

An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term
Evolution [GA: 101096456]

Deliverable 6.8

Italian in-lab testbed dataset 2

Programme: HORIZON-JU-SNS-2022-STREAM-A-01-06

Start Date: 01 January 2023

Duration: 36 Months

NANCY project has received funding from the Smart Networks and Services Joint Undertaking
(SNS JU) under the European Union's Horizon Europe research and innovation programme under
Grant Agreement No 101096456.

D6.8 – Italian in-lab testbed dataset 2

2

Document Control Page

Deliverable Name Italian in-lab testbed dataset 2

Deliverable Number D6.8

Work Package WP6

Associated Task T6.7 Italian in-lab testbed

Dissemination Level Public

Due Date 30 November 2024 (M23)

Completion Date 29 November 2024

Submission Date 30 November 2024

Deliverable Lead Partner ITL

Deliverable Author(s) Antonella Clavenna (ITL), Simone Gentile (CRAT), Alvise Rigo (VOS), Daniel Casini
(SSS)

Version 1.0

Document History

Version Date Change History Author(s) Organisation

0.1
04 October

2024 Initial version Antonella Clavenna ITL

0.2
14

November
2024

ToC, Sections assignments,
Introduction and description of

the scenarios
Antonella Clavenna ITL

0.3
20

November
2024

Contributions from CRAT and
VOS

Simone Gentile
Alvise Rigo

CRAT
VOS

0.4
22

November
2024

Contributions from SSS Daniel Casini SSS

0.5
22

November
2024

Datasets related to “normal
conditions” uploaded on IEEE

dataport (link inserted)
Antonella Clavenna ITL

0.6
25

November
2024

Datasets related to “normal
conditions” uploaded on Zenodo

(link inserted)
Antonella Clavenna ITL

0.7
25

November
2024

Latency (RTT) and Anomaly
detection Data description

added; data uploaded on Zenodo
and IEEE

Antonella Clavenna ITL

1.0
29

November
2024

Internal review comments
integrated. Deliverable ready for

quality check revision.
Antonella Clavenna ITL

D6.8 – Italian in-lab testbed dataset 2

3

Internal Review History

Name Organisation Date

Marco Tambasco TEI 27 November 2024

Mauro Marinoni SSS 27 November 2024

Quality Manager Revision

Name Organisation Date
Anna Triantafyllou, Dimitrios

Pliatsios
UOWM 30 November 2024

Legal Notice

The information in this document is subject to change without notice.
The Members of the NANCY Consortium make no warranty of any kind about this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the NANCY Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.
Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or SNS JU. Neither the European
Union nor the SNS JU can be held responsible for them.

D6.8 – Italian in-lab testbed dataset 2

4

Table of Contents
Table of Contents .. 4

List of Figures ... 5

List of Tables .. 6

List of Acronyms .. 7

Executive summary ... 8

1. Introduction ... 9

1.1. Purpose of the Deliverable .. 9

1.2. Relation with other Deliverables ... 9

1.3. Structure of the Deliverable .. 10

2. Italian in-lab Testbed Description ... 11

2.1. Testbed Topology .. 12

2.2. Hardware Components ... 13

2.3. Software applications .. 14

2.3.1. Fundamental SW applications ... 14

2.4. NANCY Software Components .. 15

2.4.1. Anomaly Detection in the Edge ... 15

2.4.2. VoSyS Monitor and vManager ... 17

2.4.3. SCHED-DEADLINE .. 18

2.4.4. Malicious Traffic Generation Application .. 19

2.4.5. PAPI Extension for ARM Performance Counter Interaction .. 20

3. Dataset Generation Process and Structure Description ... 22

3.1. Scenario 1 - ARMv8-based Edge Host: Normal Condition ... 22

3.2. Scenario 2 - ARMv8-based Edge Host: Attack Condition, Separate (Isolated) Partitions 22

3.3. Scenario 3 - ARMv8-based Edge Host: Attack Condition, Same Partition (Computational
Resources Shared) ... 22

3.4. Captured Data ... 23

3.5. Dataset Folder Structure ... 28

3.5.1. Latency Data (RTT) and Counters Relating to Resource Utilization Rates (CPU, Disk, and
Network) 31

4. Conclusion ... 34

Bibliography ... 35

D6.8 – Italian in-lab testbed dataset 2

5

List of Figures
Figure 1: D6.8 Relations to other deliverables and WPs/Tasks... 10
Figure 2: Italian in-lab testbed for dataset generation ... 11
Figure 3: Italian in-lab testbed topology for dataset 2 generation scenarios 12
Figure 4: Italian in-lab testbed equipment .. 13
Figure 5: Anomaly detection module .. 17
Figure 6: Performance counters .. 21
Figure 7: Pixel7 Android v13 ... 23
Figure 8: Simple http Server on Pixel7 Android v13 ... 24
Figure 9: srsRAN gNB .. 25
Figure 10: Italian in-lab testbed equipment during test .. 26
Figure 11: ARMv8 Edge host .. 27
Figure 12: UE during RTT metrics collection... 28
Figure 13: Dataset folder structure example ... 30
Figure 14: ADC samples structure .. 33

D6.8 – Italian in-lab testbed dataset 2

6

List of Tables
Table 1: HW devices and SW applications .. 14
Table 2: “capture point” naming convention .. 29
Table 3: “resolution” naming convention ... 29
Table 4: “video stream direction” naming convention ... 30
Table 5: “scenario” naming convention .. 31
Table 6: “type” naming convention .. 31
Table 7: “Anomaly detection data” ... 32

D6.8 – Italian in-lab testbed dataset 2

7

List of Acronyms
Acronym Explanation

5G Fifth Generation
ARM Advanced RISC Machine
B5G Beyond Fifth Generation
BS Base Station
CN Core Network

CoMP Coordinated Multi Point
CRAT Consortium for Research in Automation and Telecommunications

DL Down Link
HD High Definition
HLS HTTP Live Streaming

HTTP Hypertext Transfer Protocol
ISA Instruction Set Architecture

JSON JavaScript Object Notation
MAC Medium Access Control
MEC Multi-access Edge Computing
NR New Radio

PAPI Performance Application Programming Interface
PCAP Packet Capture
PDU Protocol Data Unit
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network

RTMP Real-Time Messaging Protocol
RTP Real-time Transport Protocol

RTSP Real-Time Streaming Protocol
SD Standard Definition
SSS Sant'Anna Higher School of Pisa (Scuola Superiore Sant’Anna di Pisa)
TCP Transmission Control Protocol
UE User Equipment

