version

35

• Commit Changes: After making changes locally, they commit these modifications to the shared
repository.

• Trigger Build: Upon these commits, a notification is sent to the Jenkins CI server.
• Automated Build and Test: The CI server then pulls the latest source code, builds the

application, and performs a list of tests (e.g., unit, functional, integration) which have been
configured by the developer/tester of each component.

• Artifact Generation: Following successful tests, the CI server generates deployable, testable
artifacts.

• Tagging Builds: The server assigns a build tag to the version of the code it has just built.
• Feedback and Reporting: Jenkins provides the development team with detailed reports on the

outcomes of build and test pipelines (notifying them also if a build or test fails).
• Issue Resolution: The corresponding development team resolves any issues as fast as possible.
• Ongoing Integration and Testing: Throughout the project's lifecycle, the server continuously

integrates any code updates and executes tests to verify the intended functionality and
stability.

This systematic approach leveraging Jenkins ensures a robust, efficient, and continuous integration
environment, significantly enhancing and accelerating the development process for the NANCY
platform. Specific workspaces (folders) have been created which are mapped to the different NANCY
components (Figure 10).

Figure 10 NANCY component-specific workspaces in Jenkins CI server

D6.2 – NANCY Integrated System – Initial Version

36

A Jenkins account has been provided to each partner with write permissions on specific workspaces.
In the following, the steps to create a Jenkins pipeline are described:

1. Create a New Item in Jenkins under the folder that corresponds to your component.
• Enter an item name. It is recommended to give a name that matches the GitHub project

and the associated branch (e.g., /master or /development).
• Select Pipeline option as shown below in Figure 11.

Figure 11 Select Pipeline option

2. Select GitHub project and add the URL of your GitHub repository (see Figure 12).

Figure 12 Jenkins pipeline creation: Link with specific Github repository

• You can easily retrieve your Github repository’s URL as follows (see Figure 13):

D6.2 – NANCY Integrated System – Initial Version

37

Figure 13 Retrieve GitHub repository’s URL

3. Select the GitHub hook trigger option from the list of Build triggers for Jenkins jobs that
you want to be triggered after pushing to the respective GitHub repository (see Figure 14).

Figure 14 Selection of Github hook trigger

• There is also the option to launch a job after another project is finished. In such a scenario,
where the job needs to be launched after another job is finished (ex:

D6.2 – NANCY Integrated System – Initial Version

38

functional/integration test-jobs, acceptance test jobs, etc.), the following option needs to
be checked, referencing the job that precedes (see Figure 15):

Figure 15 Configuring consecutive Jenkins jobs
4. In the pipeline section select (see Figure 16):
• Definition: Pipeline script from SCM
• SCM->Git
• Insert the Github repository URL as in step 3.
• Select “Github credentials for user rid-devops-admin”

Figure 16 Jenkins pipeline creation: Further configurations for connecting to the target Github repository

• In "Branches to build" (see Figure 17), add the target branch(es) (e.g., */master, */develop,
or */* for any branch).

• In the script path, add the path of your jenkinsfile relative to the repository’s parent
directory (e.g., jenkins/Jenkinsfile). The jenkinsfile is used to define the execution steps of
a pipeline.

D6.2 – NANCY Integrated System – Initial Version

39

Figure 17 Branches to Build

5. Check if the webhook is registered in Github to automatically trigger the Jenkins pipeline
after GitHub push events:

• On your Github repository go to Settings -> Webhooks and verify that the Webhook is
registered with your pipeline as shown below (see Figure 18):

Figure 18 Wedhooks

4.2.4. Harbor Private Docker Container Registry

Harbor is an open-source project that serves as a container image registry, offering advanced
management and security features for Docker images. It builds upon the fundamental functionalities
of a container registry by incorporating elements such as role-based access control (RBAC),
vulnerability scanning, and image signing and verification. Moreover, Harbor's architecture is paired
with an intuitive web interface, simplifying the management and tracking of container images.

A private Docker Registry has been set up, allowing users to push and pull Docker images. It employs
SSL encryption and user authentication. The URL of the Docker Registry is the following:
https://harbor.nancy.rid-intrasoft.eu/

https://harbor.nancy.rid-intrasoft.eu/

D6.2 – NANCY Integrated System – Initial Version

40

Different projects have been created in NANCY Harbor registry to associate with the different NANCY
dockerised components (similarly to Jenkins CI server as described in section 4.2.3) (see Figure 19).

Figure 19 NANCY component-specific projects in Harbor private registry

Harbor accounts have been provided to the technical partners with access to the GUI and permissions
to push and pull images for specific projects related to their components and developments. Each
partner can create different registry repositories within their assigned projects to host their Docker
images.

The Harbor GUI provides the following functionalities:

• Securely view different versions of Docker images.
• View the history of each image.
• Delete unnecessary tags.

A retention policy has been implemented to keep the latest 5 Docker image tags per project, per
repository. This policy is automatically executed every hour. It is strongly recommended that partners
push their Docker images to the private Docker registry before deployment. The stored images can
then be pulled and deployed in either the development or operational environments of NANCY
(Kubernetes clusters at testbeds/demonstrators). Users can push and pull images either through
Jenkins (automated pipeline) or from their own remote hosts.

D6.2 – NANCY Integrated System – Initial Version

41

4.3. NANCY Central Kubernetes Cluster

Kubernetes has become the predominant standard for deploying containerized applications at scale
across private, public, and hybrid cloud environments. This open-source platform automates the
deployment, scaling, and management of containerized applications. Its features, including pod
utilisation, clustering, load balancing, and horizontal scaling, enable dynamic scaling for software
components, microservices, and containers.

Within the NANCY project, Kubernetes was chosen as the cloud-native infrastructure to support the
development, staging, and operational environments of the platform. This section will detail the
architecture of the central NANCY Kubernetes cluster specifically used for development, staging, and
for hosting part of the central management services of the platform (Section 3.2.1), along with an in-
depth explanation of its software components and functionalities.

4.3.1. High Level Architecture

A Kubernetes cluster has been established to host the NANCY software components and manage the
deployment, scaling, and orchestration of the NANCY containerized applications within the
development/testing and part of the operational central management execution environments
envisioned for NANCY. This is a highly available (HA) and fault-tolerant cluster consisting of:

• Three master nodes managing the entire control plane of the cluster.
• Three worker nodes hosting the containerized applications of the NANCY Platform.
• One load balancer node to efficiently distribute the control-plane load among the master

nodes using round-robin scheduling. An HA Proxy has been deployed in front of the master
nodes in the NANCY cluster for this purpose.

The different execution environments of NANCY (e.g., development/testing, central management) are
isolated through the use of dedicated Kubernetes namespaces. Communication is secured over HTTPS
within the cluster, and all Kubernetes cluster data is stored in the ETCD distributed reliable key-value
store. ETCD ensures that the cluster data is consistent across all nodes. The following figure illustrates
the stacked ETCD architecture topology implemented for NANCY:

D6.2 – NANCY Integrated System – Initial Version

42

Figure 20 NANCY central Kubernetes cluster architecture1

In sections 4.3.2 and 4.3.3 some of the main Kubernetes system components running in the master
and worker nodes (as shown in Figure 21) are presented.

Figure 21 Instances of Kube-system components in central NANCY Kubernetes cluster

4.3.2. Control Plane Master Nodes

The control plane components within a Kubernetes cluster are assigned to making overarching
decisions, including scheduling tasks and managing cluster events. These components, which
function on the master nodes, are detailed as follows:

1 Figure from https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/

D6.2 – NANCY Integrated System – Initial Version

43

API Server
The API Server serves as the gateway to the Kubernetes API and functions as the interface for the
Kubernetes control plane. Its primary roles include managing incoming requests, processing them, and
providing cluster information. This component can scale horizontally. For instance, as shown in Figure
17, the API Server is distributed across three instances.

With three active API Server instances, a load balancer is necessary to distribute traffic among the
master nodes. The kubectl utility is then configured to route requests to this load balancer.

ETCD distributed reliable key-value store
ETCD is a distributed and reliable key-value store that maintains the data for the Kubernetes cluster.
For the NANCY platform, a highly available configuration has been implemented, featuring three ETCD
instances, each associated with one of the three master nodes. Each ETCD instance communicates
exclusively with the API Server, Controller Manager, and Scheduler on its corresponding node. ETCD
guarantees data consistency across all master nodes by synchronizing information among all instances.
This synchronisation is managed by a leader node, which is elected to handle replication tasks for the
other nodes in the cluster.

