

An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term
Evolution [GA: 101096456]

Deliverable 3.4

NANCY AI Virtualiser

Programme: HORIZON-JU-SNS-2022-STREAM-A-01-06

Start Date: 01 January 2023

Duration: 36 Months

NANCY project has received funding from the Smart Networks and Services Joint Undertaking
(SNS JU) under the European Union's Horizon Europe research and innovation programme under
Grant Agreement No 101096456.

D3.4 – NANCY AI Virtualiser

2

Document Control Page

Deliverable Name NANCY AI Virtualiser

Deliverable Number D3.4

Work Package WP3

Associated Task T3.4 AI virtualiser for underutilized computational & communication resource
exploitation

Dissemination Level Public

Due Date M24

Completion Date 23 December 2024

Submission Date 24 December 2024

Deliverable Lead Partner VOS

Deliverable Author(s) Daniel Raho (VOS), Alvise Rigo (VOS), Anna Panagopoulou (VOS), Vasileios
Anagnostoulis (VOS), Edoardo Manfredi (VOS), Hatim Chergui (i2CAT), Luca Abeni
(SSS), Daniel Casini (SSS), Mauro Marinoni (SSS), Alessandro Biondi (SSS), Ramon
Sanchez Iborra (UMU), Gonzalo Alarconh (UMU), Rodrigo Asensio Garriga (UMU),
Panagiotis Matzakos (INTRA), Konstantinos Kyranou (SID), Georgios Niotis (SID),
Georgios Michoulis (SID), Georgios Tziolas (SID)

Version 1.0

Document History

Version Date Change History Author(s) Organisation

0.1 30/04/2024 Initial outline Alvise Rigo, Anna
Panagopoulou VOS

0.2 21/03/2024 Added input to Section 5 Gonzalo Alarconh UMU

0.3 02/09/2024 Section 1
Alvise Rigo, Anna

Panagopoulou
VOS

0.4 12/09/2024 Added input to Section 4
Luca Abeni, Daniel Casini,

Mauro Marinoni,
Alessandro Biondi

SSS

0.5 15/09/2024
Added input to Section 2 and

Section 3

Hatim Chergui,
Alvise Rigo,

Anna Panagopoulou,
Vasileios Anagnostoulis,

Edoardo Manfredi,
Konstantinos Kyranou,

Georgios Niotis, Georgios
Michoulis, Georgios

Tziolas

I2CAT, VOS, SID

0.6 17/09/2024 Added input to Section 5 Rodrigo Asensio Garriga UMU

D3.4 – NANCY AI Virtualiser

3

0.7 23/09/2024 Added input to Section 6.2 and
Section 3 Anna Panagopoulou VOS

0.8 27/09/2024 Added input to Section 7 Panagiotis Matzakos INTRA

0.9 28/09/2024 Added input to Section 6.1 Hatim Chergui I2CAT

0.99 15/10/2024 Prepare for Quality Check

Alvise Rigo, Anna
Panagopoulou, Daniel
Casini, Ramon Sanchez

Iborra

VOS, SSS, UMU

1.0 05/12/2024 Address reviewers’ remarks

Alvise Rigo, Anna
Panagopoulou,

Alessandro Biondi, Hatim
Chergui

VOS, SSS, I2CAT

Internal Review History

Name Organisation Date
Stylianos Trevlakis, Lamprini Mitsiou INNO 22 October 2024

Blaz Bertalanic IJS 04 November 2024

Quality Manager Revision

Name Organisation Date
Anna Triantafyllou, Dimitrios

Pliatsios
UOWM 23 December 2024

Legal Notice
The information in this document is subject to change without notice.
The Members of the NANCY Consortium make no warranty of any kind about this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the NANCY Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.
Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or SNS JU. Neither the European
Union nor the SNS JU can be held responsible for them.

D3.4 – NANCY AI Virtualiser

4

Table of Contents
List of Figures ... 6

List of Tables .. 8

List of Acronyms .. 9

Executive summary ... 10

1. Introduction .. 11

1.1. Purpose of the Document ... 11

1.2. Relation with other Tasks and Deliverables .. 12

1.3. Structure of the Document ... 12

2. AI Virtualiser and Slice-level Resource Exploitation ... 13

2.1. MA-DRL protocol learning ... 13

2.1.1. Protocol Learning for Minimizing Inter-Slice Resource Underutilisation and Conflicts 13

2.1.2. Environment’s Architecture and Experiments .. 13

2.1.3. Evaluation Results ... 15

2.2. Containerization of the Components .. 16

2.2.1. Agents Containers via Docker-Compose ... 16

2.2.2. Communication through Kafka Bus .. 16

2.2.3. Server Container ... 18

2.2.4. Prometheus and Grafana .. 19

2.2.5. Results of the Cloud-Native Architecture ... 19

2.3. Integration with the Slice Manager ... 20

3. AI Virtualiser and Edge-level Resource Exploitation ... 22

3.1. Integration with High-level Orchestrators .. 22

3.1.1. The Libvirt vManager Driver ... 24

3.2. The vManager and its Internal API .. 26

3.2.1. The vManager Internal API ... 29

3.2.1.1. Create a Partition ... 29

3.2.1.2. Deploy a Partition ... 29

3.2.1.3. Destroy a Partition ... 30

3.2.1.4. Reboot a Partition .. 30

3.2.1.5. Terminate a Partition ... 31

3.2.1.6. Suspend a Partition .. 31

3.2.1.7. Restore a Partition .. 31

3.2.2. Virsh Commands and the vManager API .. 32

D3.4 – NANCY AI Virtualiser

5

4. AI Virtualiser and Inter-domain CPU Resource Provisioning .. 34

4.1. Underutilisation of Virtualized Computational Resources on Linux 34

4.2. Runtime Monitoring of vCPUs ... 36

5. AI Virtualiser on the NANCY Functional and Deployment View ... 41

5.1. AI Virtualiser and Offloading Decisions ... 41

6. AI Virtualiser in NANCY Testbeds and Demonstrators .. 44

6.1. Integration with the Spanish Demonstrator ... 44

6.2. Integration with the Italian Testbed.. 45

7. CI/CD Integration of the AI Virtualiser and Testing .. 46

8. Conclusion ... 48

Bibliography ... 49

D3.4 – NANCY AI Virtualiser

6

List of Figures
Figure 1: Architecture of the inter-slice conflict resolution use case, with one agent per slice, where

the O-RAN and Edge domains form the network slicing environment ... 13

Figure 2: Agent architecture and interfaces .. 14

Figure 3: Results .. 15

Figure 4: Cloud-native architecture for communication protocol learning .. 16

Figure 5: Docker-compose with agents and Kafka Bus configuration ... 18

Figure 6: Dockerfile for the server .. 18

Figure 7: Prometheus and Grafana configuration ... 19

Figure 8: Grafana plot of reward ... 19

Figure 9: K8s-based integration of the AI Virtualiser with the Slice Manager 20

Figure 10: i2CAT’s Slice Manager API (background asset) .. 20

Figure 11: Edge/Cloud Chunk API .. 21

Figure 12: Network Slice API ... 21

Figure 13: The ETSI-MANO NFV architecture .. 23

Figure 14: Nova configuration for Libvirt with Qemu ... 24

Figure 15: Example create-partition command to demonstrate JSON functions utilization in Libvirt . 25

Figure 16: Basic Libvirt virHypervisorDriver callbacks that interface with the vManager. 25

Figure 17: High-level depiction of the vManager hypervisor that undergoes the management of

“partitions” to host individual VNFs. .. 26

Figure 18: The vManager architecture .. 28

Figure 19: The state transition diagram depicting the possible partition states. 32

Figure 20: Different usages of SCHED_DEADLINE reservations for virtualized workloads. 34

Figure 21: Usage of SCHED_DEADLINE to co-locate multiple applications on the same cores while

providing timing isolation. ... 35

Figure 22: The code structure of a classical periodic task. .. 36

Figure 23: Pseudo-code of the monitoring approach. .. 38

Figure 24: Runtime (budget) of the SCHED_DEADLINE reservations of two threads (initial runtime

estimation = 2ms). ... 38

Figure 25: Response time of two threads within SCHED_DEADLINE (initial runtime estimation = 2ms).

 ... 39

Figure 26: Runtime (budget) of the SCHED_DEADLINE reservations of two threads (initial runtime

estimation = 8ms). ... 40

D3.4 – NANCY AI Virtualiser

7

Figure 27: Response time of two threads within SCHED_DEADLINE reservations (initial runtime

estimation = 8ms). ... 40

Figure 28: Functional and deployment view of the NANCY architecture. .. 41

Figure 29: AI Virtualiser integration with the Spanish edge K8s cluster and MEC orchestrator 44

Figure 30: The SK-AM69x Texas Instrument board in the Italian in-Lab testbed. 45

Figure 31: Dedicated Harbor project to host and manage AIVirtualizer container images 46

Figure 32: Dedicated Jenkins workspace to configure and manage CI/CD workflows for AIVirtualizer47

D3.4 – NANCY AI Virtualiser

8

List of Tables

Table 1: Mapping between virsh commands and the vManager API ... 33

D3.4 – NANCY AI Virtualiser

9

List of Acronyms
Acronym Explanation

B5G Beyond Fifth-Generation
AI Artificial Intelligence
ML Machine Learning

NG-SDN Next-Generation Software Defined Networking
NFV Network Functions Virtualization

CI/CD Continuous Integration and Continuous Delivery/Deployment
DRL Deep Reinforcement Learning

MA-DRL Multi-Agent Deep Reinforcement Learning
eMMB Enhanced Mobile Broadband
uRLLC Ultra Reliable Low Latency Communications
mMTC Massive Machine-Type Communications

CPU Central Processing Unit
vRAN Virtual Radio Access Network

O-RAN Open Radio Access Network
CU / DU Central Unit / Distributed Unit

RRM Radio Resource Management
RLC Radio Link Control
PRB Physical Resource Block
DQN Deep Q-Network

IB Information Bottleneck
DNN Deep Neural Networks
IQR Interquartile Range
SM Slice Manager
API Application Programming Interface
VNF Virtual Network Functions

NFVO Network Functions Virtualisation Orchestrator
VNFM Virtualised Network Function Manager
VIM Virtualised Infrastructure Manager
NFVI Network Functions Virtualisation Infrastructure
IaaS Infrastructure-as-a-Service
KPI Key Performance Indicator

MEC Multi-access Edge Computing
ARM Advanced RISC Machine
VM Virtual Machine
ETSI European Telecommunications Standards Institute

NFV MANO NFV Management and Orchestration
KVM Kernel-based Virtual Machine
LXC Linux Containers
URI Uniform Resource Identifier
EL Exception Level

SMC Secure Monitor Call
PSCI Power State Coordination Interface
PMU Power Management Unit
QoS Quality of Service
SLA Service Level Agreement
E2E End-to-end
DoS Denial of Service

D3.4 – NANCY AI Virtualiser

10

Executive summary
This document presents the developed solutions in the context of the AI Virtualiser component of
NANCY. These solutions share the common objective of optimizing the resource utilization and concern
various layers of the networked infrastructure, which range from the Slice Manager layer to the edge.