UHD Ultra High Definition
UL Uplink

USB Universal Serial Bus
VNF Virtual Network Function
VOS Virtual Open Systems
VTU Video streaming and Transcoding Unit

WebRTC Web Real-Time Communication
WP Work Package

D6.8 – Italian in-lab testbed dataset 2

8

Executive summary
The content of Deliverable D6.8 deals with the generation of a second set of data collected in the
Italian in-lab testbed, namely “dataset 2”, focusing on Edge segment of the network and considering
the presence of some of the NANCY components, to assess their impact with respect to the baseline
defined through the first collected dataset (D6.6 “Italian in-lab testbed dataset 1”), assessment that
will be carried out and completed, together with the technology evaluation, in subsequent project
activities.
More specifically, D6.8 aims to collect the metrics considering an Edge server based on the ARMv8 CPU
architecture, and some components specifically developed by the partners for the NANCY project;
these components are integrated in the Italtel environment and are part of the testbed topology setup;
they are:

• the “Anomaly detection application module”, provided by CRAT partner and focusing on
detecting anomalous utilization of computing and network resources;

• the “VOSySmonitor and vManager”, a novel virtualization technology designed by NANCY and
provided by VOS to host offloaded VNFs, which can be deployed in a bare-metal fashion
ensuring “application isolation”;

• the “Malicious traffic generation application” and “PAPI extension for ARM performance
counter interaction”, provided by SSS for the technology validation in the context of the Italian
testbed set-up;

• “Italtel VTU application”, provided by ITL, can convert audio and video streams from one
format to another, at multiple encodings schemes, changing resolution, bitrate, and video
parameters.

The dataset contains time series, collected by transmitting video content through the Italtel VTU
application. The datasets collected are related to the observation of some of the resources involved.

Specifically, the experiments for collecting the dataset are structured in three different scenarios,
respectively:

I. Scenario 1 - ARMv8-based Edge Host: Normal Condition
II. Scenario 2 - ARMv8-based Edge Host: Attack Condition, Separate (isolated) Partitions

III. Scenario 3 - ARMv8-based Edge Host: Attack Condition, Same Partition (computational
resources shared)

The datasets related to the scenarios can be found on IEEE DataPort at:
• Permalink: http://ieee-dataport.org/documents/nancy-sns-ju-project-italtel-italian-lab-

testbed-dataset-2
• DOI Link: https://dx.doi.org/10.21227/v3q2-b941

http://ieee-dataport.org/documents/nancy-sns-ju-project-italtel-italian-lab-testbed-dataset-2
http://ieee-dataport.org/documents/nancy-sns-ju-project-italtel-italian-lab-testbed-dataset-2
https://dx.doi.org/10.21227/v3q2-b941

D6.8 – Italian in-lab testbed dataset 2

9

1. Introduction
The Italian in-lab testbed provides a test environment for experimenting with the Edge part of the
network, and to support the testing and validation of technologies and applications developed in
NANCY to make the most of the capabilities that the Edge can provide (e.g., to increase the QoS of
applications in terms of reduced latency, reduced bandwidth consumption, improved privacy).

Specifically, since the ability to promptly detect anomalies (e.g., abnormal or unusual patterns of
behavior related to resource consumption such as CPU, memory, and bandwidth) is essential to help
to detect potential security threats, attacks, or malicious activities that might compromise
performance, user experience, etc., the testbed experiments the “Anomaly detection application
module” (by CRAT), developed in the context of the NANCY project and focusing on detecting
anomalous utilization of computing and network resources at the Edge, where the attack surface
expands.

Moreover, the testbed experiments a novel virtualization technology, designed by VOS in the context
of the NANCY project, that exploits the ARM Trust-zone hardware-enforced isolation to guarantee
application isolation. This novel virtualization technology is based on VOSySmonitor, a multi-core
software layer, which allows the co-execution of a safety-critical Real-Time Operating System (RTOS)
and a noncritical General-Purpose Operating System (GPOS) on the same hardware ARMv8-A platform
[1].

1.1. Purpose of the Deliverable

D6.8 “Italian in-lab testbed dataset 2” is the second deliverable of T6.7 “Italian in-lab testbed” and it
documents the datasets that were generated using the Italian in-lab testbed.

The process of dataset generation is similar to the one outlined in D6.6 “Italian in-lab testbed dataset
1”. The main distinction lies in the CPU architecture of the Edge server, which is based on the ARMv8
processor. Additionally, it features several components developed by the NANCY project.

In summary, in the Italian in-lab testbed a MEC-assisted 5G network scenario with a video streaming
application for generating traffic is provided. The recorded video selected for both scenarios is “Big
Buck Bunny”, which can be found at: "BigBuckBunny.mp4".

The streaming was made considering:

• different bands (N3 and N78)
• different resolutions (480p, 720p, 1080p)
• different bit rate (3Mbps, 6Mbps, 10 Mbps)
• H.264 and VP8 encoding

Finally, different scenarios were set up that include both “normal conditions” and “under attack
conditions”.

The testbed topology, the integrated NANCY components, and the scenarios associated with data
collection are described in detail in the respective sections below.

1.2. Relation with other Deliverables

The relation of this deliverable with other deliverables is illustrated in Figure 1. Firstly, D6.8 “Italian in-
lab testbed dataset 2” is related to D6.4 “In-lab testbeds definition”, from which it takes the
requirements and the activities’ plan for the Italian testbed, as well as D6.6 “Italian in-lab testbed

https://storage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4
https://storage.googleapis.com/gtv-videos-bucket/sample/BigBuckBunny.mp4

D6.8 – Italian in-lab testbed dataset 2

10

dataset 1”. In more detail, D6.4 defines the network architecture, as well as the topology that was
implemented, while D6.6 collects “Italian in-lab testbed dataset 1”. Additionally, D6.8 “Italian in-lab
testbed dataset 2” is associated with D2.1 “NANCY Requirements Analysis”, D3.1 “NANCY Architecture
Design”, D2.3 “Network information framework” and D6.1 “Β-RAN and 5G End-to-end Facilities Setup”.

D6.8 receives input from D2.1 – “NANCY Requirements Analysis”, D3.1 – “NANCY Architecture Design”,
and D6.1” Β-RAN and 5G End-to-end Facilities Setup”, as regards the latter, in relation to NANCY
architecture refinement from deployment and integration perspective.