Kubernetes controller manager
The Kubernetes Controller Manager is a daemon that operates as an ongoing control loop within a
Kubernetes cluster. It checks the cluster's current state by communicating with the API Server and
works to match this state with the intended configuration outlined in the cluster's declarative setup.
It manages multiple controllers, each dedicated to specific functions, such as the replication controller,
endpoints controller, namespace controller, and service accounts controller.

Scheduler
The Scheduler is a control plane component that oversees newly added Pods and assigns them to the
most appropriate node for execution. Several factors can influence the Scheduler's decisions, including
affinity rules, hardware and software limitations, and other constraints.

4.3.3. Worker Nodes

Kubelet
Kubelet is a daemon that runs on each node (whether master or worker) in the cluster. Its role is to
ensure that the containers within a Pod are running as expected and to report any issues to the API
server and scheduler if any intervention is needed.

Kube-proxy
Kube-proxy is a network proxy running on every node (master or worker) in the cluster. It handles
network rules on worker nodes, facilitating communication with Pods from both internal and external
network connections.

Containerd
The containerd daemon is employed on each worker node to manage the entire container lifecycle
on the worker host.

4.3.4. Kubernetes Networking

Kubernetes supports the Container Network Interface (CNI) specification for handling network
resources within a cluster. For NANCY, Calico [20] was selected as the CNI. Kubernetes employs the
Calico CNI plugin to manage the details of pod connectivity to the underlying network infrastructure.

D6.2 – NANCY Integrated System – Initial Version

44

Calico connects pods to the host network using L3 routing, eliminating the need for an L2 bridge. This
method is simpler and more efficient compared to many other common alternatives.

4.3.5. Kubernetes Namespaces

In Kubernetes, namespaces offer a way to isolate groups of resources within a single cluster. Resource
names must be unique within a namespace but can be duplicated across different namespaces.
Namespaces are designed for environments with numerous users distributed across multiple teams or
projects. In the context of NANCY, namespaces are also utilised to ensure resource isolation among
development, staging, and operational (relevant to NANCY demonstrators) environments within the
project's central Kubernetes cluster.

4.3.6. External Access to the Kubernetes Cluster

To facilitate remote access to the deployed services in the NANCY Kubernetes cluster, an ingress
controller and an external load balancer from Hetzner have been configured, as illustrated in Figure
22.

Figure 22 Setup for external access of the deployed services in the Kubernetes cluster2

The load balancer is responsible for evenly distributing traffic across the ingress controller instances
(pods) deployed on the three different worker nodes. It also maps port 80 (HTTP) and port 443 (HTTPS)
to the NodePort where the ingress controller service is accessible. Ingress exposes HTTP and HTTPS
routes from outside the cluster to NANCY services within the cluster using Fully Qualified Domain
Names (FQDN). Specific ingress resources can be configured for each deployed application to define
routing rules (Figure 23), providing the corresponding application services with externally reachable

2 Figure from: https://kubernetes.github.io/ingress-nginx/deploy/baremetal/#using-a-self-provisioned-edge

External load balancer, FQDN:
https:// k8s-cluster.nancy.rid-

intrasoft.eu

D6.2 – NANCY Integrated System – Initial Version

45

URLs under any NANCY-specific subdomain (e.g., k8s-cluster.nancy.rid-intrasoft.eu for applications
deployed in the development/testing and operational central management environment of the
Kubernetes cluster).

A Kubernetes cluster does not have an ingress controller enabled by default. In the NANCY setup, the
NGINX Ingress controller [21] was enabled.

Figure 23 Ingress routing rules enabling external access to deployed services in the Kubernetes cluster3

Ingress resources configuration
To establish specific routing rules that provide the application services with externally accessible URLs
under the k8s-cluster.nancy.rid-intrasoft.eu domain, an ingress resource using a YAML file needs to be
configured. An example of such an ingress resource is provided in Figure 24. In this example, the ingress
resource is set up to route HTTP traffic based on the hostname (name-based virtual hosting). According
to this configuration, our demo application service is accessible at: https://dummyrest.k8s-
cluster.nancy.rid-intrasoft.eu.

3 Figure from https://kubernetes.io/docs/concepts/services-networking/ingress/

https://dummyrest.k8s-cluster.nancy.rid-intrasoft.eu/
https://dummyrest.k8s-cluster.nancy.rid-intrasoft.eu/
https://kubernetes.io/docs/concepts/services-networking/ingress/

D6.2 – NANCY Integrated System – Initial Version

46

Figure 24 Example of Ingress resource configuration for name based virtual hosting

Securing ingress
To ensure secure access to the services via ingress over HTTPS, the following components have been
deployed and configured in the NANCY cluster:

• A cert-manager [22] to request TLS certificates from the Let’s Encrypt Certificate Authority
(CA), automatically renew them, and manage their usage.

• A Let’s Encrypt cluster issuer (operating across the namespaces of the cluster) that defines
how the cert-manager requests TLS certificates from the CA.

• Properly configured TLS ingress resources for each deployed application requiring external
access to initiate the request for a TLS certificate (as shown in Figure 24).

4.4. Security Features of the NANCY Integration Environment

A collection of security features has been integrated into the CI/CD solution to protect the CI/CD
infrastructure and services, along with the deployed project's artifacts. The subsequent sections offer
a comprehensive overview of these security measures.

4.4.1. Secure Communication over HTTPS

Hypertext Transfer Protocol Secure (HTTPS) is used to ensure secure user connections to the deployed
applications. Specifically, the continuous integration server (Jenkins) and the container image registry
(Harbor) are secured with HTTPS. Data transmitted via HTTPS is safeguarded by the Transport Layer
Security (TLS) protocol, which provides three essential layers of protection:

D6.2 – NANCY Integrated System – Initial Version

47

• Encryption: Exchanged data is encrypted to prevent eavesdropping. This ensures that when
users access an HTTPS-secured service, their communications cannot be intercepted, their
activities cannot be tracked, and their information remains secure.

• Data Integrity: It is guaranteed that data cannot be altered or corrupted during transfer,
whether accidentally or maliciously, without detection.

• Authentication: It is verified that users are communicating with the intended service,
protecting against man-in-the-middle (MitM) attacks and fostering user trust.

Let’s Encrypt CA has been utilised for the issuance of X.509 certificates, providing TLS encryption to
secure the CI/CD services. Additionally, the certificates for the CI/CD services are configured for
automatic renewal through a cron job.

As detailed in section 4.3.6, HTTPS is also used to secure the access to the deployed NANCY services
within the Kubernetes cluster. Similarly to the CI/CD services, Let’s Encrypt is used as the CA for the
automatic issuance and renewal of TLS certificates, facilitated by the relevant Kubernetes resources
described in section 4.3.6.

4.4.2. User Authentication and Role-based Access Control

The services offered in the NANCY CI/CD environment, namely the source code Github organisation,
the continuous integration server (Jenkins) and the container image registry (Harbor) are secured using
user authentication and role-based access control (RBAC). More specifically Keycloak open-source
identity and access management solution [23] has been installed to access the CI/CD services,
providing Single-Sign-On (SSO) (see Figure 25). It enhances security for Jenkins and Harbor by
centralizing authentication, reducing credential exposure, and enforcing consistent security policies
like role-based access control (RBAC) towards the CI/CD services. RBAC is configured across Keycloak
and the CI/CD services and it is used to ensure that all the technical component providers have access
only to their own and any agreed collaborative development and testing projects, where different
access levels can be configured.

Figure 25 SSO access to NANCY CI/CD services via Keycloak

D6.2 – NANCY Integrated System – Initial Version

48

4.4.3. VPN Configuration

An OpenVPN server has been put in place enabling NANCY component providers to access the
deployed applications and services in the Kubernetes cluster hosted on the central Hetzner cloud
infrastructure. This VPN setup uses a PFSense software firewall [24]. By utilizing the OpenVPN server,
external partners can connect via a private and encrypted VPN tunnel to reach these services.

For each user requiring access to this infrastructure, a corresponding SSL/TLS certificate is generated
and distributed. With this certificate and their credentials, users can authenticate to the NANCY VPN
through the OpenVPN client application (Figure 26).

Figure 26 Access to central NANCY VPN

4.4.4. Firewall Protection of CI/CD and Central Management Infrastructure

The central NANCY VM infrastructure is protected from a set of firewalls under the Hetzner cloud
(Figure 27) to restrict access to authorised external IPs/subnets and ports only, and through the NANCY
VPN, while allowing internal server communication among the NANCY servers.