First, the deliverable describes in detail the exploitation of the under-utilized resources at the Slice
Manager layer (Section 2), including a throughout presentation of the applied MA-DRL protocol
learning mechanism (Section 2.1) as well as the containerization of the components at this layer
(Section 2.2). Second, the deliverable presents the optimized exploitation of resources at the Edge
level (Section 3), focusing on a novel virtualisation solution that aims to maximally exploit the
computational capabilities at the edge. The document focuses on the integration of the virtualization
solution with high-level network orchestrators (Section 3.1) and describes in detail the novel
hypervisor driver along with its internal functionalities (Section 3.2). Then, the deliverable presents the
mechanisms of the AI Virtualiser that are developed to realize the optimal provisioning of CPU
resources through fine-grained decisions at an inter-domain layer (Section 4). Specifically, Section 4.1
introduces in detail the problem of under-utilizing in Linux the virtualized computational resources
while Section 4.2 elaborates on the novel mechanism for runtime monitoring of the virtualized CPUs.
For the aforementioned technologies code snippets and experimental results are also presented.

Next, the deliverable presents the placement of the AI Virtualiser components into NANCY functional
and deployment architecture (Section 5), as part of the overall integration. Additionally, it also
presents the association of the AI Virtualiser with the Task Offloading module of NANCY (Section 5.1),
as they are closely connected for ensuring the QoS in the context of an agreed SLA. Then, the
deliverable concludes with a description of the AI Virtualiser integration in NANCY’s testbeds and
demonstrators (Section 6) and the relevant CI/CD environment setup (Section 7).

D3.4 – NANCY AI Virtualiser

11

1. Introduction

1.1. Purpose of the Document

As 5G networks and beyond continue to evolve, they bring with them a great deal of complexity and a
transformative potential for a wide range of industries. These networks are designed to support a
massive number of connected devices and accommodate highly-diverse service requirements,
including reliable and ultra-low-latency executions. In these regards, legacy network orchestrators are
no longer suitable for effectively managing B5G networks, especially in light of the newly-emerging
and demanding applications. Instead, 5G necessitates the development of advanced orchestrator tools
that are able to manage resources, optimize network slices, and ensure end-to-end service quality in
real time.

On the other hand, AI and ML techniques have rapidly evolved, especially as networks have become
more complex and demanding. These advancements present new opportunities for enhanced network
orchestration, making it possible to integrate intelligent modules that can better manage the dynamic
nature of modern networks. Thus, we have now the opportunity to empower the state-of-the-art
orchestrators with intelligent modules, so that they can make more informed decisions to proactively
and reactively adapt to network changes. Integrating with pioneering AI and ML techniques, the new
orchestrators aim to significantly improve the experience of users as well as contribute to scaling up
the overall network performance.

In this context, NANCY introduces the AI Virtualiser as a central component of the architecture that
enriches the orchestrator module with the incorporation of cutting-edge technologies and intelligent
ML algorithms. Having as target to effectively identify and maximally exploit the available network
resources, these technologies share a common objective: To help optimize the resource utilisation.

The AI Virtualiser is a multi-layered solution which extends from the Slice Manager layer to edge-
focused innovations. The key asset of the AI Virtualiser lies in this combination of intelligent solutions
close to the orchestration modules and finer-grained solutions at the edge, all powered by a suite of
modern 5G technologies such as Slicing, NG-SDN and NFV.

At the Slice Manager layer, the AI Virtualiser introduces novel Reinforcement Learning algorithms,
aiming to achieve intelligent adjustments of the network slices by rewarding these configurations that
effectively minimize the under-utilisation of the available resources. Through the dynamic re-
configuration of slices, the AI Virtualiser eventually adapts to the changing network conditions and
gradually learns to provide the most efficient, in terms of resource utilisation and performance, slice
deployments.

At the same time, the AI Virtualiser establishes innovative NFV-based Virtualization techniques tailored
to the characteristics of powerful devices at the network edge, with the dual purpose of exploiting to
the maximum extent the available computation resources at this layer and achieving outstanding
execution performance for the Virtualized Functions.

Last but not least, the AI Virtualiser seeks to minimize the under-utilisation of the processing
bandwidth of the network, as it incorporates new tools to achieve fine-grained granularity in the
allocation decisions of the processing resources. Specifically, this is made possible through the
introduction of intelligent and dynamic configurations at the scheduling layer of the Operating Systems
that are deployed on the compute-capable network nodes.

D3.4 – NANCY AI Virtualiser

12

This document presents the NANCY’s AI Virtualiser component, built to address important resource
utilisation challenges in the context of the continuously evolving B5G networks. This deliverable
reports the activities carried out under the scope of Task 3.4: “AI Virtualiser for underutilized
computational & communication resource exploitation”, which achieves the result R8. In the pages
that follow, the end-to-end architecture of the AI Virtualiser is thoroughly presented and its
constituents are individually detailed. Then, the interactions between the AI Virtualiser to other
components of the NANCY architecture are described, zooming specifically on the “Computational
Offloading & User-centric Caching Functionalities” outcomes of Task 4.1. Finally, the deployment of
the AI Virtualiser technologies in the scope of specific NANCY use-cases is explained, along with the
instantiated testbed environments. What is more, the CI/CD pipeline implementation for the testing
of the AI Virtualiser is described in detail. Finally, the document concludes with a summary of the key
insights and takeaways.

1.2. Relation with other Tasks and Deliverables

As anticipated above, this deliverable collects the results of the Task 3.4 activities, detailing the
problems and challenges the task had to address and the strategies and technologies devised. Task
T3.4 received the NANCY Requirements Analysis (D2.1) and the NANCY Architecture Design (D3.1) in
input.

Furthermore, this deliverable connects to Task 4.1 as, both the AI Virtualiser and the Computational
Offloading & User-centric Caching Functionalities, jointly, aim to improve the efficiency of the NANCY
architecture as a whole.

1.3. Structure of the Document

The rest of the document is structured as follows:

• Section 2 – AI Virtualiser and Slice-level Resource Exploitation presents the technologies
implemented by the AI Virtualiser at the slice manager layer as a means to optimize the slice-
level resources exploitation.

• Section 3 – AI Virtualiser and Edge-level Resource Exploitation describes the mechanism
implemented by the AI Virtualiser to better exploit through novel virtualization technologies
the resources present at the edge.

• Section 4 – AI Virtualiser and Inter-domain CPU Resource Provisioning documents the
techniques used inside the compute-capable nodes to optimise the utilisation of CPU
resources thanks to ad-hoc scheduling technologies.

• Section 5 – AI Virtualiser on the NANCY Functional and Deployment View presents the
placement of the AI Virtualiser components as part of the overall NANCY functional and
deployment architecture. This section also outlines the association between the AI Virtualiser
and offloading capabilities.

• Section 6 – AI Virtualiser in NANCY Testbeds and Demonstrators describes the testing and
validation deployments expected for the AI Virtualiser components.

• Section 7 – CI/CD Integration of the AI Virtualiser and Testing is focused on detailing the AI
Virtualiser CI/CD infrastructure and connected testing strategies.

• Section 8 – Conclusion concludes the deliverable.

D3.4 – NANCY AI Virtualiser

13

2. AI Virtualiser and Slice-level Resource Exploitation

2.1. MA-DRL protocol learning

2.1.1. Protocol Learning for Minimizing Inter-Slice Resource Underutilisation and Conflicts

Figure 1: Architecture of the inter-slice conflict resolution use case, with one agent per slice, where the O-RAN and Edge
domains form the network slicing environment

Experimental evaluations [1] reveal a non-linear relationship between bitrate, virtualized RAN (vRAN)
bandwidth, and CPU utilisation, highlighting that even with adequate radio resources, network
performance can degrade without sufficient computational resources in the O-Cloud. Effective radio
resource management (RRM) in O-RAN’s vRAN setup requires strategic and coordinated CPU
allocation. In the scenario depicted in Figure 1, an inter-slice intelligent resource orchestration use-
case is presented, where each slice consists of a server located at the edge domain, managed by the
virtual infrastructure manager (VIM) responsible for computing, storage, and network resources. The
VIM operates within a cloud environment and handles a Computation Queue with preemptive CPU
resources, affecting local latency. The O-RAN domain includes a per-slice Transmission Queue at the
O-CU level, where latency depends on radio conditions. Excluding x-haul delays, slice latency is a
combination of O-RAN and edge latencies. Each slice-level resource orchestration agent can
dynamically adjust CPU frequency and utilize additional resources if other slices leave them
underutilized. Given the limitations of centralized approaches, agents collaborate via a decentralized
multi-agent deep reinforcement learning (DRL) framework, coordinating through the exchange of
actions or messages. These DRL agents must jointly learn the signaling policy without a pre-defined
agreement on control messages, guided by a reward function that penalizes conflicts and
underutilisation as well as minimizes latency. By properly scaling the CPU frequency, the agent
minimizes the computation queue delay and therefore the latency, while the messages that are guided
by the reward function avoid conflicts and underutilisation.

2.1.2. Environment’s Architecture and Experiments

We consider a scenario with service-specific slices represented by data sourced from a simulator,
capturing the nuances of services like eMBB, URLLC, and mMTC in terms of traffic and radio resources.
The simulator comprises three core components: physical (PHY), MAC, and radio link control (RLC)
functions, and includes the O-RAN E2 interface for collecting network statistics from each distributed
unit (O-DU). To prevent underutilisation, each slice has a share of CPU resources that can also be

D3.4 – NANCY AI Virtualiser

14

utilized via preemption by other slices if no conflict arises. Each slice is equipped with the AI virtualizer
agent that aims to optimize CPU frequency allocation and resolve inter-slice resource conflicts through
a conflict resolution protocol.

The default CPU allocation is defined by the array [15, 15, 10], representing 15 GHz for the first and
second slices and 10 GHz for the third slice. This approach can also apply to other resource allocation
problems, such as PRB allocation. Each agent employs a DQN incorporating an Information Bottleneck
(IB) block with a stochastic bottleneck layer, which captures essential features while discarding
redundant information. A prioritized experience replay is used to sample experiences based on
importance, focusing on pivotal network states to ensure generalization across scenarios.