As a final step, the outcomes of D6.8 – “Italian in-lab testbed dataset 1” will subsequently contribute
to Work Package 2 “Usage Scenario and B-RAN Modelling, Network Requirements, and Research
Framework”, to part of D6.9 “Outdoor Demonstration Planning, evaluation methodology and KPIs”
and to part of D6.10 “NANCY Pilots’ documentation and evaluation” which are part of the results of
Work Package 6 “System Integration, Validation and Demonstration”.

Figure 1: D6.8 Relations to other deliverables and WPs/Tasks

1.3. Structure of the Deliverable

The structure of D6.8 “Italian in-lab testbed dataset 2” is presented as follows:

• Section 1 – Introduction: This section includes a brief introduction to this deliverable's purpose
and how it is related to other deliverables. Also, this section outlines the deliverable’s
structure.

• Section 2 – Italian In-lab Testbed Description: This section describes the Italian in-lab testbed,
focusing on the topology, and the utilized hardware and software components, both generic
and especially developed in the NANCY project.

• Section 3 – Datasets Generation Process and Structure Description: This section includes the
experimental scenarios carried out to generate the datasets. Moreover, it presents the
datasets’ structure and the naming convention.

• Section 4 – Conclusion: This section summarizes and concludes the deliverable.

D6.8 – Italian in-lab testbed dataset 2

11

2. Italian in-lab Testbed Description
This section presents the Italian in-lab testbed for Usage Scenario 1: “Fronthaul network of fixed
topology – Direct Connectivity & Coordinated Multi Point (CoMP)” for B-RAN modelling, performance
measurement, and theoretical framework validation. The implementation of the testbed, in an indoor
environment, located in Italtel’s premises in Milano, provides regulated and measured experimental
conditions, enabling data collection and analysis. The section details the testbed design principles and
its implementation. Figure 3 depicts the testbed topology, the main functional blocks and overall
architecture, outlining the NANCY components that were integrated, while Figure 4 shows the physical
testbed.

Considering the reference testbed scenario depicted below, the data were collected at three different
points of the network, namely the UE, gNB, and edge host (i.e., point A, point B, and point E as shown
in Figure 2 below.

Figure 2: Italian in-lab testbed for dataset generation

D6.8 – Italian in-lab testbed dataset 2

12

2.1. Testbed Topology

Figure 3: Italian in-lab testbed topology for dataset 2 generation scenarios

Figure 3 shows the Italian in-lab testbed topology and the integrated NANCY components. The NANCY
components marked with a large “X” will be integrated later in the testbed and are, therefore, not
used in the data collection scenarios considered in the present deliverable D6.8. In more detail, ITL
provided the Video streaming application (Italtel VTU) integrated on the ARM Edge host provided by
VOS; captured metrics are sent to the Anomaly detection application (developed by CRAT) and
integrated on the Intel-based Edge host (captured metrics, i.e., the data collected from the actual
scenario, are used for its training).

Based on this configuration, an initial set of data, constituting dataset 2, was collected using a scenario
similar to the one set up for D6.6 “Italian in-lab testbed dataset 1”, under normal conditions of
operation. The distinctive feature of the current configuration is that the ITL VTU application is hosted
on the ARMv8-based Edge server, in one of the two available partitions (i.e., isolated compartments)
provided through “VOSySmonitor and vManager” NANCY component, developed by VOS.

Subsequently, a second set of data was collected by running, for the same scenario, a “Malicious traffic
generation” application (i.e., under attack conditions). This application is provided by SSS both for the
purpose of implementing the collection scenarios of the dataset 2 and for the technology validation,
and it is hosted on the ARMv8-based Edge server in the other partition (i.e., the second isolated
compartment available on the ARMv8-based Edge server).

Finally, for the same scenario, a third set of data was collected activating the aforementioned
“Malicious traffic generation” application, hosted on the ARMv8-based Edge server, but this time
integrated into the same partition as the one that hosts the ITL VTU application.

D6.8 – Italian in-lab testbed dataset 2

13

Again, captured metrics under both “attack conditions” were sent to the “Anomaly detection”
application (by CRAT) on the Intel-based Edge host, to potentially identify the attack condition and, if
this is the case, to send the related event to the relevant NANCY components (not part of this testbed).

2.2. Hardware Components

As depicted in Figure 4, for the purpose of collecting the second set of data “Data set 2”, the Italian in-
lab testbed consists of:

- ACME server, Multi-access Edge Computing (MEC) Host, integrating a GPU (NVIDIA P4), as
HW accelerator to increase performance (portable): an Intel-based Edge server for hosting
Open5gs (5g Core), Media server, ITL video streaming app

- a Graphics Processing Unit (GPU) SuperServer SYS-741GE-TNRT + 2 GPU NVIDIA A40
(Supermicro®): a Server for hosting 5g-srsRAN (gNB)

- 2x Ettus Research USRP X310 + 2x UBX160 board (USRP X310 High-Performance Software
Defined Radio – Ettus Research): 5g Radio Units

- Google Pixel7 Android 5G, Motorola Moto G100: Commercial smartphones
- Texas Instruments SK-AM69: ARMv8-based Edge server (by VoS) for hosting NANCY

components

Figure 4: Italian in-lab testbed equipment

The testbed hosts a user equipment (UE), attached to a virtualized gNB instance running on a shared
computing platform. The UE consists both of commercial smartphones and 5G terminals and of a radio
head and a set of dedicated computing resources provided by a Supermicro® server (UE emulated).
Such resources host the complete radio protocol stack and processes from heterogeneous mobile
applications. Both UE and gNB use a USRP x310 board as a radio head, and the srsRAN software to

D6.8 – Italian in-lab testbed dataset 2

14

implement the radio protocol stack. The gNB USRP board is attached to the computing pool via a
Universal Serial Bus (USB) 3.0 connector, while the srsRAN gNB runs as containerized software
instances using Docker. The UE is connected to the gNB, emulating the traffic volume generated over
a cell. The testbed supports a maximum of 2 UEs and 2 gNBs.

Table 1 provides an overview of the HW devices and the respective integrated SW applications.