D6.2 – NANCY Integrated System – Initial Version

49

Figure 27 Hetzner firewalls to restrict access to Hetzner VMs

4.4.5. SSH-key-based Authentication to the Central NANCY Infrastructure

For administering and managing the NANCY VM infrastructure servers, SSH access is configured to use
key-based authentication only. This is a more secure approach than the traditional password
authentication approach. Although passwords are securely transmitted to the server, they can often
lack sufficient complexity or length, making them vulnerable to persistent attacks. Instead, SSH public
key authentication involves generating and storing a pair of cryptographic keys and configuring the
servers to accept these keys. Consequently, it provides a more robust security solution.

D6.2 – NANCY Integrated System – Initial Version

50

5. Functional Testing of NANCY Components
Table 3 summarizes the functional tests for all the NANCY software components. The naming
convention for the test identifiers is as follows: COMPONENTX_F00x, where COMPONENTX represents
the acronym of the respective component and F00x is the sequential number of functional tests for
that component. The Objective column provides a brief description of each test and its purpose.

Table 3: NANCY functional testing

Component Test
Identifier Test Objective

MRAT-NCP

MRAT-
NCP_F001 Test PC5 link reliability and requirements.

MRAT-
NCP_F002 Test tandem connection for PC5 and 5G connectivity.

MRAT-
NCP_F003 Test intra-network connectivity to compute nodes.

ID_Mgnt

ID_Mgnt
_F001 Test key derivation and generation of credentials.

ID_Mgnt
_F002 Test Configuration of the wallet.

ID_Mgnt
_F00x Test verification of credentials.

DAC
DAC _F001 Test API endpoint for creating smart contracts with valid input.
DAC _F002 Test API endpoint with invalid or missing input data.
DAC_F003 Test API response time and ensure it meets performance criteria.

BC
BC_F001

Adding new user:
The network administrator uses their admin identity to register a
new user with the CA. This step associates the new user with a
specific role and organisation.

BC _F002 Smart contract unit tests:
Test the functionalities in each smart contract

Wallet

Wallet_F001

SSI capabilities: User DID creation and registration:
Start the wallet gateway provided with a specified uid. A unique
and anonymous DID is created for this uid and a certificate
corresponding to the created DID is acquired from the CA of this
organisation. The public DID document is registered to the
DIDRegistry smart contract in the blockchain, so that other users
are able to look up for the verification methods of this DID.

Wallet _F002

SSI capabilities II: acquire and verify verifiable credential
(Provided Wallet_F001) Start a wallet gateway on an ID holder, a
credential issuer, and a service verifier respectively. The holder
acquires a verifiable credential from the issuer by means of their
wallets, then the holder wallet generates a verifiable presentation
from the acquired verifiable credential and delivers it to the
verifier’s wallet service for verification. The verification returns
successfully.

Wallet _F003 SSI capabilities III: revoke the verifiable credential

D6.2 – NANCY Integrated System – Initial Version

51

Component Test
Identifier Test Objective

Same setup as in Wallet_F002, but the issuer revokes the previous
verifiable credential issued to the holder. The last verification step
then fails.

Wallet _F004

Integration with the smart contract marketplace:
(Provided Wallet_F001) Test all wallet interfaces related to
marketplace operations to manage providers, services and
searches.

Wallet _F005

Integration with PQC:
(Provided Wallet_F001) Unit test for the correctness of the wallet
PQC signing function and the verification function on SLARegistry
chaincode.

Wallet _F006

Integration with the smart contract SLA:
(Provided Wallet_F001 and Wallet_F005) Test wallet signSLA
interface to see if the SLA is correctly signed and updated (also with
PQC signature) and if the subscribers for SLASigning events get
notified. Test wallet getSLA and getSLAByConsumerId to look up
SLAs in the blockchain.

Wallet _F007

Integration with the oracle:
(Provided Wallet_F001, Wallet_F004 and Wallet_F006) Test wallet
createSearch interface to see if the oracle triggers SLA creation
correctly and if the subscriber for SLASigning events get notified.

AI-virtualizer

AI-virtualizer
_F001 Test the Kafka bus communication between agents.

AI-virtualizer
_F002 Test the Slice Manager API response to IJS remote calls.

AI-virtualizer
_F003 Test Grafana visualisation.

BRAN-model

BRAN-model
_F001

Test the B-RAN model estimated performance for various system
configurations.

BRAN-model
_F002

Test the functionality of the B-RAN model for various extreme
cases.

SemCom

SemCom_F0
01 Test SemCom performance for V2x and DT creation.

SemCom
_F002

Test SemCom energy and data efficiency improvement for ASL
transmission.

QKDSim

QKDSim
_F001

Test the deployment and communication with the dockerised
QKDSim.

QKDSim
_F002 Test the functionality of QKDSim for various extreme cases

VOSySmonito
r

VOSySmonito
r _F001 Test vManager partitions operations (create,deploy, destroy etc.).

VOSySmonito
r _F002

Test availability of virtio devices inside the partitions for deploying
VNFs.

VOSySmonito
r _F003

Test OPTEE Secure Storage service functions (store, load sensitive
content).

Marketplace

Marketplace
_F001 Test connection with SP.

Marketplace
_F002 Test connection with DAC.

D6.2 – NANCY Integrated System – Initial Version

52

Component Test
Identifier Test Objective

Marketplace
_F003 Test connection with Blockchain wallet (receive requests).

Marketplace
_F004 Test connection with other smart contracts.

Maestro

Maestro
_F001 Test connection with Resource Orchestrator (NIS2).

Maestro
_F002 Test connection with Compute Controller (NIS6).

Maestro
_F003 Test connection with service Telemetry (NIS5).

Maestro
_F004 Test compute enforcement APIs via Compute Controller (NIS1).

Maestro
_F005 Test connection with Service Repository/Registry (NIS3).

Maestro
_F006 Test Connection with BSS/Marketplace (NIS1).

Models

Models
_F001

Testing ML algorithms to make prediction on the location of the
users, providing Localisation as a Service (LaaS).

Models_F002 Testing ML algorithms to detect anomaly in the signals with key
network performance indicators.

Models_F003 To assess the spectrum occupancy with ML-based Radio spectrum
sensing techniques.

SEMR SEMR_F001 Testing on NAOMI [25] for AI workflow orchestration.

Elasticity Elasticity
_F001 Testing the developed computing resource elasticity techniques.

PQCSig

TC_NE_C_Sig
nInit::testCK
M_ML_DSA

Initialisation of Signature sequence.

TC_NE_C_Sig
n::testCKM_

ML_DSA

Signature creation and verification using ML_DSA keys using the
following PKCS#11 functions:

C_SignInit
C_Sign
C_VerifyInit
C_Verify
Returns CKR_MECHANISM_INVALID if mechanism is not
supported.

TC_NE_C_Sig
nUpdate::tes
tCKM_ML_D

SA

Signature update and verification of multiple-part signature
operation using ML_DSA keys using the following PKCS#11
functions:
C_SignInit
C_SignUpdate
C_SignFinal
C_VerifyInit
C_Verify
Returns CKR_MECHANISM_INVALID if mechanism is not
supported.

D6.2 – NANCY Integrated System – Initial Version

53

Component Test
Identifier Test Objective

TC_NE_C_Sig
nFinal::testC
KM_ML_DSA

Signature finalisation of a multiple-part signature operation using
ML_DSA keys.
see TC_NE_C_SignUpdate

TC_NE_C_Ve
rifyInit::testC
KM_ML_DSA

Initialisation of Verification sequence using C_VerifyInit function
using ML_DSA keys. Returns CKR_MECHANISM_INVALID if
CKM_ML_DSA is not supported.

TC_NE_C_Ve
rify::testCKM

_ML_DSA

Signature single-part data verification for CKM_ML_DSA keys.
See TC_NE_C_Sign

TC_NE_C_Ve
rifyUpdate::t
estCKM_ML_

DSA

Signature multiple-part verification using ML_DSA keys using the
following PKCS#11 functions:
C_SignInit
C_Sign
C_VerifyInit
C_VerifyUpdate
C_VerifyFinal
Returns CKR_MECHANISM_INVALID if mechanism is not
supported.

TC_NE_C_Ve
rifyFinal::test
CKM_ML_DS

A

Signature verification finalisation for a multiple-part verification
operation using ML_DSA.
See TC_NE_C_VerifyUpdate.

TFS
TFS_F001 Throughput forecasting intended for network analytics purposes.

TFS_F002 Throughput forecasting for assessment of upcoming network
performance and mitigation of anticipated degradation

RICMngr

RICMngr_F00
1

Successful communication with the Slice Manager via the defined
interface.