Figure 2: Agent architecture and interfaces

To ensure generalizability, a time-series and variability analysis was conducted on the traffic across
three slices. The analysis provides insights into the AI Virtualiser's adaptability to varying traffic
conditions, quantified by different standard deviations. For eMBB Traffic, the mean is 23.33 Mbps with
a standard deviation of 22.38 Mbps. For URLLC Traffic, the mean is 7.80 Mbps with a standard deviation
of 9.25 Mbps. For mMTC Traffic, the mean is 14.80 Mbps with a standard deviation of 20.86 Mbps.

The designed network slicing environment simulates the interactions among agents and their impact
on the overall network performance. As agents optimize CPU frequencies and send messages, the
environment updates the system state and returns rewards, designed to penalize conflicts and reward
low latency. The reward function includes an exponential component to increase rewards as latency
decreases and penalizes heavily when resource constraints are violated. During training, the agents
use an ϵ\epsilonϵ-greedy strategy for exploration, with ϵ\epsilonϵ decaying over episodes.

Experiments were conducted on a server with two Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz and
dual NVIDIA GeForce RTX 2080 Ti GPUs. The DNN network comprises an input layer mapped to a 64-
neuron hidden layer activated by the ReLU function, followed by an IB layer with a bottleneck
dimension of 32. The network balances the compression and preservation of relevant information
using a parameter β that adjusts the trade-off within the loss function. A fully connected layer outputs
both main actions and messages. During training, weights are updated using the Adam optimizer with
a learning rate of 0.0005. The training process runs for 500 episodes with a maximum of 60 steps per
episode, using a batch size of 64, a discount factor γ of 0.99, and an initial β of 0.0 that anneals at a
rate of 0.001 per episode. This simulation, developed with libraries like torch and gym, validates
resource allocation in a network slicing scenario and optimizes service-specific slices.

D3.4 – NANCY AI Virtualiser

15

2.1.3. Evaluation Results

Figure 3: Evaluation Results

Figure 3 presents the evaluation results focusingon the AI virtualizer approach compared to a baseline
Multi-Agent Deep Reinforcement Learning (MADRL) framework and a predefined protocol method in
a network slicing environment [2]. Here is a summary of key findings:

• CPU Utilisation/Exploitation Efficiency: The AI Virtualiser (denoted STEP in Figure 3)
significantly improved CPU utilisation compared to the baseline. By leveraging an emergent
protocol, agents could temporarily use free CPU resources from other slices, thereby
enhancing overall network-wide utilisation. The AI Virtualiser surpassed the lower and upper
utilisation thresholds of 10% and 90%, respectively, achieving up to 1.4 times better CPU
utilisation than the baseline, which struggled with consistent performance.

• Resource Conflict Resolution: During the initial 100 episodes of training, the baseline MADRL
framework averaged 17.6 conflicts between slices, while the AI Virtualiser approach showed
significantly fewer conflicts, averaging 8.44. The predefined protocol approach, where agents
communicated their resource allocation strategies using three distinct codes (0, 1, and 2),
initially averaged 40.54 conflicts. Over time, the AI Virtualiser approach consistently
outperformed the baseline, eventually reducing conflicts to zero by the final set of 100
episodes. In comparison, the baseline and predefined protocol methods averaged 0.81 and
0.28 conflicts, respectively. Overall, the AI Virtualiser reduced inter-slice conflicts by a factor
of 3.4 and 6.06 compared to the baseline and predefined protocol methods, highlighting the
effectiveness of adaptive communication in resource allocation.

• Latency Performance: The AI Virtualiser framework demonstrated superior performance in
reducing average transmission and computation latencies compared to the baseline. The
cumulative distribution function (CDF) plot showed the baseline's median latency at 4 ms,
while the AI Virtualiser achieved a median latency of 0 ms. The interquartile range (IQR) further
highlighted this difference: the baseline's IQR was 11 ms, indicating a broader spread in latency
values, whereas the AI Virtualiser 's IQR was only 1.25 ms, signifying minimal variability.
Overall, the AI Virtualiser achieved an average latency reduction of 3.5 times compared to
MADRL, showing consistent and low-latency performance across slices.

• Impact of Communication Space Size on Conflicts: An analysis of conflicts with varied
communication space sizes (i.e., different message sets exchanged between agents) revealed
that while increasing message diversity initially improves inter-agent communication, it
eventually reaches a saturation point. Excessive communication could result in a
homogeneous strategy where slices handle similar tasks, reducing diversity in conflict
resolution approaches. The tests, conducted under stringent conditions, demonstrated that
effective communication must strike a balance to optimize resource allocation.

D3.4 – NANCY AI Virtualiser

16

In conclusion, the AI Virtualiser strategy proved highly effective in optimizing resource allocation,
reducing conflicts, and improving latency and CPU utilisation. Its adaptive communication capabilities
allow agents to learn efficient protocols without predefined rules, resulting in superior performance
compared to conventional approaches.

2.2. Containerization of the Components

Figure 4: Cloud-native architecture for communication protocol learning

Cloud-native designs align well with the evolving needs of 5G and future 6G networks, which demand
high flexibility, scalability, and resilience. By leveraging containerization, microservices, and continuous
monitoring, the proposed architecture in Figure 4 can efficiently support the diverse and stringent
requirements of different network slices, ranging from ultra-reliable low-latency communications
(URLLC) to enhanced mobile broadband (eMBB) and massive machine-type communications (mMTC).
This modular and scalable architecture is also future-proof, enabling seamless integration with
emerging technologies and facilitating the transition towards fully autonomous and self-optimizing
networks in the 6G era. The different blocks of the architecture are detailed in the sequel.

2.2.1. Agents Containers via Docker-Compose

 A cloud-native architecture is introduced to manage network slices in future 6G environments [3],
utilizing a collaborative multi-agent communication framework. Each network slice is controlled by an
independent agent (client) that operates within a containerized environment, using Docker as the
application abstraction layer. The containerization of these agents ensures that each operates in an
isolated environment, providing a lightweight, scalable, and efficient mechanism to manage resources
across multiple slices. Dockerization also facilitates the deployment, scaling, and orchestration of these
agents across a distributed cloud infrastructure, making it easier to adapt to varying workloads and
network demands inherent in 5G and 6G use cases.

2.2.2. Communication through Kafka Bus

The inter-agent as well as agent-server communication takes place over a Kafka Bus, which runs on a
dedicated container. It allows the different agents and the server to produce and consume various
types of events/data that are categorized by topics. This includes specifically the communication
messages between agents to learn a protocol on-the-fly as well as the broadcast of rewards and next
states by the environment server. Note that Kafka's scalability and asynchronous communication make
it ideal for distributed systems [4]. It handles high data volumes by scaling horizontally, allowing
services to produce and consume messages independently without direct synchronization. This
decoupling enhances system resilience, reduces bottlenecks, and supports real-time data processing

D3.4 – NANCY AI Virtualiser

17

with high reliability and efficiency. The agents/Kafka configuration is given by the docker-compose file
of Figure 5.

version: '3'

services:

 zookeeper:

 image: 'bitnami/zookeeper:latest'

 ports:

 - '2181:2181'

 environment:

 - ALLOW_ANONYMOUS_LOGIN=yes

 logging:

 driver: "none" # Suppressing logs completely

 kafka:

 image: 'bitnami/kafka:latest'

 ports:

 - '9092:9092'

 environment:

 - KAFKA_BROKER_ID=1

 - KAFKA_LISTENERS=PLAINTEXT://:9092

 - KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://kafka:9092

 - KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181

 - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP=PLAINTEXT:PLAINTEXT

 - ALLOW_PLAINTEXT_LISTENER=yes

 volumes:

 - ./scripts:/opt/bitnami/scripts/kafka/custom-scripts

 depends_on:

 - zookeeper

 command: bash -c "exec /opt/bitnami/scripts/kafka/run.sh > /dev/null 2>&1"

 logging:

 driver: "none"

 server:

 build: ./server

 depends_on:

 - kafka

 client1:

 build: ./client

 environment:

 CLIENT_ID: 1

 depends_on:

D3.4 – NANCY AI Virtualiser

18

 - kafka

 client2:

 build: ./client

 environment:

 CLIENT_ID: 2

 depends_on:

 - kafka

 client3:

 build: ./client

 environment:

 CLIENT_ID: 3

 depends_on:

 - kafka

Figure 5: Docker-compose with agents and Kafka Bus configuration

2.2.3. Server Container

The agents communicate with a central server that functions as the information exchange hub. This
centralized server ensures that while agents collaborate to optimize the infrastructure's overall
performance, they do so without directly sharing sensitive information with each other. This design is
crucial in maintaining privacy and security, as each agent remains unaware of the specific resource
allocations and operational strategies of other agents. The central server aggregates and processes the
data, ensuring that the collaborative decision-making process respects the constraints of the shared
infrastructure and adheres to the privacy requirements of each network slice. The server dependencies
are given in the Dockerfile of Figure 6.

Use the official Python image from the Docker Hub

FROM python:3.8-slim

Set the working directory in the container to /app

WORKDIR /app

Copy the current directory contents into the container at /app

COPY . /app

Install any needed packages specified in requirements.txt

RUN pip install kafka-python numpy pandas

Run server.py when the container launches

CMD ["python", "server.py"]

Figure 6: Dockerfile for the server

D3.4 – NANCY AI Virtualiser

19

2.2.4. Prometheus and Grafana

A key advantage of this cloud-native architecture is its ability to be monitored and managed in real-
time using advanced monitoring and visualization tools like Prometheus and Grafana. Prometheus
collects detailed metrics from each agent, allowing for real-time performance analysis, anomaly
detection, and resource optimization. Grafana, in turn, provides a user-friendly interface for visualizing
these metrics, offering insights into the operational status of the entire system. This online supervision
capability is particularly valuable in dynamic 5G and 6G environments, where network conditions and
demands can change rapidly, requiring swift and informed decision-making. An excerpt of
Prometheus/Grafana configuration is given in Figure 7.

 prometheus:

 image: prom/prometheus:latest

 volumes:

 - ./prometheus/prometheus.yml:/etc/prometheus/prometheus.yml

 ports:

 - '9090:9090'

 networks:

 - my_custom_network

 grafana:

 image: grafana/grafana:latest

 ports:

 - '3000:3000'

 networks:

 - my_custom_network

Figure 7: Prometheus and Grafana configuration

2.2.5. Results of the Cloud-Native Architecture

Preliminary Grafana plots have been obtained for various metrics. Figure 8 for instance shows the
increasing reward trend across episodes.

Figure 8: Grafana plot of reward

D3.4 – NANCY AI Virtualiser

20

2.3. Integration with the Slice Manager

Figure 9: K8s-based integration of the AI Virtualiser with the Slice Manager

Through the Slice Manager (SM) rich API, the distributed AI Virtualiser consisting of the above-
mentioned per-slice agents in Figure 9, will be able to enforce various slice reconfiguration and
resource allocation actions to network slices. These slices are composed of computing, networking and
radio chunks. The compute component is an isolated namespace.