Table 1: HW devices and SW applications

Hardware Description and SW applications hosted
Supermicro GPU SuperServer SYS-741GE-TNRT Server for hosting 5G-srsRAN (gNB)

2x Ettus Research USRP X310 + 2xUBX160 board 5G Radio Units

ACME server, integrating a GPU (NVIDIA P4)
Intel-based Edge server for hosting Open5gs
(5g Core), Media server, “Anomaly detection
in the Edge” (by CRAT)

Google Pixel7 Android 5G, Motorola Moto G100 Commercial smartphones (UE)

Texas Instruments SK-AM69

ARMv8-based Edge server (by VOS) for
hosting “VOSySmonitor and vManager” (by
VOS) to support “application isolation”,
“Malicious traffic generation application” +
“PAPI extension for ARM performance
counter interaction” (by SSS), Video
streaming application (by ITL)

2.3. Software applications

The following paragraphs outline the fundamental SW applications, already employed in the
generation of the first round of data, D6.6 “Italian in-lab testbed dataset 1”, and the other SW
applications that are specifically employed in the generation of the second round of data D6.8 “Italian
in-lab testbed dataset 2”.

2.3.1. Fundamental SW applications

The fundamental SW applications, of general use and which are not specific NANCY components, are
as follows:

1. The recorded video selected for both scenarios is “Big Buck Bunny”;
2. To generate the downstream video stream from the Edge node, both Intel and ARMv8-based,

the “VTU video streaming and transcoding application” developed by Italtel was selected.
3. To watch the video on the UE, the VLC media player application for the Android™ platform was

selected.
4. To generate the upstream video stream from the UE, the “Simple HTTP server” Android™ app

was selected, an application that will allow running a local lightweight hypertext transfer
protocol (HTTP) server with static content. It is possible to select any folder, and it will become
available on the local network via the HTTP protocol.

The abovementioned SW applications were also employed in the generation of D6.6 “Italian in-lab
testbed dataset 1”.

D6.8 – Italian in-lab testbed dataset 2

15

2.4. NANCY Software Components

The following paragraphs outline the SW applications developed in the NANCY project that are
specifically employed in the generation of the second set of data (Dataset 2).

2.4.1. Anomaly Detection in the Edge

The objective of the anomaly detection module is to identify unusual patterns or deviations in the data
provided that may indicate faults, security breaches, or system performance issues. By deploying this
capability at the edge, the system aims to reduce latency and enable localized decision-making (Figure
5).

The anomaly detection framework employs a Random Forest (RF) classifier due to its robustness and
high accuracy. The RF model is composed of multiple decision trees, each of which contributes to a
collective decision, determining whether the observed pattern is in line with expected behaviour or
deviates significantly. One of the key strengths of the Random Forest model is its ability to provide a
level of interpretability through feature importance. In fact, it provides importance scores for each
feature that helps identify the underlying causes of detected anomalies.

The implementation process of this software is carried out in several stages. Initially, the model was
trained using an offline dataset, which reflects the type of data to be analysed in real-time. This dataset
includes various features such as:

• CPU Usage (percentage of CPU utilization)
• Disk Space Usage (percentage of disk space used)
• Network Traffic (amount of network traffic)
• Memory Usage (percentage of memory used)
• Label (indicating whether the sample contains an anomaly or not).

Subsequently, the trained model was containerized using Docker, enabling its use for real-time
anomaly detection with the data provided by the testbed.
A comprehensive explanation of the algorithm, including its evaluation metrics and detailed training
methodology, will be presented in D5.3, scheduled for submission in month M29.

Dockerization of the Random Forest algorithm

The application has been containerized using Docker, allowing it to run in an isolated, portable, and
scalable environment across any platform supporting it.

First, the application is configured through an external configuration file, which defines crucial
parameters such as port and URL. In particular, the port on which it listens for incoming data and the
URL of the dashboard where it sends the results of the Random Forest classification model. By using a
configuration file, the application’s behaviour can be adjusted without modifying the container itself,
simplifying deployments and updates.

To ensure the secure handling of sensitive information, the application uses environment variables to
manage API authentication secrets. These secrets, such as the API username and password, are
provided at runtime via environment variables, keeping them secure and out of the codebase. This
method prevents the risk of exposing credentials in version control or public repositories. By passing

D6.8 – Italian in-lab testbed dataset 2

16

these secrets through Docker's environment variable mechanism, the containerized application can
securely authenticate with external services or APIs as needed.

The application is orchestrated using Docker Compose, which simplifies the process of starting the
service with the appropriate configuration. Docker Compose allows the container to be launched with
the necessary environment variables, such as the listening port, the dashboard URL, and API
credentials, ensuring that the application has all the information it needs to function correctly.

Real-Time Anomaly Detection

The anomaly detection software then operates online as follows:

1. Receiving Data
The system receives data in JSON format from the testbed through a REST API. This data
contains information about the monitored features, such as CPU usage, RAM, disk space, and
network traffic.

2. Classification
Once the data is received, it undergoes pre-processing and is asynchronously fed into the
Random Forest model. The RF model uses these features to determine whether the data
points are normal or represent an anomaly in a binary classification.

3. Sending Results
After processing, the model returns a response that includes:

ο A flag indicating the presence of an anomaly (0 or 1).
ο An optional description of the type of anomaly, if one is detected.

This response is then sent via a REST API to the Dashboard, where the result is displayed for the end
user.

Libraries and Tools

The following libraries were employed during the implementation of the anomaly detection system:

• pandas: designed for data manipulation and analysis. It provides data structures like
DataFrames and Series, which facilitate operations such as data cleaning, aggregation, and
filtering.

• numPy: utilized for numerical operations, including array manipulations, mathematical
computations, and transformations of the dataset.

• scikit-learn: provides various preprocessing functions such as feature normalization. It also
offers the Random Forest Classifier and related tools for model training, evaluation, and
optimization of hyperparameters.

These other libraries have been imported for deployment with Docker, software used for packaging
the model into a container, ensuring portability and scalability across different edge nodes and
environments:

• requests: provides a streamlined interface for sending and receiving HTTP requests,
supporting methods such as GET, POST, PUT, and DELETE, along with handling headers,
parameters, and payloads.

• flask: a lightweight and modular web framework that simplifies the development of web
applications.

D6.8 – Italian in-lab testbed dataset 2

17

• werkzeug: provides low-level utilities for building web applications, handling HTTP requests,
responses, routing, error management, and session handling, often used as the foundation for
flask frameworks.

• waitress: is a WSGI server designed for production environments, offering robustness and
scalability for Python web applications. It serves as a performant alternative to Flask's built-in
development server.

• json: for handling JSON (JavaScript Object Notation) data. It enables the serialization of Python
objects into JSON strings and the deserialization of JSON strings into Python objects.