RICMngr_F00
2 Successful communication with the near-RT RIC via A1 interface.

RICMngr_F00
3 Successful implementation of the required control-loop workflow.

AINQM
AINQM_F001 Prediction of network outage probability for analytics.

AINQM_F002 Prediction of network outage probability to anticipate network
events and support decision-making.

NIF
NIF_F001 AI model testing with synthetic data to ensure reasonable

predictions.
NIF_F002 Ensure the AI model’s loss function converges without overfitting.
NIF_F003 Successful creation of users and data upload process.

SPP

SPP_F001 Simulation environment testing (Boundary conditions, auction
rules etc) with synthetic data.

SPP_F002 Ensure the neural network loss function converges without
overfitting.

SPP_F003 Performance testing under load to measure and improve latency
and throughput.

SPP_F004 Reinforcement learning model testing with synthetic data to
ensure reasonable behavior.

XAI XAI_F001 Discrete Validation of XAI methods in the context of anomaly
detection and cyber-attack identification.

XAI_F002 Testing of XAI Visualisation Dashboard.

D6.2 – NANCY Integrated System – Initial Version

54

Component Test
Identifier Test Objective

XAI_F003
Testing XAI in a Greek in-lab testbed simulates real-world
conditions to ensure explanations are clear, relevant, and
trustworthy for users and administrators.

FL-IDS
FL-IDS_F001 Successful Communication between distributed clients.

FL-IDS_F002 FL Training for Intrusion Detection in Greek In-lab Testbed utilising
3 clients and a server.

MTG-RM

MTG-
RM_F001

Demonstrate capability of generating intense memory traffic to
simulate malicious behavior.

MTG-
RM_F002

Monitor the system resource usage at the CPU level as provided by
Performance Measurement Units.

MTG-
RM_F00x Limit the CPU resources assigned to malicious application.

PQC-SC
PQC-SC_F001 Successful integration of PQC algorithms into OpenSSL library.

PQC-SC_F002 Successful communication using TLS of a specific application (e.g.
MQTT).

D-ADM
D-ADM_F001

Application and validation of the automatic anomaly detection
methodology within a testbed with data from malicious server
applications.

D-ADM_F002 Testing of anomaly compensation techniques in a testbed for load
balancing purposes.

ETSI
OpenSlice

OSL_F001 Test connection with Service Orchestrator (NIS2).
OSL_F002 Test connection with Service Repository/Registry (NIS3).
OSL_F003 Test connection with resource Telemetry (NIS5).
OSL_F004 Test connection with Compute Controller (NIS6).
OSL_F005 Test connection with NFVO (SOL005).

D6.2 – NANCY Integrated System – Initial Version

55

6. Integration of NANCY Components and Services

6.1. Integration Τimeline

The development of the NANCY integrated platform follows an iterative process, leading to two major
releases as specified in the integration timeline provided in Table 4 (bold indicates a large period of
integration activities which is split into smaller phases/milestones explained in the following lines). This
timeline closely follows the integration methodology specified in section 2. It follows CI/CD best
practices to minimize errors during the integration and deployment stages of NANCY software
components and to facilitate software release for operational purposes (availability for NANCY
testbeds and demonstrators).

Table 4 NANCY integration timeline

Iteration Integration activities Partners Date

Init

Collection of HW/SW
component-specific
requirements to be considered
for the NANCY integration
environment

All WP2-WP5
tech.

component
providers

M16-M17

Main development phase of
NANCY software components
including their unit, functional
and initial bilateral integration
tests

All WP2-WP5
tech.

component
providers

M07-M25

 Initial integration points
identification

All WP2-WP5
tech.

component
providers

M17-M18

Definition of NANCY
architecture’s functional and
deployment view (incl. NANCY
interfaces definition).

UBI, INNO,
IJS, UMU,

NEC, INTRA,
WP6 testbed

leaders

M18-M19

Installation of CI/CD platform and
central Kubernetes cluster
supporting development, staging
and (partially) operational
environments for NANCY.
Provision of training workshop
and accompanying material to
the NANCY tech. component
providers on the usage of the
CI/CD platform

INTRA M20-M21

Updates in integration points
identification; First release of
integration points specifications,

All WP2-WP5
tech.

component
providers

M22-M24

D6.2 – NANCY Integrated System – Initial Version

56

functional and integration testing
activities

First, early release of
NANCY Integrated

Framework

Initial release of NANCY
integrated platform incl. the
CI/CD integration framework,
NANCY integration points and
testing specifications

INTRA, UBI,
All WP2-WP5

tech.
component
providers

M25

Development updates,
functional, integration and
system (end-to-end) level tests,
using the NANCY CI/CD system,
central development/staging
and remote operational
environments (testbeds and
demonstrators)

All WP2-WP5
tech.

component
providers

M25-M34

Secure connection of Central
Management (incl. CI/CD, Service
& Resource orchestrators etc.)
and Inter-Operator domains (incl.
Blockchain fabric) with remote
NANCY testbeds/ demonstrators
and initial testing/verifications

INTRA, UBI,
NEC, WP6
testbed /

demonstrator
leaders

M26-M28

Main testing/verification phase
at NANCY testbeds/
demonstrators, including the
integration of NANCY dockerised
components; Provision of
feedback/recommendations to
NANCY tech. component
providers for improvements

INTRA, UBI,
WP2-WP5

tech.
component

providers and
WP6 testbed/
demonstrator

leaders

M26-M31

 Bilateral and small-scale
integration testing

WP2-WP5,
WP6 testbed/
demonstrator

leaders

M26-M29

Support for Larger scale (system-
level) testing, relevant to NANCY
operational use cases for each
demonstrator

WP2-WP5,
WP6 testbed/
demonstrator

leaders

M28-M31

Second release of
NANCY Integrated

Framework

Final release of NANCY integrated
platform, incl. updates in
integration points specifications
and testing validations

INTRA, All
WP2-WP5

tech.
component
providers

M33

D6.2 – NANCY Integrated System – Initial Version

57

6.2. Integration Points Identification

Integration points consist of pairs of NANCY components that interact with each other via well-defined
interfaces, exchanging data and information according to predefined sequence diagrams.

To document and identify the integration points for the NANCY platform, an integration matrix using
a format similar to a Design Structure Matrix (DSM [26]) has been created. DSM is used extensively in
systems integration for modelling the interactions among complex system structures. It is a square
matrix that visually displays connections between system elements, typically indicated on the rows to
the left and the columns above the matrix. These elements might include, for example, the
components that make up a system. Similar to an adjacency matrix in graph theory, the DSM is
employed in systems engineering and project management for modelling complex systems or
processes, conducting system analysis, and planning and organizing projects.

In this context, the integration matrix (Table 5) includes the software components of the NANCY
platform developed in the context of WP2-WP5 and indicates the bilateral communication among
them. Each software component from the NANCY platform is represented by a row and a column. This
is an upper triangular square matrix, where each entry indicates an integration point. The naming
convention applied to each integration point is X.Y, where X and Y denote the respective row and
column of the software components involved.

D6.2 – NANCY Integrated System – Initial Version

58

Table 5 NANCY integration matrix

Integration
Points

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1. MRAT-NCP 1,
2

 1,
8

 1,1
3

2. ID-Mngt

 2,
5

 2,1
0

3. DAC

 3,1
1

4. BC 4,
5

 4,1
1

5. Wallet 5,1
1

5,1
2

 5,27

6. AI Virtualizer 6,1
0

 6,14

7. BRAN-model
8. SemCom
9. QKDSim
10. VOSyS Monitor
11. Marketplace 11,

21

12. Maestro
13. Models 13,1

4
13,1
5

 13,
17

14. SEMR 14,
19

 14,2
3

15. Elasticity
16. PQC Sign. 16,2

5

17. TFS
18. RIC-mngr
19. AINQM 19,

20
 19,

22

20. NIF
21. SPP
22. XAI 22,2

3

D6.2 – NANCY Integrated System – Initial Version

59

Integration
Points

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

23. FL-IDS
24. MTG-RM
25. PQC-SecCom
26. D-ADM
27. BSS

D6.2 – NANCY Integrated System – Initial Version

60

The identified integration points illustrated in Table 5 are specified in detail in Annex A. Table 6
provides the summaries of these specifications for each identified integration point, covering their
objectives, protocol/interface type used for their exchanges and implementation status.