Figure 10: i2CAT’s Slice Manager API (background asset)

The environment in this case is the interface with the API gateway, translating various agents’ actions
into API calls to the Slice Manager (see Figures 10, 11 and 12). A slice can be created with N compute

D3.4 – NANCY AI Virtualiser

21

chunks that can be instantiated in different clusters. That way, by having a slice containing compute
chunks from different clusters, we could instantiate services working in a multi-cluster environment.

Figure 11: Edge/Cloud Chunk API

Created Slices can be edited by adding/removing chunks (referred by chunk_id), following a set of
requirements for slice composition/update logic (for example, every instance must have at least one
compute chunk; network chunk of type data-network is compulsory for slices with OpenStack compute
chunk; network chunk of type access-network is compulsory when the slice includes cellular access;
only one radio chunk is admissible per slice; chunks in use cannot be deleted).

Figure 12: Network Slice API

D3.4 – NANCY AI Virtualiser

22

3. AI Virtualiser and Edge-level Resource Exploitation
The AI Virtualiser explores novel NFV-based virtualization techniques with the purpose of utilizing to
the maximum extent the available resources at the network edge. In the new-generation 5G networks,
the computational tasks are offloaded in the form of VNFs to powerful edge servers in close proximity
to end-users, as the MEC model mandates [5]. Virtualizing the various network services according to
the NFV standards has resulted in decoupling these services from specialized and proprietary
hardware, which brings great flexibility and scalability in the overall network management [6] [7].

Aiming towards the maximum exploitation of the capabilities at the edge, the AI Virtualiser takes into
consideration the current architectural nuances within the edge domain. Specifically, NANCY focuses
on the peculiarities of the ARMv8 architecture which leads when it comes to edge deployments since
it can inherently provide in an energy-efficient way, fast and parallel processing of computationally-
intensive tasks, such as image processing, machine learning and cryptography [8]. Having this in mind,
NANCY re-shapes the way virtualization is implemented when such devices are targeted. In these
regards, NANCY designs a novel, lightweight virtualization solution for the edge of the network, which
aims to guarantee greater isolation compared to existing alternatives. To provide some insights that
will be further detailed in Section 3.2, with this virtualization solution NANCY achieves to deploy each
VNF at an individual “partition” (subset) of an edge server’s hardware resources.

We are referring to such subsets of the edge server’s resources with both the terms “partitions” and
“compartments”, interchangeably. In ARMv8, it is feasible to assign to specified “partitions” the
execution of separate Operating Systems, which can execute simultaneously on-top of the same device
[9]. In this context, at each “partition” NANCY deploys a VNF (which comes in the form of a Linux OS),
that undergoes the execution of a computational task for implementing a 5G network service, like
localization, anomaly detection, video streaming and others. Thanks to this setup, NANCY achieves
improved isolation because the VNFs are deployed in individual “partitions” and do not affect the rest
of the system. What is more, this virtualization solution is lightweight because it achieves near bare-
metal execution times, since most parts of the physical hardware (e.g., memory, CPU) remain non-
virtualized.

In the context of the AI Virtualiser, NANCY focuses on connecting the novel edge-based virtualization
solution to the rest of the 5G infrastructure. In these regards, the AI Virtualiser introduces the
vManager, which plays the role of the hypervisor that bridges a high-level 5G orchestrator with the
low-level edge firmware that is privileged enough to instruct the actual deployment of the VNFs to the
“partitions”.

In the upcoming sections, we will first describe the requirements needed for integrating a novel
virtualization solution with a high-level 5G orchestrator such as OpenStack. Then, we will thoroughly
detail the vManager hypervisor, along with its components and its internal APIs.

3.1. Integration with High-level Orchestrators

In the 5G ecosystem, NG-SDN and NFV have emerged as standard technologies that have permanently
transformed traditional network services into virtualized entities [10]. Indeed, NG-SDN has enabled
network services to be fully realized through softwarized components which, in line with the NFV
terminology, consist of either individual VNFs, or chains of interconnected VNFs. In this environment,
a resource orchestrator must be held responsible for determining the optimal placement of these
software components within the infrastructure, by properly assigning the VNFs to the available
computational resources [11].

D3.4 – NANCY AI Virtualiser

23

Complying with the NFV architecture according to the ETSI MANO [12] standards (Figure 13), the
resource orchestration is collaboratively achieved through parts of the NFVO, the VNFM and the VIM.
Regarding the individual role of each component, the NFVO is at the top layer of the stack and is in
charge of managing the life-cycle of the network services. The NFVO operates across multiple domains
and undergoes global resource management, aiming to achieve the on-boarding, instantiation, scaling
and termination of the network services. Then, the VNFM is responsible for the life-cycle management
of the VNFs themselves. In particular, it manages the instantiation, scaling, updating and termination
of the VNFs and it also carries-out KPIs monitoring upon them. Finally, in what concerns the VIM, this
component operates in a network sub-domain and closely orchestrates the resources of the underlying
NFVI. So, the VIM is in charge of controlling and managing the NFVI compute, network and storage
resources, in the context of a single domain.

Figure 13: The ETSI-MANO NFV architecture

At the VIM layer, OpenStack is used as the de-facto commercial solution [13]. Leveraging a large
number of open-source projects, OpenStack has emerged as the simplest solution for handling VIM
deployments as it can provide full control over the storage, compute and networking resources. In
what concerns the computational resources, the OpenStack Compute service (Nova) is a major
component of the IaaS system [14]. Nova is the project that supports the management of the compute
instances, which in reality are virtual servers. So, in its core, Nova provides all the low-level
functionalities that are related to the virtual servers management, including their creation,
destruction, scaling etc.

Underlying, Nova integrates with a variety of different hypervisors and thus it can support multiple
virtualization solutions for the realization of the compute instances. The available hypervisors are
implemented in Nova as Python drivers and the Nova deployment on the compute node is configured
accordingly, to utilize a particular driver. Libvirt is the most commonly used hypervisor driver in Nova,
which makes it the most commonly used virtualization driver for NFV deployments. Nova has included
support for Libvirt that is backed-by KVM, Qemu, LXC and Virtuozzo. However, for official NFV
deployments, Libvirt is mostly backed by Qemu, and in case it is available, KVM. The configuration to
Nova compute node that instructs it to utilize Libvirt through, for example, Qemu should be appended
to “/etc/nova/nova.conf” as follows (Figure 14):

D3.4 – NANCY AI Virtualiser

24

/etc/nova/nova.conf

[DEFAULT]

COMPUTE

compute_driver=libvirt.LibvirtDriver

LIBVIRT

[libvirt]

virt_type=qemu

Figure 14: Nova configuration for Libvirt with Qemu

When developing a novel virtualization solution aimed at NFV deployments in a network
infrastructure, one should foresee that this solution should be finally embedded in the OpenStack
Nova. Only by doing so, the VIM will be able to leverage this virtualization solution for the
implementation of the virtualized entities. In the context of the AI Virtualiser, the novel virtualization
solution suited for the Edge should similarly be able to integrate with Nova. In order to achieve this in
an as-easy-as-possible way, we took the decision to integrate the new virtualization solution into
Libvirt. This is also reasonable given that the deployment of the virtualized entities takes place through
a Linux-based system on the embedded ARMv8 board, where the Libvirt daemon can execute
unbothered. Then, following the directions of the already-supported Qemu/KVM, LXC and Virtuozzo
Libvirt backends in Nova, the final integration should be a task that is trivial enough.

Thanks to the integration of the virtualization solution with the OpenStack Nova service, high-level
resource orchestrators can enforce their decisions directly on the vManager “partitions”, where the
VNFs are deployed. In these regards, the decisions associated with compute resources that take place
at the Slice Manager layer of the AI Virtualiser and which have been explained in Section 2 can be
eventually enforced on the targeted nodes through the OpenStack Compute service (Nova). For
example, a Slice Manager decision for removing a compute chunk from a Slice will translate into a Nova
action that mandates the deletion of a vManager “partition” through Libvirt.

3.1.1. The Libvirt vManager Driver

The new hypervisor solution, which we call vManager, is integrated into Libvirt as a new hypervisor
driver, following the Libvirt guidelines. We introduce the virtvmand service in Libvirt for this purpose,
which encapsulates the functions of the vManager hypervisor driver.

The virtvmand service is accessible through the “vman:///system” URI, through which usual virsh
commands targetting the vManager hypervisor are supported. The main objective of the vManager
Libvirt driver is to finally communicate with lower layers of the vManager stack, using JSON objects.
Libvirt has inherent support for JSON serialization / de-serialization functions, which allows hypervisor
developers to create and issue commands of various types and wait for replies. Following is an example
command “create-partition” serialized into a JSON object, issued and then waiting for a reply, from the
lower layers of the vManager (Figure 15).

D3.4 – NANCY AI Virtualiser

25

// Serialize the command

cmd = virVMANMonitorJSONMakeCommand("create-partition",
 "U:cores", maxvcpus,
 "U:primary", 0,
 "b:secure", false,
 "U:memsize", total_memory,
 NULL);

// Issue the command and wait for the reply

if (virVMANMonitorJSONCommand(mon, cmd, &reply) < 0)

 return -1;

// Check reply for errors

if (virVMANMonitorJSONCheckErrorFull(cmd, reply, true) < 0)

 return -1;

// Obtain the returned data

data = virJSONValueObjectGetObject(reply, "return");

// Parse the data

ret = virJSONValueObjectGetNumberUlong(data, "id", (unsigned long long *)&data_id);

Figure 15: Example create-partition command to demonstrate JSON functions utilization in Libvirt

The Libvirt vManager driver is registered on Libvirt as a set of callback functions wrapped in a
virHypervisorDriver instance. These functions range from functions responsible for setting up the client
connections through the URI, to informative functions regarding the status of connections and
domains, down to the most meaningful functions that translate to specific instructions, in the form of
JSON commands, towards the underlying layers of the vManager hypervisor.

For simplicity, Figure 16 only depicts the most basic callback functions that translate to final vManager
hypervisor commands. The connection between these functions with the virsh commands and the
internal vManager actions are further detailed in Section 3.3.2.

/* The vmanHypervisorDriver instance and basic callbacks that pass-through the vManager */

static virHypervisorDriver vmanHypervisorDriver = {

 .name = "VMAN",

 .domainCreate = virVMANDomainCreate, /* 7.5.0 */

 .domainShutdown = virVMANDomainShutdown, /* 7.5.0 */

 .domainReboot = virVMANDomainReboot, /* 7.5.0 */

 .domainSuspend = virVMANDomainSuspend, /* 7.5.0 */

 .domainResume = virVMANDomainResume, /* 7.5.0 */

 .domainDestroy = virVMANDomainDestroy, /* 7.5.0 */

 .domainDefineXML = virVMANDomainDefineXML, /* 7.5.0 */

};

Figure 16: Basic Libvirt virHypervisorDriver callbacks that interface with the vManager.