• logging: for managing application logs. It provides tools to record debug messages, warnings,
and errors, with support for multiple logging levels (e.g., INFO, WARNING, ERROR) and
customizable output configurations.

• threading: for running concurrent threads within an application. It is particularly useful for
implementing multitasking, improving responsiveness, and handling parallel operations in I/O-
bound scenarios.

• os: provides tools to interact with the operating system, including file and directory
management, access to environment variables, and execution of system-level commands.

• base64: for encoding and decoding data in Base64 format, commonly used to transmit binary
data as readable text strings.

Figure 5: Anomaly detection module

2.4.2. VoSyS Monitor and vManager

VOSySmonitor and vManager are the two software components that allow the creation of isolated
execution environments, also known as partitions or compartments. Specifically, the two components
serve different purposes. VOSySmonitor is a low-level software layer that can interact with the
hardware to enforce the isolation between the compartments and deploy OSes into them. vManager,
instead, is a higher software component which executes as a system process; it implements the logic
according to which the compartments are created, destroyed and executed.

D6.8 – Italian in-lab testbed dataset 2

18

To fully understand how the interaction between these two components works, some more details
must be given. VOSySmonitor, which sits at the very bottom of the software stack, is a low-level ARMv8
monitor layer that executes in the highest exception level available in the platform (called EL3). As
such, it has the delicate job of configuring various peripherals (including their clocks and power
domains) in such a way that the following software components (bootloaders and OSes) can use them.
Being the most privileged component running in the platforms, it can fully leverage the ARMv8
functionalities (like TrustZone) to partition the system into isolated compartments, each of which is
associated with a set of resources. Moreover, this monitor layer can fully control the cores available in
the systems. For instance, it can power-up or power-down a core or reset it to some address in order
to start executing an OS. As a matter of fact, any OS that wants to modify the power state of a core
must forward a request to the monitor which will act accordingly. VOSySmonitor is not meant to
perform any I/O operation for security reasons. The OS forwards the requests to the monitor via a
well-defined API, called SMC Calling Convention (SMCCC), that relies on a specific ISA instruction to
exchange data between the OS and the monitor. Given these limitations, there was the need to create
a new software component that could interact with it through the SMCCC API. This is why vManager
was created.

vManager is a system process running on top of Linux, in userspace. Given the monolithic design of
Linux, vManager alone could not exhaustively interact with the monitor. For this reason, a new kernel
module was developed to mediate the interaction between the two software components and
validate/sanitize the data being passed. As anticipated, vManager implements the logic of the creation
and destruction of compartments: in fact, it has full visibility of the resources available in the system.
In addition, it can load the binaries of the OSes to be deployed into the partitions before instructing
the monitor to reset a given core (or a set of cores) to a specific address to effectively execute the OS.
vManager supports libvirt in such a way as to allow external orchestrators to manage the life-cycle of
the compartments.

In the context of the Italian demonstrator, VOSySmonitor was initially ported to the platform, the Texas
Instrument SK-AM69 Evaluation Board. The first steps were about succeeding in running one Linux
instance on top of the platform, using a modified image that included VOSySmonitor in place of the
default monitor. The porting experience continued with the attempts to instantiate two
compartments, each of them running the Linux OS. Once this setup was stable, it was decided to keep
it as a configuration for collecting the data of the second dataset. In essence, the two compartments
have the following characteristics:

- Compartment 1: 31232 MiB of available RAM memory, 4 cores (corresponding to the first
cluster of Cortex-A57 cores), one embedded 1Gbps ethernet port, and one UART port. In this
compartment, vManager is run. The kernel used is Linux 6.6.36 along with Ubuntu 22.04.

− Compartment 2: 1536 MiB of available RAM memory, 4 cores (corresponding to the second
cluster of Cortex-A57 cores), one USB type-C port with a 1Gbps ethernet adapter, and one
UART port. The kernel used is Linux 6.10 along with a yocto-based minimal distribution.

For the sake of the collection of data for the second dataset, the partition creation is driven by the user
and not by an external orchestrator.

2.4.3. SCHED-DEADLINE

SCHED_DEADLINE is a scheduler for time-sensitive application [2] integrated into mainline Linux, which
is based on the Earliest Deadline First scheduling algorithm. It allows providing resource partitioning
and resource enforcement to a vast range of computational activities, from Linux threads to virtualized
applications based on KVM/QEMU virtual machines and containers [3], also thanks to a patch
contributed by SSS.

D6.8 – Italian in-lab testbed dataset 2

19

SCHED_DEADLINE implements the Constant Bandwidth Reserver [4], [5] resource reservation
algorithm, which provides each application with a budget Q every period P. The budget and period can
be configured for the application, and they directly map to a corresponding assigned CPU bandwidth
and CPU worst-case service latency [6]. Hence, the budgeting mechanism is useful for partitioning the
underlying CPU's physical cores. Furthermore, SCHED_DEADLINE ensures that no more than the
assigned CPU capacity is provided to the application. Mechanisms to properly set the configuration
parameters Q and P have been investigated in the context of Task 3.4 and 4.2 [7].

This also offers a useful means to protect mutually untrusted applications, which often result in being
colocated on the same physical platform in edge computing use cases such as those of NANCY. Indeed,
a misbehaving application, which is subject to, for example, a cyber-attack or a software fault, cannot
jeopardize the timing behavior of another application by executing on the CPU cores for much more
than expected, because SCHED_DEADLINE ensures that it does not receive more than the assigned
CPU bandwidth in any case. Therefore, SCHED_DEADLINE sets an isolation boundary to shield other
applications from CPU-related timing behaviors that would otherwise easily cause denial-of-service
conditions.

2.4.4. Malicious Traffic Generation Application

This section describes a malicious software that is capable of generating intense memory traffic to
jeopardize the system behavior. Modern edge systems execute several applications with often
different objectives and specifications at the same time. Some of these are time-critical for the
functionality of the whole system, and their malfunctioning might cause issues with the quality of
service provided by the system. Because the applications share the same hardware components (e.g.,
CPUs, memory banks), even if they do not explicitly interact with each other, interference during
execution may happen. Consider a highly-time-critical application that runs on a system with a complex
memory hierarchy that includes a cache memory, together with a non-time-critical application that
performs a vast number of memory accesses.

While CPU-time interference is well understood, an often-neglected issue consists in memory traffic
that floods the system bus with transactions and can hence disrupt the timing performance of other
applications possibly running in other cores. This means that a Denial of Service (DoS) attack can be
mounted.