Table 6 Integration points specification summary

NANCY
Integration

Points

NANCY
Platform
Interface

Objective Protocol
Integration in
testbeds/dem

onstrators
Status

A.1 MRAT-NCP –
ID

Management(1,2
)

NIS13,
Uu,
PC5

Allow access for 5G network
usage for a remote non-5G
subscriber.

 Spanish
expansion Ongoing

MRAT-NCP –
SemCom (1,8)

Uu,
S1, NIS7,

NIS5,
NIS8

Send encoded video and decode
at the edge

Offline
data

transfer

Spanish
expansion

data
Not started

MRAT-NCP –
Models (1,13)

Uu,
S1, NIS7,

NIS5,
NIS8

Infer location depending on
radio metrics extracted from the
UE.
Throughput forecast based on
radio metrics extracted from the
UE.

 Spanish
expansion Ongoing

ID Mngnt –
Wallet (2,5) N/A

Configure the wallet with NANCY
ID credentials, use credential to
authenticate towards NANCY
services.

REST API Spanish inlab
testbed Ongoing

ID Mngnt – VoSyS
Monitor (2,10) N/A

Instantiate OP-TEE solution4 for
caching mechanisms on ARM-
based far-edge device included
in the MRAT-NCP. This will be
used to securely store the access
token of NANCY subscriber to
accelerate authorisation times.

API
based

on
Global

Platform
TEE

Client
API

Spanish inlab
testbed Ongoing

DAC –
Marketplace

(3,11)
NI11

• Provide the required
information for creating the
digital agreement.

• Receive the generated digital
agreement to be signed

REST API
over

HTTPS
All Completed

BC – Wallet (4,5) NIS13

Once the identity is in the wallet,
the user connects to the Fabric
network using a connection
profile (YAML or JSON file). Once
connected, the user can submit

GRPC All Completed

4 To be introduced in D4.3: Trustworthy Grant/cell-free Cooperative
Access Mechanisms

D6.2 – NANCY Integrated System – Initial Version

61

NANCY
Integration

Points

NANCY
Platform
Interface

Objective Protocol
Integration in
testbeds/dem

onstrators
Status

transactions or query the ledger
through the smart contract API.

BC – Marketplace
(4,11) NI10

Deploy the Smart Contracts of
the marketplace on the
Blockchain network

N/A All Completed

Wallet –
Marketplace

(5,11)
TBD

Send the required transactions
to the Blockchain based
marketplace for any operation
(both read and write). All the
interactions with the
marketplace happen through
the wallet (or the oracles in
specific cases)

gRPC All Completed

Wallet – Maestro
(5, 12) TBD

Query the blockchain-based
marketplace for potential
service providers and sign SLA
transactions. All the interactions
with the blockchain happen
through the wallet (which acts as
a client app).

gRPC All Ongoing

Wallet – BSS
(5,27) TBD

Publish services in the
blockchain-based marketplace
and become aware of signed
SLAs involving current clients. All
the interactions with the
blockchain happen through the
wallet (which acts as a client
app).

gRPC All Ongoing

AI_Virt – VoSyS
Monitor (6,10) N/A

Allow to deploy VNFs from
OpenStack Nova into vManager
partitions

Libvirt
API

Italian InLab
testbed Completed

AI_Virt – SEMR
(6,14) NIS5

Integrate NAOMI in Slice
Manager and further provide
MLOps to models that are
deployed on NAOMI.

REST API TBD Ongoing

Marketplace –
SPP (11,21) NI12

• Provide the information used
for calculating the most
suitable price for the better
service.

• Receive the most suitable
price for the most suitable
service fulfilling the given
features.

REST API
over

HTTPS

Greek in-lab /
outdoor
testbed

Completed

Models – SEMR
(13,14) TBD Network AI Workflow

Democratisation (NAOMI) can REST API TBD Ongoing

D6.2 – NANCY Integrated System – Initial Version

62

NANCY
Integration

Points

NANCY
Platform
Interface

Objective Protocol
Integration in
testbeds/dem

onstrators
Status

provide MLOps for the models
that are going to be deployed in
repo

Models –
Elasticity (13,15) NIS5

In-place resource elasticity
technique allocating computing
resources within a slice

REST API Spanish Ongoing

Models – TFS
(13,17) NIS8

Integration of the Throughput
forecasting service will assist in
predicting upcoming throughput
optimizing AI-based network
functionalities for different
scenarios measuring speed and
latency of model serving.

REST API TBD Not started

SEMR – FL-IDS
(14,23) NIS5

SEMR will provide a set of
functionalities that cover the full
ML pipeline through NAOMI tool
in order to streamline the
deployment of the FL-IDS model
to the Greek In-lab Testbed

REST API Greek In-lab
Testbed Ongoing

SEMR – AINQM
(14,19) NIS8

The SEMR will be continuously
monitoring the performance of
the AINQM module, thus
triggering and overall optimizing
retraining processes in changing
network conditions.

REST API TBD Not started

PQC Sign – PQC
SecCom (16,25)

Internal
UE

interface

Integration of the HW signature
token into secure
communication infrastructure to
use PQC HW signing capabilities

API calls
Italian

Massive IoT
testbed

Ongoing

AINQM – NIF
(19,20) NIS8

Integration of Outage
Probability Model in order to
predict network outages for
different scenarios

direct
code

integrati
on

None Completed

AINQM– XAI
(19,22) NIS8

AINQM will be utilised to
calculate the outage probability,
and XAI will provide the
rationale behind the decisions of
the respective AI model.

REST API Greek In-lab
Testbed Ongoing

XAI – FL-IDS
(22,23) NIS8

The output of the distributed FL
Training will be the AI-enabled
Intrusion Detection System that
the Greek in-lab testbed will
utilize to identify different
attacks

TBD Greek In-lab
Testbed Completed

D6.2 – NANCY Integrated System – Initial Version

63

6.3. Integration Tests

In Table 7, the scheduled integration tests for all the identified NANCY integration points (section 6.2)
are outlined. The test identifiers follow this naming convention: COMPONENTX_COMPONENTY_I00x,
where COMPONENTX and COMPONENTY represent the components involved, and I00x is the
sequential number of integration tests for each integration point. Similarly to Table 3, the Objective
column provides a brief description of each test and its purpose.

Table 7: NANCY integration testing

Integration Point Test Identifier Test Objective
MRAT-NCP - ID-Mngnt MRAT-NCP_ID-

Mngnt_I001
Test Issuer to generate credentials

MRAT-NCP_ID-
Mngnt_I002

Test p-abc cryptographic operations with retrieved
keys for verifier

MRAT-NCP_ID-
Mngnt_I00x

Test p-abc cryptographic operations with retrieved
keys for pseudonym generation

MRAT-NCP – SemCom MRAT-
NCP_SemCom_I0
01

Test the provisioning of the data from the MRAT-NCP
to the SemCom

MRAT-
NCP_SemCom_I0
02

Test the transmission of the extracted semantic
information towards the MRAT-NCP

MRAT-
NCP_SemCom_I0
0x

Test the accuracy of the DT created at the edge server

MRAT-NCP – Models MRAT-
NCP_Models_I00
1

Test reconfiguration of data path depending on
network status

ID Mngnt – Wallet ID
Mngnt_Wallet_I0
01

Test configuration of the wallet with ID credentials

ID
Mngnt_Wallet_I0
02

Test verification of credentials provided by a wallet

ID Mngnt –
VoSySMonitor

ID
Mngnt_VoSySMo
nitor_I001

Test read and write access of ID system on OP-TEE-
based cache

DAC_Marketplace DAC_
Marketplace_I00
1

Test the correct generation and reception of a digital
agreement based on the information from the
marketplace.

BC_Wallet BC_Wallet_I001 Test correct user connection to the Fabric network
using a connection profile (YAML or JSON file).

BC_Wallet_I002 Test correct submission of transactions or queries to
the ledger through the smart contract API.

BC_Marketplace BC_
Marketplace_I00
1

Test the correct deployment of the smart contracts
on the Blockchain network.

Wallet_Marketplace Wallet_Marketpl
ace_I001

Test the correct execution of functions in the
marketplace from the wallet.