D3.4 – NANCY AI Virtualiser

26

3.2. The vManager and its Internal API

The vManager is an ARMv8-compatible hypervisor solution that enables the dynamic definition and
afterwards management of the ARMv8 system “partitions”. As already introduced, at these
“partitions” or “compartments” which are subsets of the physical hardware resources, NANCY will
deploy individual VNFs that implement computational network services. In these regards, the
“partitions” are created with the purpose of hosting execution environments for various OSes in
general, and VNFs in particular in the 5G stack.

Figure 17: High-level depiction of the vManager hypervisor that undergoes the management of “partitions” to host
individual VNFs.

Figure 17 depicts the overall architecture, from OpenStack to Libvirt to the vManager hypervisor that
results in the management of “partitions” where VNFs are being deployed. As it is shown,
VOSySmonitor is the software component that undergoes the actual deployment and management of
the “partitions”. VOSySmonitor is a minimal low-level firmware which runs bare-metal in an ARMv8
board and has the privilege to define and control the “partitions” of the hardware resources by
deploying OSes on them [9].

In the core of the ARMv8 architecture, there exist the ARM Trustzone hardware security extensions
[15]. These extensions provide support for complete hardware-supported isolation of “critical tasks”
(aka “secure”) from “non-critical tasks” (aka “non-secure”). The VOSySmonitor software is built upon
these hardware extensions, with the initial aim of offering transparent and simultaneous execution of
tasks with different critical levels. However, it should be noted that although the ARMv8 architecture
only supports two levels of criticality (critical and non-critical), it is possible to deploy more than two
“partitions” with the same critical level, on the same hardware platform.

To provide more technical details, VOSySmonitor runs at the highest “Execution Level” (EL3) of the
ARMv8 architecture and is a “critical task”. This gives it the privilege to control and manage the
resources of the system, as well as the allocation of the system resources to the various “partitions”.
When the system boots, VOSySmonitor holds the responsibility to instantiate many of the system
peripherals, given the use-case and the configuration it needs to apply for the “critical” and the “non-

D3.4 – NANCY AI Virtualiser

27

critical” worlds. It should also be noted that the “critical” partitions always have priority over the “non-
critical” partitions, and VOSySmonitor guarantees that with its internal scheduling policies.

As also shown in Figure 17, the vManager hypervisor developed in the context of the AI Virtualiser
establishes the connection point between Libvirt and the VOSySmonitor firmware. Given that
VOSySmonitor is the highest-privileged (EL3) low-level bare-metal component directly deployed in the
ARMv8 board, the vManager needs to implement a set of software components with increasing
privilege levels (from user-space EL0 to kernel-space EL1) to finally interact with VOSySmonitor (at
EL3). Specifically, the vManager consists of five separate components with different privileges that
cooperate in order to achieve hardware partitioning based on user requirements:

1. The virtvmand at user-space (EL0), the Libvirt driver that interfaces with the vManager
daemon through JSON messages (explained in Section 3.1).

2. The vManager daemon vmand. It is the user-space (EL0) background program that exchanges
messages with virtvmand and forwards to the kernel-space the corresponding partition
management commands. The available commands will be further described in Subsection
3.2.1).

3. The vManager controller vmanctl. It is the user-space (EL0) CLI tool that allows a user to
execute directly the partition management commands described in Subsection 3.2.1 towards
the kernel-space, by-passing entirely Libvirt.

4. The vManager driver. A loadable kernel module (kernel-space EL1) that enables the
communication path between the VOSySmonitor firmware (EL3) and user-space applications
(EL0). The vManager driver is the central component that implements the core logic of the
vManager approach.

5. The VOSySmonitor. The firmware that executes on EL3, the highest privilege mode, and allows
the co-execution of multiple Oses at different “partitions” of the same hardware platform.

The vManager daemon, controller and driver are deployed within a custom Linux distribution called
management partition. The management partition is the first Operating System that is executed by
VOSySmonitor during boot and is responsible for all the management operations with respect to other
partitions.

The overall approach and the interconnection of various vManager sub-systems are depicted in Figure
18.

D3.4 – NANCY AI Virtualiser

28

Figure 18: The vManager architecture

The virtvmand handles and parses messages from the Libvirt API, translating them into JSON messages
that the vManager daemon can parse and execute as equivalent commands. The vmand daemon (or
the vmanctl CLI application) communicates with the vManager Driver through ioctl commands on
/dev/vmanager. These ioctls finally reach the VOSySmonitor vManager Unit through the execution of
the corresponding SMC, following the ARM SMC Calling Convention [16].

Following the creation of a partition, a new device appears under /dev/vmanX, where X is the partition
ID. This device activates additional ioctl commands for each partition. In the case that a power
management command needs to be executed towards a partition (i.e., Shutdown or Reboot), a PSCI
command is sent to VOSySmonitor that reaches the Power Management Unit.

D3.4 – NANCY AI Virtualiser

29

3.2.1. The vManager Internal API

The internal API of the vManager comprises of all the necessary operations related to low-level
management of the partitions.

3.2.1.1. Create a Partition

This is the command to create a partition. A user can specify how many cores as well as how much
memory will be assigned to the partition that is being created. The user also defines whether the
partition is “critical” (secure) or “non-critical” (non-secure). The vManager driver dynamically assigns
specific CPUs, a memory space and an ID to the newly created partition.

The JSON API that is passed from virtvmand to the lower-layers for executing the command is:

“command”: “create-partition”,

“args” : {

 “cores”: <number_of_cores>,

 “secure”: <true/false>,“memsize”: <partition_memory_GB>

}

For a manual approach, from within the management partition, utilizing the vmanctl CLI, the user can
execute:

vmactl create-partition —cores <number_of_cores> —memsize <partition_memory_GB> —secure
<true/false>

Following a successful creation the vManager marks the partition as READY.

3.2.1.2. Deploy a Partition

After a partition has been created, the user can instruct its execution by specifying the partition ID and
providing the device tree path and the kernel to be utilized. The vManager loads the kernel and the
device tree into the memory and instructs VOSySmonitor to bring up the CPUs. In case there is no
device tree provided, the vManager driver will create one and load it into the partition’s memory.

The JSON API for executing the command is:

“command”: “deploy”,

“args” : {

 “kernel”: “path/to/kernel_image”,

 “dtb”: “path/to/device_tree_blob”,

 “partition_id”: <partition_ID>

}

Alternatively, from within the management partition, utilizing the vmanctl CLI, the user can execute:

vmactl deploy —kernel path/to/kernel_image —dtb path/to/device_tree_blob <partition_ID>

D3.4 – NANCY AI Virtualiser

30

In order for the deployment to succeed, the selected partition state should be READY. Following a
successful deployment, the partition state switches to DEPLOYED. A DEPLOYED partition cannot be re-
deployed.

3.2.1.3. Destroy a Partition

An existing partition can be destroyed at any time, as long as there is no OS that is currently executing
on-top. This command instructs VOSySmonitor to release the assigned hardware resources, which
were previously occupied by the partition with the given ID.

The JSON API for executing the command is:

“command”: “destroy-partition”,

“args” : {

 “id”: <partition_ID>

}

Alternatively, from within the management partition, utilizing the vmanctl CLI, the user can execute:

vmactl destroy-partition <partition_ID>

It should be noted that a DEPLOYED partition cannot be destroyed.

3.2.1.4. Reboot a Partition

A partition that is executing can be rebooted at any time utilising this command. This results in the
forced termination of the execution of the CPUs that belong to this partition. Subsequently, the driver
automatically reloads the deployment assets—the kernel and device tree—into the partition’s
memory, and the CPU is instructed to start the OS execution.

The JSON API for executing the command is:

“command”: “reboot”,

“args” : {

 “id”: <partition_ID>

}

Alternatively, from within the management partition, utilizing the vmanctl CLI, the user can execute:

vmactl reboot <partition_ID>

This command can be only applied to a DEPLOYED partition.

D3.4 – NANCY AI Virtualiser

31

3.2.1.5. Terminate a Partition

A partition that is executing can be terminated at any time utilising this command. This halts the CPU's
execution within the partition without releasing any resources. The partition can then be redeployed
with the same or a different OS.

The JSON API for executing the command is:

“command”: “shutdown”,

“args” : {

 “id”: <partition_ID>

}

Alternatively, from within the management partition, utilizing the vmanctl CLI, the user can execute:

vmactl shutdown <partition_ID>

This command can be only applied to a DEPLOYED partition.

3.2.1.6. Suspend a Partition

This command puts the CPUs of the specified partition into a low-power state, preserving their state
for efficient resumption while reducing power consumption.

The JSON API for executing the command is:

“command”: “suspend”,

“args” : {

 “id”: <partition_ID>

}

Alternatively, from within the management partition, utilizing the vmanctl CLI, the user can execute:

vmactl suspend <partition_ID>

This command can be only applied to a DEPLOYED partition. Following a successful suspension, the
partition state switches to SUSPENDED.

3.2.1.7. Restore a Partition

This command brings the CPUs of the specified partition out of the SUSPENDED state, restoring their
previous state and resuming normal execution.

The JSON API for executing the command is:

“command”: “restore”,

D3.4 – NANCY AI Virtualiser

32

“args” : {

 “id”: <partition_ID>

}

Alternatively, from within the management partition, utilizing the vmanctl CLI, the user can execute:

vmactl restore <partition_ID>

This command can be only applied to a SUSPENDED partition. Following a successful restoration, the
partition state switches to DEPLOYED.

The overall state transition diagram for the states of the partitions is depicted in Figure 19.

Figure 19: The state transition diagram depicting the possible partition states.

3.2.2. Virsh Commands and the vManager API

Libvirt exposes the low-level hypervisor functionalities to third-party applications, such as Nova,
through a set of daemons. As already mentioned in Section 3.2.1, any third-party application can
interact with the vManager hypervisor after establishing a connection through the “vman:///system”
URI. Then, by utilizing the virsh tool, it is possible to directly interface with the vManager components.

The association between the virsh commands and the vManager equivalent functionalities is depicted
in Table 1.