To emulate the behavior of malicious applications that generate intensive memory traffic, we selected
the IsolBench tool. IsolBench consists of a set of benchmarks whose aim is to stress the memory to
compute different statistics. This application simulates a DoS attack to verify the isolation of
components deployed on the same system. In the context of NANCY, we selected the Latency
benchmark of IsolBench to turn it into an attack-generating application. The attack consists of
generating a massive number of memory operations by repeatedly accessing the elements of a mock
linked list allocated in memory. The total memory size allocated for the data structure is fixed to
131072KB.

There are two versions of the malicious application, run by two different scripts:

• run-dos-attack.sh: the application sequentially accesses all elements of the linked list
100 times; at the end of the test, the program prints the total duration of the test, the average
memory access latency and the bandwidth;

• run-dos-attack-endless.sh: the application endlessly accesses the elements of the
linked lists, and it must be interrupted with CTRL-C.

D6.8 – Italian in-lab testbed dataset 2

20

2.4.5. PAPI Extension for ARM Performance Counter Interaction

We developed the memory traffic monitor tool that helps detect if an application is experiencing
Denial of Service (DoS) attacks by analysing its memory traffic. The tool monitors the memory accesses
to level-1 and level-2 caches to fetch instructions and data and computes the number of miss events
corresponding to those accesses.

The traffic monitor leverages the PAPI library from the University of Tennessee, Knoxville (UTK)
[https://github.com/icl-utk-edu] to read the performance counters from the Cortex A72 Performance
Monitoring Unit (PMU) on the TI SK-AM69 board. In detail, the PAPI low-level API manages hardware
events in user-defined groups called Event Sets. It is possible to monitor both native and preset events.
Native events are all those events that are countable by the CPU and whose names are platform-
dependent, while presets or predefined events are a common set of events deemed relevant and
useful for application performance tuning. These are mappings from symbolic names (PAPI preset
names) to machine-specific definitions for a particular hardware resource.

The monitor attaches to the application to analyse and, when this terminates, it produces a .csv file
with the values of the performance counters related to the application execution. Specifically, the
traffic analyser reads the following six events from the PMU:

• L1-DCACHE-LOADS
• L1-DCACHE-LOAD-MISSES
• L1-ICACHE-LOADS
• L1-ICACHE-LOAD-MISSES
• L2D_CACHE_ACCESS
• L2D_CACHE_REFILL

These events count the memory accesses and misses to data and instruction level-1 cache, and level-
2 cache accesses and refill events. The traffic monitor produces a .csv file for the monitored
application, containing the values of the performance counters.

Monitoring experiments

We ran the memory traffic monitor to track the memory accesses of the malicious application. This
experiment gave us an insight into how the number of tracked events changes as the load of the system
increases, which leads to the detection of overload-based DoS attacks. We varied the memory size
allocated by the malicious application and read the six performance counters listed earlier. With these,
we counted the memory accesses performed by the application to fetch both instructions and data,
and the corresponding number of misses in level-1 and level-2 caches.

Figure 6 reports six plots of the values of six performance counters (reported in the label above each
plot) obtained running the memory traffic monitor on the malicious application. The values are shown
for different memory sizes allocated by the application.

https://github.com/icl-utk-edu

D6.8 – Italian in-lab testbed dataset 2

21

Figure 6: Performance counters

The results show that the number of events is directly proportional to the size of the allocated memory.
Hence, the traffic analyser tool can be used to detect DoS attacks: when tracking an application, if the
numbers read from the counters are higher than those expected in an attack-free environment, then
the application is likely undergoing a DoS attack.

Two steps are required to execute the monitor:

• compile and install the PAPI library by running the script "compile.sh" (this needs to be done
only the first time the monitor is executed);

• run the traffic analyser with the script "start-monitor.sh" and pass as an argument the
PID of the process to monitor; example of usage: "./start-monitor.sh 12345" to monitor
process with PID 12345.

The latter script executes the actual monitoring application, which accepts the following parameters:

Usage: latency [options]

 -h Print available command-line options.

 -p pid Trace process with PID pid.

 -ne nevts Set the number of events to trace (min 1,
max 6). Use it before -e.

 -e evt1,evt2,...,evtn List the events to trace, separated by
commas (without blanks)

D6.8 – Italian in-lab testbed dataset 2

22

3. Dataset Generation Process and Structure Description

3.1. Scenario 1 - ARMv8-based Edge Host: Normal Condition

The methodology employed to generate the collected metrics is outlined below:

1. Integration of the anomaly detection component from CRAT on the intel-based Edge host;
2. Integration of ITL video streaming application on the ARMv8-based Edge host in one of the

two available partitions (i.e., isolated compartment, provided by VOS for NANCY);
3. Initial set of “dataset 2” collection, running ITL video streaming application under normal

conditions - without attack;
4. The metrics gathered in the actual operational environment are being fed into the anomaly

detection application for training purposes.

3.2. Scenario 2 - ARMv8-based Edge Host: Attack Condition, Separate
(Isolated) Partitions

The methodology employed to generate the collected metrics is outlined below:

1. Integration of the anomaly detection component from CRAT on the intel-based Edge host.;
2. Integration of ITL video streaming application on the ARMv8-based Edge host in one of the

two available partitions (i.e., isolated compartment, provided by VOS for NANCY);
3. Integration of SSS “Malicious traffic generation” application in the second available partition

(i.e., ITL VTU and SSS Malicious application hosted in different isolated compartments);
4. Second set of dataset 2 collection, running ITL video streaming application in one partition and

SSS Malicious application in the other partition, i.e., under attack conditions in a separate
partition;

5. The metrics gathered in the actual operational environment are being fed into the anomaly
detection application; expected result: no anomaly to be detected – i.e., the malicious
application does not affect the behavior of the application running in a different (isolated)
compartment.

3.3. Scenario 3 - ARMv8-based Edge Host: Attack Condition, Same Partition
(Computational Resources Shared)

The methodology employed to generate the collected metrics is outlined below:

1. Integration of the anomaly detection component from CRAT on the intel-based Edge host;
2. Integration of ITL video streaming application on the ARMv8-based Edge host in one of the

two available partitions (i.e., isolated compartment, provided by VOS for NANCY);
3. The “Malicious traffic generation” application (by SSS) integrated into the same partition

where ITL video streaming application runs. (i.e., ITL VTU and SSS Malicious traffic generation
application, hosted in the same compartment, share the related resources);

4. Third set of dataset 2 collection, running ITL video streaming application and Malicious traffic
generation application in the same partition, i.e., under attack conditions sharing resources;

5. The metrics gathered in the actual operational environment are being fed into the anomaly
detection application; expected result: anomaly to be detected– i.e., the malicious application

D6.8 – Italian in-lab testbed dataset 2

23

affects the behavior of the application since they run into the same compartment, sharing
resources.