Wallet_BSS Wallet_BSS_I001 Test correct submission of transactions to the ledger
through the smart contract API. Specifically

D6.2 – NANCY Integrated System – Initial Version

64

Integration Point Test Identifier Test Objective
publishing a new service in the marketplace
(chaincode)

Wallet_Maestro Wallet_Maestro_
I001

Test correct submission of transactions to the ledger
through the smart contract API. Specifically searching
for a provider-service pair in the marketplace
(chaincode)

AIVirt_VoSySMonitor AIVirt_VoSySMon
itor_I001

Test response of VoSySMonitor to Libvirt commands
(virsh define, virsh start, virsh create, virsh shutdown,
virsh destroy, virsh reboot, virsh suspend, virsh
resume) triggered from AIVirt through OpenStack

AIVirt_SEMR AIVirt_SEMR_I00
1

Test connectivity between the AI Virt and JSI SEMR
cluster

AIVirt_SEMR_I00
2

Test triggering the AI Virt (through the Slice Manager
API end point) after provisioning it with the JSI SEMR
kubeconfig file

AIVirt_SEMR_I00
x

Test namespace reconfiguration

Marketplace_SPP Marketplace_SPP
_I001

Test the correct reception of the most suitable price
of the most suitable service from those available in
the marketplace

Models_SEMR Models_SEMR_I0
01

Testing the speed and latency of model serving

Models_Elasticity Models_Elasticity
_I001

Testing the response time and latency among
different elasticity techniques

Models_TFS Models_TFS_I001 Testing the speed and latency of model serving
SEMR_AINQM SEMR_AINQM_I0

01
Testing outage prediction model performance along
with model update and retraining via SEMR.

SEMR_FL-IDS SEMR_FL-
IDS_I001

Validation of the deployment of NAOMI in the Greek
In-lab testbed and the consumption of network traffic
in a csv format (network flows)

SEMR_FL-
IDS_I002

Utilisation of certain NAOMI functionalities (load
model, load data, etc.) for the identification and
classification of network flows between benign traffic
and attack type

PQCSign_PQCSecCom PQCSign_PQCSec
Com _I001

Test the integration of the PQC Signature Token and
the PQC secure communication component for
dilithium algorithm sign in hardware

AINQM_NIF AINQM_NIF_I001 Test the correct format for the input and output of
the AI model

AINQM_XAI AINQM_XAI_I001 AINQM will be part of a demonstration scenario that
will provide the outage probability utilizing an
XGBoost model, while XAI will explain the
predictions.

XAI_FL-IDS XAI_FL-IDS_I001 Integration of trained FL model to the pipeline of
cyber-attack identification

XAI_FL-IDS_I002 Integration of trained FL model to the pipeline of
NANCY XAI Toolkit

D6.2 – NANCY Integrated System – Initial Version

65

6.4. Next Integration Steps

As described in section 6.1 (Table 4), the forthcoming steps towards the final release of the NANCY
platform involve the ongoing development and testing updates for each component, as well as the
secure interconnection of the different NANCY deployment domains, as per the operational
requirements of the different NANCY use cases. Following the validation of the integration points
through the bilateral integration tests, more extensive integration testing and validation activities will
take place. Specific end-to-end testing scenarios will be defined to ensure the readiness of the
integrated platform to support the technical data flows for the various operational scenarios (T6.4-
T6.9). These tests will be manually implemented with the involvement of the respective component
providers and will be documented in D6.3.

During the various testing phases, feedback for improvements and fixes will be provided to the
technical component providers. The goal is to deliver the final version of the NANCY integrated
platform in M33, which will be used for the execution and assessment of NANCY operational scenarios
in the context of the different testbeds and demonstrators.

D6.2 – NANCY Integrated System – Initial Version

66

7. Conclusions
NANCY aims to provide a secure and advanced framework for B5G wireless networks, leveraging state-
of-the-art technologies in Artificial Intelligence, Blockchain, MEC and Orchestration to facilitate secure
and sophisticated resource management, adaptable networking, and improve orchestration
capabilities. This deliverable utilizes the results of the components being developed in WP2-WP5, as
well as NANCY architecture’s functional and deployment view reported in [1] to document the ongoing
integration efforts aimed at creating the NANCY integrated platform. Following a well-defined
integration methodology, it also establishes the groundwork for its adaptable instantiation,
customised to meet the specific needs of various NANCY operational scenarios (within the NANCY
testbeds and demonstrators).

The deployment domains of the NANCY system are covered extensively, describing the high-level view
of their core functionalities (described in more detail in the corresponding deliverables of WP2-WP5),
envisioned interoperability among their subsequent components, as well as the physical deployment
location of the full set of NANCY components in the context of NANCY operational scenarios. We also
focus on the reusability aspects of the platform, highlighting the integration by design choices that
have been made to facilitate the flexible instantiation of the platform across different deployment
setups, as well as the integration efforts to support/interoperate with both commercial and O-RAN
solutions.

This document also provided a detailed overview of the NANCY integration environment, focusing on
the CI/CD system and Kubernetes cluster implemented to support developers in their development
and testing activities and offer a central point of triggering/control for deployments towards the
NANCY testbed and demonstrator setups, in conjunction with NANCY Service and Resource
Orchestrators. The integration plan for the full duration of the relevant WP6 integration tasks is
outlined, followed by the identification and specification of NANCY integration points and the
reporting of the ongoing functional and integration testing activities of the individual NANCY
components for the first release of the NANCY integrated platform.

D6.3 “NANCY Integrated System – Final Version” will offer comprehensive and up-to-date information
about the specification and validation activities of the final release of the NANCY integrated platform,
which will support the NANCY demonstrators.

D6.2 – NANCY Integrated System – Initial Version

67

Bibliography

[1] NANCY Consortium, “D6.1: Β-RAN and 5G End-to-end Facilities Setup,” 2024.

[2] NANCY Consortium, “D3.1: NANCY Architecture Design,” 2024.

[3] Hetzner, “Hetzner cloud infrastructure,” [Online]. Available: https://www.hetzner.com/.
[Accessed 20 01 2025].

[4] “Github projects,” [Online]. Available: https://docs.github.com/en/issues/planning-and-
tracking-with-projects/learning-about-projects/about-projects. [Accessed 20 01 2025].

[5] “Slack team communication platform:,” [Online]. Available: https://slack.com/. [Accessed 20 01
2025].

[6] “MAESTRO Service Orchestrator,” [Online]. Available: https://maestro-
mkdocs.readthedocs.io/en/latest/. [Accessed 20 01 2025].

[7] NANCY Consortium, “D4.2: Resource Elasticity Techniques,” 2024.

[8] “Helm charts,” [Online]. Available: https://helm.sh/. [Accessed 20 01 2025].

[9] “Docker compose,” [Online]. Available: https://docs.docker.com/compose/. [Accessed 20 01
2025].

[10] “OpenSlice,” [Online]. Available: https://osl.etsi.org/. [Accessed 20 01 2025].

[11] “Harbor container registry,” [Online]. Available: https://goharbor.io/. [Accessed 20 01 2025].

[12] “Kubernetes kubeconfig files,” [Online]. Available:
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/.
[Accessed 24 01 2025].

[13] NANCY Consortium, “D3.3: NANCY AI-based B-RAN Orchestration,” 2024.

[14] NANCY Consortium, “D5.2: NANCY Security and Privacy Distributed,” 2024.

[15] NANCY Consortium, “D4.1: Computational Offloading and User-centric Caching,” 2024.

[16] NANCY Consortium, “D4.5: Smart Pricing Policies,” 2024.

[17] “LibVirt,” [Online]. Available: https://libvirt.org/. [Accessed 20 01 2025].

[18] “OpenStack,” [Online]. Available: https://www.openstack.org/. [Accessed 20 01 2025].

[19] “Let's Encrypt CA:,” [Online]. Available: https://letsencrypt.org/. [Accessed 20 01 2025].

[20] “Calico CNI,” [Online]. Available: https://docs.tigera.io/calico/latest/about/. [Accessed 27 01
2025].

D6.2 – NANCY Integrated System – Initial Version

68

[21] “NGINX Ingress Controller,” [Online]. Available: https://docs.nginx.com/nginx-ingress-
controller/. [Accessed 20 01 2025].

[22] “Kubernetes cert manager,” [Online]. Available: https://cert-manager.io/. [Accessed 27 01
2025].

[23] “Keycloak,” [Online]. Available: https://www.keycloak.org/. [Accessed 20 01 2025].

[24] “Pfsense open-source firewall,” [Online]. Available: https://www.pfsense.org/. [Accessed 20 01
2025].

[25] “NAOMI,” [Online]. Available: https://github.com/sensorlab/NAOMI. [Accessed 24 01 2025].

[26] “Design Structure Matrix,” [Online]. Available: https://dsmweb.org/introduction-to-dsm/.
[Accessed 20 01 2025].

[27] T. Chen and C. Guestrin, “XGBoost,” 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785–794.