D3.4 – NANCY AI Virtualiser

33

Table 1: Mapping between virsh commands and the vManager API

virsh command virtvmand driver function vManager equivalent
virsh define virVMANDomainDefine create-partition
virsh start virVMANDomainCreate deploy

virsh create virVMANDomainCreate create-partition &
deploy

virsh shutdown virVMANDomainShutdown shutdown
virsh destroy virVMANDomainDestroy destroy
virsh reboot virVMANDomainReboot reboot

virsh suspend virVMANDomainSuspend suspend
virsh resume virVMANDomainResume restore

D3.4 – NANCY AI Virtualiser

34

4. AI Virtualiser and Inter-domain CPU Resource Provisioning
This chapter introduces the solutions provided by NANCY for managing the performance of software
workloads in Linux. These software workloads include activities such as VNFs that are, for example,
encapsulated in a container of software processes executing in KVM/QEMU virtual machines.
The context of NANCY often requires different computational activities to share the same computing
resources (e.g., computing nodes and processing cores) while: (1) providing QoS guarantees on their
real-time performance (2) not causing the underutilization of the computing nodes.
In NANCY, this is achieved by means of the reservation-based scheduling provided by the
SCHED_DEADLINE scheduling class of Linux, which is briefly recalled in the following.

4.1. Underutilisation of Virtualized Computational Resources on Linux

SCHED_DEADLINE. SCHED_DEADLINE [17] is a Linux scheduler that implements a resource reservation
mechanism to allow encapsulating applications into virtual platforms, each with a guaranteed fraction
of the core CPU bandwidth and with a bounded CPU service delay [18] [19]. In essence,
SCHED_DEADLINE guarantees CPU resource isolation and a configurable CPU bandwidth with bounded
service delay (latency) for general Linux tasks.

The resource reservation mechanism implemented by SCHED_DEADLINE is based on the Constant
Bandwidth Server algorithm [20] and both provide a resource partitioning and an enforcement
mechanism. The latter feature is particularly important in the context of NANCY, where different
applications may not trust each other. SCHED_DEADLINE ensures that each application receives no
more than the allocated CPU bandwidth, thus shielding other applications from possible
misbehaviours of malicious (or simply bugged) applications that may otherwise harm their real-time
behaviour.

SCHED_DEADLINE works by assigning to each managed entity two parameters: a period P and a budget
Q (also called runtime). SCHED_DEADLINE then ensures that no more than Q time units of processing
time are provided to the application every period P. The applications managed by SCHED_DEADLINE
can be either Linux threads and processes, virtual machines (e.g., KVM/QEMU), or containers. The last
two options are shown in Figure 20. Threads, processes and VMs are supported by mainline Linux:
instead, an out-of-tree kernel patch (contributed by SSS) is required to manage containers.

Figure 20: Different usages of SCHED_DEADLINE reservations for virtualized workloads.

Each SCHED_DEADLINE reservation server must be properly configured with the two key parameters
Q and P. The theoretical properties of SCHED_DEADLINE make a link between these values and the

D3.4 – NANCY AI Virtualiser

35

fraction of CPU bandwidth and the CPU service delay provided to the workload running in the
reservation. In particular:

• 𝛼𝛼 = 𝑄𝑄
𝑃𝑃

 is the CPU bandwidth provided to the reservation;

• ∆= 2 ∗ (𝑃𝑃 − 𝑄𝑄) is the CPU service delay.

When reservations are properly configured, SCHED_DEADLINE allows different applications to be co-
located in the same platform (e.g., edge node) thanks to the resource isolation mechanism
(implemented by budget enforcement). Figure 21 shows the advantage: two (temporally)-untrusted
applications requiring both three cores in parallel to perform a parallel operation, one with a
requirement of 50% of the core bandwidth and one with 20% would be allocated to six cores using
classical coarse-grained allocation solutions (i.e., each application is exclusively allocated to an
appropriate number of dedicated cores to avoid CPU interference). Differently, SCHED_DEADLINE
allows co-locating multiple applications on three cores, also leaving some spare bandwidth for other
tasks.

Figure 21: Usage of SCHED_DEADLINE to co-locate multiple applications on the same cores while providing timing isolation.

Clearly, SCHED_DEADLINE needs to be properly configured with the aforementioned budget and
period parameters to provide the desired properties. Indeed, an inaccurate configuration of a
reservation may lead to the following issues:

• If the budget is too small or the period is too large real-time constraints cannot be guaranteed.
• If the budget is too large or the period is too small the edge node can be underutilized.

In traditional (safety-critical) real-time systems, the Q and P parameters are set based on the temporal
properties of the tasks running within the reservation, i.e., the (maximum) execution time and the
period, which are known a-priori. However, the situation is much more complex in the context of
NANCY, in which the workloads are dynamic. Indeed, platform-specific execution time estimates are
often unknown or not accurate. Applications can even be not periodic. Hence, tools for estimating
these parameters are developed. The problem of configuring the period of a SCHED_DEADLINE
reservation is addressed in Task 4.2.

This deliverable focuses on the configuration of the budget parameter, providing an integrated
solution to monitor the computational requirements of the virtualized workload running inside the
reservation and tuning the budget accordingly. The provided solution directly uses the mechanisms

D3.4 – NANCY AI Virtualiser

36

provided by SCHED_DEADLINE and is suitable for dynamic workloads (such as those of NANCY) because
it does not require code instrumentation.

4.2. Runtime Monitoring of vCPUs

When scheduling one or more activities (single threads, processes, containers, VMs, ...) with
SCHED_DEADLINE (possibly using the real-time control group scheduling patchset [21]), the
experienced QoS can be controlled if the tasks' periods and runtimes are known. As previously
discussed, the QoS of virtualized software workload is controlled by a budget and period parameter. A
tool for determining the suitable period is derived in Task 4.2. Nevertheless, even with a suitable
period, the problem of monitoring the tasks' runtimes still needed to be addressed. This information
is crucial to set the budget for SCHED_DEADLINE reservations.

This scheduling approach (dynamic detection of runtimes) is similar to feedback scheduling [18] (and
adaptive reservations [22] in particular). However, adaptive reservations are implemented by reading
some observed value (the so-called scheduling error) to be used by a control algorithm to set some
actuator (the reserved runtime). Observing the scheduling error requires instrumenting the code to
mark the beginning (and the end) of each real-time job. For example, a periodic task can be
implemented as in Figure 22, where the wait_for_next_activation() call marks the end of each periodic
activity.

while (!finished) {

 wait_for_next_activation();

 /* … do something… */

 /* (job body) */

}

Figure 22: The code structure of a classical periodic task.

Unfortunately, often it is not possible to know a-priori the structure of applications offloaded to edge
nodes in NANCY, which could not follow this code structure. Hence, a different approach based on
monitoring the execution time of each task has been adopted.

The monitoring mechanism is designed to be applied to generic code, even to non-real-time
applications, and takes advantage of the SCHED_DEADLINE features. This scheduling policy allows
reserving a “dl_runtime” (the budget) every “dl_period” (the period) to the scheduled task, which is
guaranteed to be able to execute for such a CPU time, but is not allowed to execute for more. Then,
the CPU time accounting mechanism implemented by the Linux kernel can be used to measure how
much time the task actually executed for (a kernel patch is needed to export this information to user-
space); if such time is smaller than “dl_runtime”, then the reserved runtime can be decreased,
otherwise, it must be increased. The monitor is hence based on the following ideas:

• SCHED_DEADLINE is used to ensure that a task (or a group of tasks) can execute for at most Q
time units (budget) every P (period).

• A kernel patch is used to periodically monitor the amount of execution time used by each task.
• If a task (or group of tasks) executes for the maximum reserved time, it is assumed that the

reserved time is too small. Hence, Q is increased.

D3.4 – NANCY AI Virtualiser

37

• If the initial value of Q is too small, then the tasks can accumulate some delay until the reserved
time is enough:
o To compensate this effect, if the tasks consume the whole reserved time for multiple times

in a row, then the speed at which Q is increased is accelerated.
o This feature is implemented by using a variable "l" which is doubled every time that

executed time increases and is set to 1 when the executed time does not increase.

Notice that in order for the feedback algorithm to work, the allocated runtime cannot be set exactly to
the maximum measured execution time, but it must be set to a slightly larger value (otherwise the
tasks would not be able to execute for more than the detected time, and the allocated runtime would
not increase). Hence, if some tasks execute for C time units over P time units, Q is not set as “Q = C”
but as “Q = C * (1 + ovh)” (we use the name overallocation overhead for “ovh”). Finally, to account for
the “l” term mentioned above, the equation is updated as:

𝑄𝑄 = 𝐶𝐶 ∗ (1 + 𝑜𝑜𝑜𝑜ℎ ∗ 𝑙𝑙)

The algorithm pseudo-code is reported in Figure 23.
In the algorithm, “N” is the size of the circular array (i.e., the number of previous samples used to
compute the maximum) and “ovh” is the overallocation overhead (these two values are configurable
parameters of the algorithm).

Implementation. This algorithm has been implemented in a runtime monitor which is able to

monitor single threads (as described above) or groups of threads (using the Linux cgroups feature).
Docker/Podman (or Kubernetes) containers are handled through their cgroups, while KVM-based VMs
can be monitored by monitoring their virtual CPU threads (running a monitor as a daemon inside the
VM is also possible). The monitor needs to be both efficient (introducing a small overhead) and safe
(avoiding bugs due to wrong memory accesses), and the Rust language looked like a good compromise
between efficiency and safety.

Hence, the monitor has been implemented in Rust.

Usage. The monitoring program can be used in different ways:
• As a wrapper that is able to start the monitored programs and monitor/manage them
• As a standalone program that can monitor one or more existing threads (also setting the

reserved runtime)
• As a daemon providing a REST API, which can receive the IDs of the threads to be monitored

void MonitorAndUpdate(int P, int Q, int id) {

/* INPUTS: P (task period), Q (initial runtime estimation), id (task ID) */

/* The initial estimation Q does not need to be accurate:

 it will be adjusted by the algorithm */

 1. Schedule task "id" with SCHED_DEADLINE using parameters

 dl_runtime=Q and dl_period=P;

 2. Initialize l = 1; cmax_old = -1; t_old = -1;

 Initialize circular_array = circular array of size N;

 3. Start periodic monitoring with period T. Every T time units, do:

 t = get_current_time();

D3.4 – NANCY AI Virtualiser

38

 c = get_executed_time(id);

 circular_array.insert(c);

 cmax = circular_array.get_max();

 if (cmax_old != -1) {

 if (cmax > cmax_old) {

 l = l * 2;

 }

 }

}

Figure 23: Pseudo-code of the monitoring approach.

Figure 24 shows the evolution of the runtime allocated to two periodic threads with execution time
10ms and 20ms (the two tasks have a period of 100ms and the monitoring period is 500ms). To stress
the robustness of the algorithm, the original runtime estimations have been set to two completely
underestimated values (2ms). As it is possible to see from the figure, the allocated runtime rapidly
increases to a maximum value (set to 80% of the period), thanks to the multiplicative effect of the “l”
variable; this allows recovering from the delay accumulated by the tasks in the initial periods when the
allocated runtime was not large enough. After this delay is recovered, the allocated runtime decreases
to a value slightly larger than the thread’s execution time (this small overallocation is due to the “ovh”
factor).