3.4. Captured Data

Each file captured is associated with a 10-minute video streaming of the “Big Buck Bunny” video. The
following 5-tuple: Source IP, Destination IP, Source Port, Destination Port, and Protocol identifies a
network flow. This video was transmitted with different resolutions (480p, 720p, 1080p, 2160p, and
4320p) and different bandwidth parameters (10 MHz and 20 MHz) on two different bands (N3 and
N78). The HTTP protocol is monitored for both DL and UL. Also, both for N3 and N78 bands, data
related to the resource usage were also captured using vmstat, for a total of more than 240 data files.

All the collected data are relevant to assessing the scenarios associated with the Italian in-lab testbed
and considering the impact of NANCY architecture and components in different conditions. Figure 7 to
Figure12 illustrate the testbed and associated equipment during the data collection test phases.

Figure 7: Pixel7 Android v13

D6.8 – Italian in-lab testbed dataset 2

24

Figure 8: Simple http Server on Pixel7 Android v13

D6.8 – Italian in-lab testbed dataset 2

25

Figure 9: srsRAN gNB

D6.8 – Italian in-lab testbed dataset 2

26

Figure 10: Italian in-lab testbed equipment during test

D6.8 – Italian in-lab testbed dataset 2

27

Figure 11: ARMv8 Edge host

D6.8 – Italian in-lab testbed dataset 2

28

Figure 12: UE during RTT metrics collection

3.5. Dataset Folder Structure

The data collected are organized in folders. Starting from the upper level, the dataset consists of the
following folders:

• The folder “Pixel7_android_v13” contains the datasets collected in the “normal conditions -
without attack” scenario;

• The folder “Pixel7_android_v13_ADP” contains the datasets collected in the “Attack
conditions – different partitions” where ITL VTU App and SSS Malicious App run on ARMv8
Edge in different (isolated) compartments;

• The folder “Pixel7_android_v13_ASP” contains the datasets collected in the “Attack conditions
– same partition” where ITL VTU App and SSS Malicious App run on ARMv8 Edge in the same
compartment and share computational resources;

• The folder “Movies_Sample” contains the “Big Buck Bunny” video, used for the test, at
different resolutions.

D6.8 – Italian in-lab testbed dataset 2

29

The folder “Pixel7_android_v13” is organized into two main subfolders, “Band_N3_10Mhz” and
“Band_N78_10Mhz”, respectively associated with the data captured using bands N3 and N78.

Similarly, each “Band_Nx_10Mhz” folder is organized in as many subfolders as the resolution types
(i.e., 480p, 720p, 1080p, 2160p, 4320p). Each of these folders contain the “HTTP_protocol” subfolder,
which is organized in two subfolders: “upload” and “download”. The “upload” folder contains all the
files related to the data captured during the “upstream” tests, while the “download” folder contains
all the files related to the data captured during the “downstream” tests.

Finally, each file present in these folders and named:

<capture point>_<resolution>_<video stream direction>.<type>

The naming convention is described in Table 2 to Table 6, while Figure 13 provides an example of the
folder structure.

Table 2: “capture point” naming convention

capture point Description Notes

gnb_trace Contains the config and the trace of the
gNB

Refer to srsRAN
documentation

gnb_mac MAC protocol 5G traffic data collected at
gNB through srsRAN

gnb_ngap NG application protocol (NGAP) 5G traffic
data collected at gNB through srsRAN

gnb_rlc_metrics Data collected at the gNB, related to the
Radio Link Control (RLC) layer

gnb_e2ap E2AP 5G traffic data collected at gNB
through srsRAN

gnb_f1ap F1AP 5G traffic data collected at gNB
through srsRAN

gnb_e1ap E1AP 5G traffic data collected at gNB
through srsRAN

gnb_gtpu
GTP-U 5G traffic data collected at gNB

through srsRAN

gnb_bitrate Bitrate at the gNB

gnb_vmstat Data collected at the gNB using vmstat and
related to the resource usage

EdgeServer Data collected at the edge server

EdgeClient Data received by the edge client
(generated by UE)

The Data coming out from
the UE cannot be captured by
PCAPdroid on the UE

Table 3: “resolution” naming convention

Resolution Description
480p Standard definition (SD) resolution
720p High Definition (HD) resolution

1080p Full HD resolution
2160p 4K UHD (Ultra High Definition)
4320p 8K UHD

https://docs.srsran.com/projects/project
https://docs.srsran.com/projects/project

D6.8 – Italian in-lab testbed dataset 2

30

Table 4: “video stream direction” naming convention

Video Stream Direction Description
DL Downloading direction – from Edge host to UE
UL Uploading direction – from UE to Edge host

Figure 13: Dataset folder structure example

D6.8 – Italian in-lab testbed dataset 2

31

Table 5: “scenario” naming convention

Scenario Description Notes

- Normal conditions – no attack present
ITL VTU app runs on
ARMv8 Edge in an

isolated compartment

ADP Attack conditions – different partitions

ITL VTU app and SSS
Malicious App run on

ARMv8 Edge in different
(isolated)

compartments

ASP Attack conditions – same partition

ITL VTU app and SSS
Malicious App run on

ARMv8 Edge in the
same compartment and

share computational
resources

Table 6: “type” naming convention

Type of File Description

log Log files are a historical record of everything and
anything that happens within a system.

json
JavaScript Object Notation (JSON) is an open standard
file format for sharing data that uses human-readable
text to store and transmit data.

csv Comma-separated Value (CSV) file allows data to be
saved in a tabular format.

pcap PCAP - Packet capture files - are a common format for
storing packet captures.

3.5.1. Latency Data (RTT) and Counters Relating to Resource Utilization Rates (CPU, Disk, and
Network)

Two other folders, namely “Band_N78_20Mhz_DL RTT+ADC” and “Band_N3_10Mhz_DL RTT+ADC”,
respectively associated with the data captured using bands N3 and N78, contain both RTT (Round Trip
Time) and metrics related to resources utilization rates. These last ones, named “Anomaly detection
counters” (ADC), are the set of metrics used by the “Anomaly Detection Application”, developed for
NANCY by CRAT, to identify the presence or absence of attacks.