D6.2 – NANCY Integrated System – Initial Version

69

A. Annex: Integration Points Specifications
Following the identification and specification summary of the integration points presented in Table 5
and Table 6 respectively, this Annex provides the detailed specifications for the corresponding
integration points, including sequence diagrams that describe the different data/information exchange
flows.

A.1 MRAT-NCP – ID Management

Integration Point Description

Identifier 1.2 – MRAT-NCP – ID Mngnt

Involved organisations UMU

Integration Point
Purpose

Allow access for 5G network usage for a remote non-5G subscriber but
NANCY subscriber.

NANCY platform
interface

-

Interface/ Protocol
technology

PC5, REST API over HTTPS

Status Ongoing

Sequence diagram

Sequence diagram is presented joined with A.2 section

A.2 ID-Management – Wallet

Integration Point Description

Identifier 1.5 – MRAT-NCP – Wallet

Involved organisations UMU, NEC

Integration Point Purpose Use the wallet for ID management purposes such as
Authentication and Authorisation. Main steps include:
Primary 5G authentication: regular (non-)3GPP access to the
5G network
Key Derivation: use 5G keys to derivate NANCY keys for PSK
purposes
AAA: Authentication between UE and NANCY issuer with
derived Keys
Blockchain: subscribing NANCY subscriber to the blockchain
NANCY credential: Generation and deliver of NANCY
credentials to NANCY subscriber
Pseudonym: Generation of privacy preserving pseudonyms
for attribute-based authentication

D6.2 – NANCY Integrated System – Initial Version

70

Service Request: NANCY subscriber request a service using the
generated credentials.

NANCY platform interface NIS13

Interface/ Protocol technology REST API over HTTPS, oracles

Status Ongoing

Sequence diagram

A.3 MRAT-NCP – SemCom

Integration Point Description

Identifier 1.8 – MRAT-NCP – SemCom

Involved organisations UMU, INNO

Integration Point Purpose The goal of this integration point is to showcase the energy and
data efficiency achieved by semantic communications. The
SemCom component is comprised of two entities, namely the
semantic encoder and the semantic decoder. In the simulated
setup, the former is deployed on the network nodes (cars,
RSUs, drones, etc.) capturing video of the observed location.
The extracted semantic information will be transmitted
through the network to the edge server, where the semantic
decoder will be deployed in order to create a DT.

D6.2 – NANCY Integrated System – Initial Version

71

NANCY platform interface Uu, S1, NIS7, NIS5, NIS8

Interface/ Protocol technology N/A

Status Ongoing

Sequence diagram

A.4 MRAT-NCP – Models

Integration Point Description

Identifier 1.13 – MRAT-NCP – Models

Involved organisations UMU, JSI, CERTH

Integration Point Purpose To feed embedded AI models in the Nomadic Connectivity Provider
(NCP) with monitored data to rule the behaviour of the
connectivity and V2X location services of Remote vehicles.

NANCY platform interface NIS7, NIS5, NIS8

Interface/ Protocol
technology

REST API over HTTPS

Status Ongoing

Sequence diagram

D6.2 – NANCY Integrated System – Initial Version

72

A.5 ID Management – VoSySMonitor

Integration Point Description

Identifier 2.10 – ID Mgnt – VoSySMonitor

Involved organisations UMU, VOS

Integration Point
Purpose

Instantiate Open Trusted Execution Environment (OPTEE) solution for
caching mechanisms on ARM-based far-edge device included in the
MRAT-NCP.

NANCY platform
interface

N/A
Integration through CLI tool to store and retrieve secure assets from
the OPTEE Secure Storage cache

Interface/ Protocol
technology

API based on Global Platform TEE Client API

Status Ongoing

Sequence diagram

D6.2 – NANCY Integrated System – Initial Version

73

A.6 DAC – Marketplace

Integration Point Description

Identifier 3,11 – DAC – Marketplace

Involved organisations DRAXIS, TECN

Integration Point
Purpose

• Provide the required information for creating the digital
agreement.

• Receive the generated digital agreement to be signed
NANCY platform
interface

NI11

Interface/ Protocol
technology

REST API over HTTPS

Status Completed

Sequence diagram

D6.2 – NANCY Integrated System – Initial Version

74

A.7 BC – Wallet

Integration Point Description

Identifier 4,5 – BC – Wallet

Involved organisations NEC

Integration Point
Purpose

To provide the means to securely connect to the NANCY Blockchain by
using the NANCY wallet, and to query and alter the ledger.

NANCY platform
interface

 NIS13

Interface/ Protocol
technology

GRPC calls

Status Completed

Sequence diagram

D6.2 – NANCY Integrated System – Initial Version

75

A.8 BC – Marketplace

Integration Point Description

Identifier 4,11 – BC – Marketplace

Involved organisations NEC, TECN

Integration Point
Purpose

Deploy the Smart Contracts of the marketplace on the Blockchain
network.

NANCY platform
interface

NI10

Interface/ Protocol
technology

N/A

Status Completed

Sequence diagram

N/A: The marketplace SC are deployed in the Blockchain (Blockchain is its infrastructure).

A.9 Wallet – Marketplace

Integration Point Description

Identifier 5,11 – Wallet – Marketplace

Involved organisations NEC, TECN

D6.2 – NANCY Integrated System – Initial Version

76

Integration Point
Purpose

Send the required transactions to the Blockchain based marketplace for
any operation (both read and write). All the interactions with the
marketplace happen through the wallet (or the oracles in specific cases)

NANCY platform
interface

NI10

Interface/ Protocol
technology

gRPC

Status Completed

Sequence diagram

A.10 AI Virt. - VoSySMonitor

Integration Point Description

Identifier 6,10 – AI Virt. - VoSySMonitor

Involved organisations i2CAT, VOS

Integration Point Purpose Allow to deploy VNFs from OpenStack Nova into
vManager partitions

NANCY platform interface N/A
The two components integrate through the VIM
(OpenStack) to the Virtualisation Layer
(vManager) interface, which is placed below the
Or-Vi NANCY interface at the edge domain.

Interface/ Protocol technology Libvirt Management API

Status Completed

Sequence diagram

D6.2 – NANCY Integrated System – Initial Version

77

A.11 AI Virt. - SEMR

Integration Point Description

Identifier 6,14 – AI Virt. - SEMR

Involved organisations i2CAT, JSI

Integration Point Purpose Reconfigure resources of the JSI SEMR namespace via
the Slice Manager API end point, which is the external
interface of the AI Virt.

NANCY platform interface NIS1, NIS2

Interface/ Protocol technology REST API over HTTPS

Status Ongoing

Sequence diagram

D6.2 – NANCY Integrated System – Initial Version

78

A.12 Marketplace – SPP

Integration Point Description

Identifier 11,21 – Marketplace - SPP

Involved organisations TECN, 8Bells

Integration Point
Purpose

• Provide the information used for calculating the most suitable
price for the better service.

• Receive the most suitable price of the most suitable service
fulfilling given features.

NANCY platform
interface

NI12

Interface/ Protocol
technology

REST API over HTTPS

D6.2 – NANCY Integrated System – Initial Version

79

Status Ongoing

Sequence diagram

A.13 Models - SEMR

Integration Point Description

Identifier 13,14– Models - SEMR

Involved organisations JSI

Integration Point
Purpose

The integration will evaluate the performance of the orchestration of
the lifecycle of AI-based models and their serving.

NANCY platform
interface

NIS5

Interface/ Protocol
technology

REST API

Status Ongoing

Sequence diagram

D6.2 – NANCY Integrated System – Initial Version

80

A.14 Models - Elasticity

Integration Point Description

Identifier 13,15 – Models -Elasticity

Involved organisations JSI

Integration Point Purpose The integration will evaluate the performance of the
elasticity module in a more dynamic environment.

NANCY platform interface <e.g., NIS1, NIS8, NI9>NIS5

Interface/ Protocol
technology

REST API

Status Ongoing

Sequence diagram

The system operates by hosting containers (pods) on virtual machines (VMs), and managing
the execution of these pods as they handle service requests. These service requests utilize
HTTP protocol and are further routed through the Ingress controller, which directs them to

D6.2 – NANCY Integrated System – Initial Version

81

the appropriate services. These services then distribute the requests to the relevant pods
based on internal routing and load-balancing mechanisms. By continuously adjusting
resources based on demand, the system ensures seamless performance under varying
conditions, optimizing both resource utilisation and service reliability.

A.15 Models – TFS

Integration Point Description

Identifier 13,17 – Models -TFS

Involved organisations JSI, CERTH

Integration Point
Purpose

The integration will evaluate the performance of the Throughput
forecasting service, which will be assisted by other AI Models, in order
to enhance network functionalities and ultimately support decision
making.