Figure 24: Runtime (budget) of the SCHED_DEADLINE reservations of two threads (initial runtime estimation = 2ms).

D3.4 – NANCY AI Virtualiser

39

Figure 25 shows the evolution of the response times for the two tasks:

Figure 25: Response time of two threads within SCHED_DEADLINE (initial runtime estimation = 2ms).

Notice how the response times initially increase to very large values, but after some time (after a few
monitoring cycles) they become equal to the threads’ execution times, showing that the monitoring
and feedback algorithms worked correctly.

Figures 26 and 27 show the results of a new run of the experiment in which the initial runtime
estimation was more accurate (Q=8ms).

D3.4 – NANCY AI Virtualiser

40

Figure 26: Runtime (budget) of the SCHED_DEADLINE reservations of two threads (initial runtime estimation = 8ms).

Figure 27: Response time of two threads within SCHED_DEADLINE reservations (initial runtime estimation = 8ms).

D3.4 – NANCY AI Virtualiser

41

5. AI Virtualiser on the NANCY Functional and Deployment View
In this section, the main components of the AI Virtualiser will be placed into the NANCY overall
architecture (depicted in Figure 28). Furthermore, in Section 5.1 the relation between the AI Virtualiser
and the offloading decisions will be detailed.

On the slices management side, after training the AI Virtualiser agents at the level of the CI/CD
Platform as it will be described in Section 7, they are deployed on the namespaces of the slices they
control and connected to the Slice Manager (Resource Orchestrator) via a secured VPN to enforce
the slice-level resource allocation via its exposed API as shown in Figure 9.

At the edge layer, the vManager solution of the AI Virtualiser, which reshapes virtualization for ARM
devices by proposing a very lightweight implementation with strong isolation characteristics to better
support the execution of virtualized functions, is mapped into the functional and deployment
architecture under the NFVO. The Compute Controller in this case is the OpenStack Nova, as detailed
in Section 3.2, which through Libvirt will enforce decisions coming from the orchestrators on the ARM
targets.

On the other hand, SCHED_DEADLINE-based management to reduce underutilization of compute
resources, as described in Section 4.1, is part of the Resource Orchestrator, which as specified in D6.1
is responsible for handling compute resources. The runtime monitoring of vCPU described in Section
4.2 is part of the Resource Orchestrator as well, as it is used to drive the orchestration of compute
resources using SCHED_DEADLINE as an actuation means.

Figure 28: Functional and deployment view of the NANCY architecture.

5.1. AI Virtualiser and Offloading Decisions

Another key functionality enabled in NANCY architecture is task offloading, with a focus on selecting
the best VNF placement and migration for continuous service provisioning, improving quality of service
(QoS) and user experience (QoE). By enabling the dynamic placement of processing functions, and
supported by data caching functions, task offloading mechanisms pave the way for flexible services
that meet strict service level agreements (SLAs), in terms of latency, bandwidth, connectivity, data

D3.4 – NANCY AI Virtualiser

42

security, power consumption or reliability, in complex scenarios. This is achieved by an elastic
computational resource allocation scheme that decides the best point in the end-to-end network
infrastructure to run a given task. Besides, this decision is not permanent as the offloaded functions
may be migrated to another point in runtime if performance benefits are predicted. This is particularly
relevant for non-static scenarios, such as mobility services in vehicular environments as those
addressed in NANCY’s demonstrators and in-lab testbeds.

Figure 28 presents the Functional and deployment view of the NANCY architecture, which serves as
the reference basis for enhanced coordination and implementation of every task, allowing to design
of the interactions required between components to behave autonomously and intelligently under
variable conditions. In this sense, the provisioning of task offloading capabilities is also built upon this
architecture. Task offloading is a set of subsequent steps that focus on determining and deploying in
the best location a given computational or networking load. To this aim, task offloading mechanisms
consider the whole range of segments in a Beyond 5G infrastructure (far edge-edge-cloud).
Furthermore, offloading mechanisms are designed to encompass both intra and inter-operator
domains. Collaboration between operators through these mechanisms makes it possible to leverage
under-utilised resources for use by an operator in need. Therefore, deployment of networking or
processing functions can happen at the most suitable node, perhaps in an operator different from the
one currently used by the user. Besides, aligned with offloading decision schemes, user-centric caching
mechanisms will support task offloading by enhancing the data transfer performance, such as the
seamless migration of virtualised services between different nodes through VNF-caching. As
mentioned above, this is especially relevant in mobile scenarios where a sluggish resource migration
can lead to the degradation or violation of an SLA in force. Considering that the SLA concept is pivotal
in NANCY, the purpose of these processes is to meet the requirements set in the SLAs, thereby ensuring
that contracts are fulfilled, and the user/costumer receives the expected level of quality when
consuming the service.

Considering the NANCY architectural view presented in Figure 28, we briefly present the main
components driving the offloading mechanisms. For a more detailed explanation, please refer to
deliverable D4.1 “Computational Offloading and User-centric Caching”.

Offloading is considered a particular case of orchestration in which solving an SLA associated with a
service requires locating part of the service in specific nodes, moving them from the original centralized
or constrained destination to the optimal one. Therefore, for task offloading to occur, an SLA
evaluation needs to take place beforehand. During the SLA enforcement process, the KPIs are analysed
to grant the proper runtime of the service. The AI/analytics engines decide how to continuously
guarantee the requirements. Constant monitoring modules extract metrics and analytics to oversee
the SLA, detecting potential risks. Among the risks addressed by offloading and caching mechanisms,
we highlight the following, resource exhaustion at the node, decreased performance due to network
congestion or user mobility. Envisioned analytics are capable of taking into consideration the needs
behind the SLA fulfilment and composing an enforcement plan, placing the VNFs comprising the service
chain in their optimal places. Migration mechanisms are task-specific task offloading mechanisms
focused on moving an offloaded task between edge servers. Migration uses caching mechanisms to
streamline the connection handover, avoiding interruptions in the service delivery. At any moment, if
the provider operator compromises the SLA preservation, the marketplace is accessed to find other
providers capable of maintaining the service requirements. The Smart pricing module propels the
profitability of services and resources with intelligent and fair automated bidding system. The Digital
Agreement Creator, supported by the blockchain, stores the result of the agreements providing
trustworthiness to service consumption and accountability. The Service orchestrator takes the outputs
generated after the AI-based decisions, deploying and configuring services to compose E2E network
services.

D3.4 – NANCY AI Virtualiser

43

Therefore, we can conclude that the task offloading management process involves a complex
procedure that focuses on meeting users’ needs while ensuring infrastructure stability. It analyses each
offloading request to determine if the demanded task can be handled effectively, taking into account
the resources available in the different domains involved. The decision engines select the most
appropriate solution to meet the user’s demands, considering aspects such as their location and
needed resources. As a final step, the network orchestrator deploys and configures the offloaded task
in the most efficient way to meet the user's requirements and keeps monitoring it to ensure its
performance. As it can be understood, this complex process requires advanced decision-making
mechanisms to support the orchestration functions. In general, with the constant and fast evolution
of telecommunications, the use of intelligent orchestrators has become essential to optimize network
performance and consequently improve the user experience. These orchestrators, powered by
artificial intelligence and machine learning mechanisms, also enhance the efficiency and adaptability
of the network to meet the user’s and service’s changing needs.

In this line, NANCY proposes the use of an AI virtualiser module, a building block that acts as a central
node to support the overall intelligent orchestration system. It aims to improve the functionality of the
orchestrator by integrating machine learning interactions, allowing it to effectively and efficiently
identify computational requirements and orchestrate the allocation of both radio and computational
resources, which is the foundation for decision-making in the task offloading workflow, as explained
previously. By using innovative technologies and advanced ML algorithms, the AI virtualiser improves
the agility of orchestrations and contributes to the overall process efficiency within the NANCY
ecosystem. By ensuring that SLAs are met, the AI virtualiser helps to improve the quality of service
provided by the offloaded tasks.

D3.4 – NANCY AI Virtualiser

44

6. AI Virtualiser in NANCY Testbeds and Demonstrators
The components developed in the context of the AI Virtualiser will be tested in NANCY’s testbeds and
demonstrators, focusing on different use-cases and usage scenarios. Detailed descriptions of these
setups are provided as follows.

6.1. Integration with the Spanish Demonstrator

Figure 29: AI Virtualiser integration with the Spanish edge K8s cluster and MEC orchestrator

The Spanish demonstrator’s testbed is composed of NFV and MEC infrastructures supporting various
technologies and deployment options. Specifically, Kubernetes (K8s) clusters can be deployed on top
of the Edge server orchestrated by a MEC orchestrator. As shown in Figure 29, the distributed AI
Virtualiser consists of a set of pods: a telemetry server and an agent deployed on top of each slice (i.e.,
namespaces) to perform CPU resource management. The communication between these agents is
ensured by a Kafka bus deployed on the default namespace, where an interface with the Slice Manager
based on API calls is also set up. The Slice Manager is hosted on i2CAT premises and connected through
VPN to the K8s cluster using the kubeconfig file. It can send commands to the MEC orchestrator
which actuates on the infrastructure to perform various resource allocation tasks in specific
namespaces.

Note that the generic slices 1 and 2 will correspond to services (such as URLLC and eMBB) targeted by
the Spanish demonstrator.

D3.4 – NANCY AI Virtualiser

45

6.2. Integration with the Italian Testbed

The Italian in-lab testbed will provide the environment to validate the novel NFV-based virtualization
solution that is tailored to the characteristics of ARM devices at the network edge, in the context of
the AI Virtualiser. For this purpose, the Italian in-labb testbed integrates an SK-AM69x Texas
Instruments board as an ARMv8 edge server (depicted in Figure 30). The demonstration will specifically
validate the vManager solution, testing its ability to provide individual bare-metal partitions where to
host the Virtualized Network Functions (VNFs) in an isolated way. The VOSySmonitor firmware will be
employed on the board as the low-level partitioner of the ARMv8 system resources, together with the
higher-level vManager components, detailed in Section 3.2. The scenario will focus on demonstrating
both the increased isolation that is granted by the bare-metal compartments compared to usual VM
deployments, as well as the low execution latency of the solution.