Steps and useful information related to RTT and ADC data

Considering the topology depicted in Figure 2, the following steps are performed:

• Pixel7 UE requires Video from ITL Video Streaming APP

• Video server streams the video in different formats (480p, 720p, 1080p, 2160p, 4320p)

• During each video playing, in a different format, RTT is sampled using ping every 1 sec (Ping
is transmitted every 1 second from the video server APP, along with 64bytes, 708bytes and
1358bytes payload packets).

D6.8 – Italian in-lab testbed dataset 2

32

RTT = (a+b+c)*2 (RTT is the sum of the crossing time of segments a+b+c multiplied by two,
and it represents the round trip time from the upper protocol layer of the “video streaming
app” to the upper protocol layer of the “video application” on the UE)

• Every 1 sec, DLbrate and ULbrate samples are captured on the gNB from “gNB trace” (point
B in figure), while RTT_ms is captured on the ITL Video Streaming APP (point E in figure).

• Every 1 sec, samples of the “Anomaly detection data” are captured. These data are listed in
Table 7.

Table 7: “Anomaly detection data”

Name Type Description
timestamp Int Unix Timestamp of the sample

cpu1 Float Usage percentage of CPU 1 between 0 and 1
cpu2 Float Usage percentage of CPU 2 between 0 and 1
cpu3 Float Usage percentage of CPU 3 between 0 and 1
cpu4 Float Usage percentage of CPU 4 between 0 and 1
ram Float Usage percentage of RAM between 0 and 1

disk_s Float Occupied disk space percentage between 0 and 1
disk_u Float Usage percentage of disk between 0 and 1
net_u Float Usage percentage of network uplink between 0 and 1
net_d Float Usage percentage of network downlink between 0 and 1

RTT File naming convention (instructions):
<UE type>_<video Format>_ping<packet size>;
values: “UE type” = Pixel7; “video Format” = 480p, 720p, 1080p, 2160p, 4320p; “packet size” = 64b,
708b, 1358b.

ADC File naming convention (instructions):
<UE type>_<video Format>_ping<packet size>_adc_<video stream direction>;
values: “UE type” = Pixel7; “video Format” = 480p, 720p, 1080p, 2160p, 4320p; “packet size” = 64b,
708b, 1358b; “video stream direction” =UL, DL.

An additional set of RTT samples and ADC data has been collected for a duration equivalent to that of
the video stream and under conditions of no data flow/traffic along the path. This makes it possible to
sample RTT in order to collect reference values, which depend solely on the characteristics of the
devices used and integrated into the testbed. An example of the ADC structure is shown in Figure 14.

RTT no video File naming convention:
Pixel7_novideo_ping<packet size>;
EdgeApp_novideo_ping<packet size>;

values: “packet size” = 64b, 708b, 1358b.

ADC no video File naming convention:
Pixel7_novideo_ping<packet size>_adc_<video stream direction>;
EdgeApp_novideo_ping<packet size>_adc_<video stream direction>;;

values: “packet size” = 64b, 708b, 1358b; “video stream direction” =UL, DL

D6.8 – Italian in-lab testbed dataset 2

33

Figure 14: ADC samples structure

D6.8 – Italian in-lab testbed dataset 2

34

4. Conclusion
D6.8 “Italian in-lab testbed dataset 2” documents the second set of collected data which are relevant
to assessing the scenarios associated with the Italian in-lab testbed considering the impact of NANCY
architecture and components.

The data were collected using the Italian in-lab testbed, which features a MEC-assisted 5G network
scenario. This scenario involved a video streaming application for traffic generation and integrated the
relevant NANCY applications, exploring various scenarios under both normal conditions and attacks.

D6.8 – Italian in-lab testbed dataset 2

35

Bibliography

[1] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho, “VOSYSmonitor, a Low Latency
Monitor Layer for Mixed-Criticality Systems on ARMv8-A,” 29th Euromicro Conference on
Real-Time Systems (ECRTS 2017), Leibniz International Proceedings in Informatics (LIPIcs), vol
76, pp. 6:1-6:18, Jun. 2017.

[2] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling in the Linux kernel,”
Software: Practice and Experience, vol. 46, no. 6, pp. 821–839, 2016.

[3] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time scheduling in the linux
kernel,” ACM SIGBED Review, vol. 16, pp. 33– 38, Nov. 2019

[4] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time systems,” 19th
IEEE Real-Time Systems Symposium, Dec. 1998.

[5] L. Abeni, G. Lipari, and J. Lelli, “Constant bandwidth server revisited,” ACM SIGBED Review, vol.
11, no. 4, pp. 19-24, Jan. 2015.

[6] I. Shin and I. Lee, “Compositional real-time scheduling framework,” Real-Time Systems
Symposium, Dec. 2004, pp. 57–67.

[7] L. Abeni, T. Cucinotta, and D. Casini, "Period Estimation for Linux-based Edge Computing
Virtualization with Strong Temporal Isolation," 3rd Real-time And intelliGent Edge computing
workshop (RAGE 2024), May 2024, pp. 1-6.

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Executive summary
	1. Introduction
	1.1. Purpose of the Deliverable
	1.2. Relation with other Deliverables
	1.3. Structure of the Deliverable

	2. Italian in-lab Testbed Description
	2.1. Testbed Topology
	2.2. Hardware Components
	2.3. Software applications
	2.3.1. Fundamental SW applications

	2.4. NANCY Software Components
	2.4.1. Anomaly Detection in the Edge
	2.4.2. VoSyS Monitor and vManager
	2.4.3. SCHED-DEADLINE
	2.4.4. Malicious Traffic Generation Application
	2.4.5. PAPI Extension for ARM Performance Counter Interaction

	3. Dataset Generation Process and Structure Description
	3.1. Scenario 1 - ARMv8-based Edge Host: Normal Condition
	3.2. Scenario 2 - ARMv8-based Edge Host: Attack Condition, Separate (Isolated) Partitions
	3.3. Scenario 3 - ARMv8-based Edge Host: Attack Condition, Same Partition (Computational Resources Shared)
	3.4. Captured Data
	3.5. Dataset Folder Structure
	3.5.1. Latency Data (RTT) and Counters Relating to Resource Utilization Rates (CPU, Disk, and Network)

	4. Conclusion
	Bibliography