NANCY platform
interface

NIS8

Interface/ Protocol
technology

REST API

Status Not started

Sequence diagram

 Seq. diagram for this integration point will be provided in D6.3.

A.16 SEMR – AINQM

Integration Point Description

Identifier 14,19 – SEMR – AINQM

Involved organisations JSI, CERTH

Integration Point
Purpose

The integration will evaluate outage probability prediction
performance, supported by SEMR for model deployment, inference and
re-training if needed.

NANCY platform
interface

NIS8

Interface/ Protocol
technology

REST API

Status Not started

Sequence diagram

 Seq. diagram for this integration point will be provided in D6.3.

D6.2 – NANCY Integrated System – Initial Version

82

A.17 SEMR – FL-IDS

Integration Point Description

Identifier 14,23 – SEMR – FL-IDS

Involved organisations JSI, MINDS

Integration Point
Purpose

The Self-Evolving Model Repository (NAOMI) will be integrated in the
Greek In-lab testbed, aiming to support the Federated Learning-based
training of an AI Intrusion Detection System (IDS) along with its
deployment, inference, and re-training if needed. The NAOMI
framework will offer several functionalities (train, load model, load
data) to the FL-IDS, aiming to streamline the Federated Learning
Operations (FLOps).

NANCY platform
interface

NIS8

Interface/ Protocol
technology

REST API

Status Ongoing

Sequence diagram

A.18 PQC Sign – PQC SecCom

Integration Point Description

Identifier 16,25 – PQC Sign – PQC SecCom

Involved organisations TDIS, TEI

Integration Point
Purpose

This integration point is between PQC signature token (provided by
TDIS) and PQC Secure Communication Library (developed by TEI). The
purpose is to perform the signing operation using PQC algorithms in
hardware (in the TDIS token). This approach improves the security of the
overall solution.

D6.2 – NANCY Integrated System – Initial Version

83

NANCY platform
interface

 N/A - It is an internal integration point inside the UE.

Interface/ Protocol
technology

API calls (defined by TDIS)

Status Ongoing (to be demonstrated in Italian Massive IoT testbed)

Sequence diagram

A.19 AINQM - NIF

Integration Point Description

Identifier 19,20 – AINQM - NIF

Involved organisations CERTH, 8Bells

Integration Point
Purpose

 The purpose of this synergy point is to provide the NIF with the
capability of predicting network outages using an AI model.

NANCY platform
interface

 NIS8

Interface/ Protocol
technology

Direct Code Integration

Status Completed

Sequence diagram

 N/A

A.20 AINQM - XAI

Integration Point Description

Identifier 19,22 – AINQM - XAI

Involved organisations CERTH, MINDS

Integration Point
Purpose

The AINQM will receive inputs regarding network status by the Greek
In-lab Testbed in order to predict the outage probability utilizing an

D6.2 – NANCY Integrated System – Initial Version

84

XGBoost AI model [27]. After the predictions, the XAI module will
provide explanations on the decisions by showing which features
contributed the most the final prediction.

NANCY platform
interface

NIS8

Interface/ Protocol
technology

REST API

Status Ongoing

Sequence diagram

A.21 XAI – FL-IDS

Integration Point Description

Identifier 22,23 – XAI -FL-IDS

Involved organisations MINDS

Integration Point
Purpose

This integration point involves a Federated Learning (FL) framework for
training an AI model across three clients with local network traffic data,
ensuring privacy by keeping data decentralised. The trained global
model is deployed on an intermediate node, which collects raw network
traffic, parses it into CSV-formatted network flows, and preprocesses it
for classification. The deployed model classifies the traffic into normal
or various attack types. An integrated Explainable AI (XAI) module
identifies key features influencing predictions, calculates SHAP values,
and sends these along with the model’s outputs to a Large Language
Model (LLM). The LLM translates these insights into human-
understandable explanations, enabling administrators to interpret
model decisions effectively. This system ensures privacy-preserving
training, automated traffic analysis, and actionable interpretability.

NANCY platform
interface

NIS8

Interface/ Protocol
technology

REST APIs

Status Ongoing

D6.2 – NANCY Integrated System – Initial Version

85

Sequence diagram

A.22 Wallet – BSS

Integration Point Description

Identifier 5,27 Wallet – BSS

Involved organisations NEC, UBI

Integration Point Purpose The wallet creates and registers DIDs to represent providers
in BSS.
Furthermore, the wallet provides the means to securely
connect to the NANCY Blockchain, so that BSS can post
provider services on the blockchain-based marketplace, listen
to SLA creation and signing events and sign the SLA when
agreement is reached with consumers.

NANCY platform interface TBD

Interface/ Protocol technology Command-line calls to docker container

Status Ongoing

Sequence diagram

D6.2 – NANCY Integrated System – Initial Version

86

A.23 Wallet – Maestro

Integration Point Description
Identifier 5,12 Wallet – Maestro
Involved organisations NEC, UBI
Integration Point Purpose The wallet creates and registers DIDs to represent users in

Maestro. Furthermore, the wallet provides the means to
securely connect to the NANCY Blockchain, so that users in
Maestro can search suitable services on the blockchain-based
marketplace, listen to SLA creation and signing events and
sign the SLA when agreement is reached with providers.

D6.2 – NANCY Integrated System – Initial Version

87

NANCY platform interface TBD
Interface/ Protocol technology Command-line calls to docker container
Status Ongoing
Sequence diagram

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Executive summary
	1. Introduction
	1.1. Purpose of the Document
	1.2. Relation to other Tasks and Deliverables
	1.3. Structure of the Deliverable

	2. Integration Methodology
	2.1. Continuous Integration/ Continuous Delivery
	2.2. Integration Points Identification, Specification and Testing
	2.3. Communication Channels and Management of Integration Activities

	3. Instantiation of the NANCY Reference Architecture
	3.1. Overview of NANCY Architecture
	3.2. Deployment of NANCY Architecture
	3.2.1. Central Management Domain
	3.2.2. Inter-operator Domain
	3.2.3. NANCY Testbeds and Demonstrators

	3.3. Reusability of NANCY Solution Towards new Deployment Environments

	4. NANCY Ιntegration Εnvironment
	4.1. Hetzner Cloud Infrastructure
	4.2. CI/CD system
	4.2.1. Overview of CI/CD Services
	4.2.2. Github Version Control System
	4.2.3. Jenkins Continuous Integration Server
	4.2.4. Harbor Private Docker Container Registry

	4.3. NANCY Central Kubernetes Cluster
	4.3.1. High Level Architecture
	4.3.2. Control Plane Master Nodes
	API Server
	ETCD distributed reliable key-value store
	Kubernetes controller manager
	Scheduler

	4.3.3. Worker Nodes
	Kubelet
	Kube-proxy
	Containerd

	4.3.4. Kubernetes Networking
	4.3.5. Kubernetes Namespaces
	4.3.6. External Access to the Kubernetes Cluster
	Ingress resources configuration
	Securing ingress

	4.4. Security Features of the NANCY Integration Environment
	4.4.1. Secure Communication over HTTPS
	4.4.2. User Authentication and Role-based Access Control
	4.4.3. VPN Configuration
	4.4.4. Firewall Protection of CI/CD and Central Management Infrastructure
	4.4.5. SSH-key-based Authentication to the Central NANCY Infrastructure

	5. Functional Testing of NANCY Components
	6. Integration of NANCY Components and Services
	6.1. Integration Τimeline
	6.2. Integration Points Identification
	6.3. Integration Tests
	6.4. Next Integration Steps

	7. Conclusions
	Bibliography
	A. Annex: Integration Points Specifications
	A.1 MRAT-NCP – ID Management
	A.2 ID-Management – Wallet
	A.3 MRAT-NCP – SemCom
	A.4 MRAT-NCP – Models
	A.5 ID Management – VoSySMonitor
	A.6 DAC – Marketplace
	A.7 BC – Wallet
	A.8 BC – Marketplace
	A.9 Wallet – Marketplace
	A.10 AI Virt. - VoSySMonitor
	A.11 AI Virt. - SEMR
	A.12 Marketplace – SPP
	A.13 Models - SEMR
	A.14 Models - Elasticity
	A.15 Models – TFS
	A.16 SEMR – AINQM
	A.17 SEMR – FL-IDS
	A.18 PQC Sign – PQC SecCom
	A.19 AINQM - NIF
	A.20 AINQM - XAI
	A.21 XAI – FL-IDS
	A.22 Wallet – BSS
	A.23 Wallet – Maestro