In detail, the increased isolation will be showcased by employing in the ARMv8 board a Linux
application provided by SSS that is able to simulate Denial-of-Service (DoS) attacks in the system. With
respect to these attacks, the functioning of non-directly attacked partitions won’t be compromised, as
it would be the case with usual, non-hardware-isolated VMs. The overall performance of the solution
will be measured in the context of the examined Video Streaming use-case for the Italian in-lab
testbed. In particular, the use-case will be focused on offloading video streams to edge servers with
available resources. In these regards, the low-execution latency of the novel edge virtualization
solution will be showcased through the offloading of the ITL Video streaming application in the created
vManager partitions and the collection of performance metrics accordingly.

Figure 30: The SK-AM69x Texas Instrument board in the Italian in-Lab testbed.

D3.4 – NANCY AI Virtualiser

46

7. CI/CD Integration of the AI Virtualiser and Testing
Continuous Integration and Continuous Delivery (CI/CD), encompasses a collection of best practices
and methodologies in software development. The primary goal is to enhance the reliability of code
changes while reducing development cycles through extensive use of automation.

Continuous Integration (CI) refers to developers merging their code changes regularly into a central
repository [23]. Each update triggers automated builds and various tests through a CI server [24] to
ensure application stability. In the context of NANCY, this process includes packaging software into
Docker container images, storing them in a registry [25], and deploying them in a dedicated
development/testing environment, specifically the central NANCY Kubernetes cluster. The primary
goal is to speed up the release cycle by identifying and fixing bugs early, thus reducing extensive
rework, allowing teams to focus more on development and integration.

Continuous Delivery (CD) is the subsequent phase after Continuous Integration in the software release
process. It involves manually triggering the deployment to production environments through the CI
server, once all CI workflows have been successfully validated. This stage is dedicated to preparing the
software artifact for distribution to end-users in the NANCY testbeds and demonstration
environments.

The NANCY CI/CD environment and its corresponding open-source DevOps services are summarized
in D6.1 and will be presented in detail in D6.2.

In the context of NANCY AI Virtualiser, the CI/CD system is envisioned to be used for training and
testing of the containerized Agent component described in Section 2.2 within the central NANCY
development/testing environment, as well as its continuous delivery towards the NANCY
testbed/demonstrator – specific deployment environments (i.e., Kubernetes clusters).

Dedicated workspaces have been created within the NANCY Jenkins CI server and Harbor container
registry to accommodate the creation and execution of CI/CD pipelines and hosting of Agent container
images respectively, as shown in Figure 31 and Figure 32.

Figure 31: Dedicated Harbor project to host and manage AIVirtualizer container images

D3.4 – NANCY AI Virtualiser

47

Figure 32: Dedicated Jenkins workspace to configure and manage CI/CD workflows for AIVirtualizer

D3.4 – NANCY AI Virtualiser

48

8. Conclusion
This deliverable presents the development of the AI Virtualiser, a central component of the NANCY
architecture that equips the orchestrator module with cutting-edge technologies and intelligent ML
algorithms. The incorporation of the presented innovative solutions, powered by a suite of modern 5G
technologies such as Slicing, NG-SDN and NFV, shows that the resource utilization is optimized in the
networked infrastructure, by achieving the minimization of resources under-utilization while ensuring
the QoS at multiple layers.

The AI Virtualiser is a multi-layered component that extends from the Slice Manager layer to fine-
grained edge-centered innovations. At the Slice Manager layer, the presented innovations, backed by
intelligent DRL techniques, achieve strategic and coordinated CPU allocation among different slices,
demonstrating significantly improved CPU utilisation, elimination of resource conflicts between slices
as well as increased latency performance. At the network edge, an innovative virtualization solution
that focuses on ARM devices has been implemented and adjusted for utilisation through OpenStack in
the NFV stack, achieving the maximum exploitation of the virtualized computational resources at this
layer. Also focusing on the edge, a fine-grained CPU allocation mechanism has been presented, which
efficiently controls the QoS of virtualized software workloads by informatively adjusting the CPU
budget parameter while scheduling them at an edge node.

For the aforementioned technologies, implementation details have been thoroughly presented,
accompanied by explicit code snippets and experimental results. Also, the validation of the AI
Virtualiser as part of the NANCY testbeds and demonstrators has been described. Finally, the CI/CD
testing of the Slice Manager innovations of the AI Virtualiser through the setup of dedicated
workspaces has been detailed.

D3.4 – NANCY AI Virtualiser

49

Bibliography

[1] M. Hervás-Gutiérrez, E. Baena, C. Baena, J. Villegas, R. Barco, and S. Fortes, "Impact of CPU
Resource Allocation on vRAN Performance in O-Cloud," TechRxiv, 2023.

[2] F. Rezazadeh, H. Chergui, S. Siddiqui,J. Mangues, H. Song, W. Saad, and M. Bennis, "Intelligible
Protocol Learning for Resource Allocation in 6G O-RAN Slicing," in IEEE Wireless Communications,
vol. 31, no. 5, pp. 192-199, Oct. 2024.

[3] J. S. Camargo et al. "Toward Cloud-Native Protocol Learning for Conflict-Free 6G: A Case Study
on Inter-Slice Resource Allocation," in to be submitted to IEEE EuCNC 2025.

[4] "How to Scale and Balance a Kafka Cluster," [Online]. Available:
https://developer.confluent.io/courses/architecture/cluster-elasticity/

[5] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, and M. Guizani, "Multi-access edge computing:
A survey," IEEE Access, vol. 8, pp. 197017-197046, October 2020.

[6] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, "Network function virtualization: Challenges and
opportunities for innovations," IEEE Communications Magazine, vol. 53, pp. 90-97, February
2015.

[7] R. Mijumbi, J. Serrat, J.L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba, "Network function
virtualization: State-of-the-art and research challenges," IEEE Communications Surveys &
Tutorials, vol. 18, pp. 236-262, September 2015.

[8] E. Krishnasamy, S. Varrette, and M. Mucciardi, "Edge computing: An overview of framework and
applications," 2020.

[9] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho, "Vosysmonitor, a low latency monitor
layer for mixed-criticality systems on ARMv8-A," in ECRTS 2017, 2017.

[10] I. Cerrato, A. Palesandro, F. Risso, M. Suñé, V. Vercellone, and H. Woesner, "Toward dynamic
 virtualized network services in telecom operator networks," Computer Networks, vol. 92, pp.
 380-395, December 2015.

[11] J.G. Herrera and J.F. Botero, "Resource allocation in NFV: A comprehensive survey," IEEE
 Transactions on Network and Service Management, vol. 13, pp. 518-532, August 2016.

[12] ETSI NFV ISG, "Network Function Virtualization (NFV) Management and Orchestration," 2021.

[13] D. Haja, M. Szabo, M. Szalay, A. Nagy, A. Kern, L. Toka, and B. Sonkoly, "How to orchestrate a
 distributed OpenStack," in IEEE INFOCOM 2018, Honolulu, HI, USA, 2018.

[14] T. Rosado and J. Bernardino, "An overview of OpenStack architecture," in IDEAS '14: 18th
 International Database Engineering & Applications Symposium, Porto, Portugal, 2014.

[15] S. Pinto and N. Santosl, "Demystifying ARM TrustZone: A comprehensive survey," ACM
 Computing Surveys (CSUR), vol. 51, pp. 1-36, January 2019.

D3.4 – NANCY AI Virtualiser

50

[16] ARM Limited, "Secure Monitor Call (SMC) Calling Convention," ARM Limited, October 2024.
 [Online].

[17] J. Lelli, C. Scordino, L. Abeni and D. Faggioli, "Deadline scheduling in the Linux kernel," vol. 46,
 no. 6, 2015.

[18] J. Stankovic, C. Lu, S. H. Son and G. Tao, "The case for feedback control real-time scheduling," in
 Proceedings of 11th Euromicro Conference on Real-Time Systems. Euromicro RTS'99, York, UK,
 1999.

[19] I. Shin and I. Lee, "Compositional Real-Time Scheduling," in IEEE International Real-Time Systems
 Symposium, Lisbon, Portugal, 2004.

[20] L. Abeni and G. Buttazzo, "Integrating Multimedia Applications in Hard Real-Time Systems," in
 Proceedings 19th IEEE Real-Time Systems Symposium, Madrid, Spain, 1998.

[21] L. Abeni, A. Balsini and T. Cucinotta, "Container-based real-time scheduling in the Linux kernel,"
 SIGBED Reviews, vol. 16, no. 3, October 2019.

[22] L. Abeni, L. Palopoli, G. Lipari and J. Walpole, "Analysis of a reservation-based feedback
 scheduler," in IEEE Real-Time Systems Symposium, Austin, TX, USA, 2002.

[23] "NANCY Github page," [Online]. Available: https://github.com/NANCY-PROJECT.

[24] "NANCY Jenkins server," [Online]. Available: https://jenkins.nancy.rid-intrasoft.eu.

[25] "Harbor containers registry," [Online]. Available: https://harbor.nancy.rid-intrasoft.eu/

	List of Figures
	List of Tables
	List of Acronyms
	Executive summary
	1. Introduction
	1.1. Purpose of the Document
	1.2. Relation with other Tasks and Deliverables
	1.3. Structure of the Document

	2. AI Virtualiser and Slice-level Resource Exploitation
	2.1. MA-DRL protocol learning
	2.1.1. Protocol Learning for Minimizing Inter-Slice Resource Underutilisation and Conflicts
	2.1.2. Environment’s Architecture and Experiments
	2.1.3. Evaluation Results

	2.2. Containerization of the Components
	2.2.1. Agents Containers via Docker-Compose
	2.2.2. Communication through Kafka Bus
	2.2.3. Server Container
	2.2.4. Prometheus and Grafana
	2.2.5. Results of the Cloud-Native Architecture

	2.3. Integration with the Slice Manager

	3. AI Virtualiser and Edge-level Resource Exploitation
	3.1. Integration with High-level Orchestrators
	3.1.1. The Libvirt vManager Driver

	3.2. The vManager and its Internal API
	3.2.1. The vManager Internal API
	3.2.1.1. Create a Partition
	3.2.1.2. Deploy a Partition
	3.2.1.3. Destroy a Partition
	3.2.1.4. Reboot a Partition
	3.2.1.5. Terminate a Partition
	3.2.1.6. Suspend a Partition
	3.2.1.7. Restore a Partition

	3.2.2. Virsh Commands and the vManager API

	4. AI Virtualiser and Inter-domain CPU Resource Provisioning
	4.1. Underutilisation of Virtualized Computational Resources on Linux
	4.2. Runtime Monitoring of vCPUs

	5. AI Virtualiser on the NANCY Functional and Deployment View
	5.1. AI Virtualiser and Offloading Decisions

	6. AI Virtualiser in NANCY Testbeds and Demonstrators
	6.1. Integration with the Spanish Demonstrator
	6.2. Integration with the Italian Testbed

	7. CI/CD Integration of the AI Virtualiser and Testing
	8. Conclusion
	Bibliography

