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Executive Summary 

This deliverable, titled “D4.2-Resource Elasticity Techniques”, details the design, implementation, and 
evaluation of resource elasticity techniques within the NANCY B-RAN architecture. The main objectives 
are to introduce elasticity in both the networking and computational resources. The focus of this 
deliverable is primarily on scalable and efficient resource management mechanisms with advanced 
online algorithms.  

In Section 2, the deliverable provides an overview of resource elasticity, addressing the challenge of 
scaling in distributed systems (Section 2.1) and justifying the adoption of Muti-agent deep 
reinforcement learning (MADRL) to manage computational resources by providing solid theoretical 
backgrounds of different MADRL-based algorithms (Section 2.2). 

Then, Section 3 provides an overview of the NANCY orchestrators that can be controlled by resource 
elasticity decision engines, namely the Slice Manager (Section 3.1) and Maestro (Section 3.2). These 
two orchestrators support resource elasticity through their API. They can dynamically adjust resources 
based on when certain API functions are called, enabling efficient vertical and horizontal scaling. The 
tradeoff metrics used to monitor the system and trigger scaling are identified in Section 3.3. 

The elasticity techniques that can empower the decision engines controlling the orchestrators of the 
host operating systems are described in Section 4 and constitute the main contributions of this 
deliverable. The novel elasticity techniques, including SCHED_DEADLINE (Section 4.1), PHaul (Section 
4.2), and MADRL-based solutions for computational resource elasticity (Section 4.3), are explained and 
evaluated in detail. First, SCHED_DEADLINE is used to manage CPU resources by providing predictable 
CPU allocation to time-sensitive tasks, ensuring that applications with strict latency requirements 
maintain consistent and fair performance. Second, PHaul, a dynamic path allocation mechanism based 
on DRL is able to effectively manage network load and enhance the resilience of the network by 
allocating network resources across paths to meet throughput and fairness constraints. Lastly, MADRL-
based computational resource elasticity leverages MADRL algorithms, such as Proximal Policy 
Optimization (PPO) and Deep Q-Networks (DQN) to dynamically scale CPU and memory resources 
within network slices, enabling efficient, disruption-free service by responding to fluctuating demand 
in real time.  
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1. Introduction 

NANCY aims to provide flexible resource management and smart pricing, which are realized in WP4 
through the following key objectives:  

(a) design low-complexity computational offloading and social-aware caching mechanisms;   
(b) identify the B-RAN functions whose operation should be adjusted to the available 

computational/MEC resources;   
(c) characterize the trade-off between NFs performance and resource usage;   
(d) develop low-complexity proactive scaling mechanisms;   
(e) develop ultra-reliable and low-latency cooperative and multi-hopping access schemes 

tailored for delay, security, and resilience critical applications, hence addressing the 
requirement for reliable communication with latency limitations;   

(f) develop smart pricing policies that will significantly reduce the ownership cost.  

1.1. Relation to Other Tasks and Deliverables 

While Objectives (a) and (b) have been addressed in D4.1, and Objectives (e) and (f) will be addressed 
in D4.3, D4.4, and D4.5, D4.2 focuses on Objectives (c) and (d), which is the outcome of T4.2 titled 
“Resource elasticity enabling techniques” and will be reported in this deliverable. T4.2 focuses on 
developing a resource elasticity framework, which is structured around two key pillars: (1) 
computational elasticity and (2) MEC elasticity. This task develops advanced online algorithms to 
dynamically and efficiently allocate network and computational resources to users and devices at 
various time scales. These algorithms aim to ensure Quality of Service (QoS) and Quality of Experience 
(QoE) for multiple served users and devices, which can be achieved by SLAs (Service Level Agreements) 
developed in D4.1.   

Guided by the parameters defined in the SLA, NANCY leverages AI-driven automation to enable 
dynamic resource allocation and optimize network performance in real time. This dynamic resource 
allocation is supported by Network Functions Virtualization (NFV), which enables the flexible 
deployment of network functions, while network slicing divides the network infrastructure into 
multiple virtual slices, each slice tailored to specific applications and user needs. These needs are 
defined in SLAs, which outline the performance guarantees, such as maximal tolerable latency or 
minimal available bandwidth, that the network must meet to ensure QoS across different slices. To 
maintain this balance, effective resource management is crucial. AI algorithms and resource elasticity 
mechanisms work to optimize the allocation of networking and computational resources to adapt to 
varying demands and provide optimal QoS/QoE for users. This flexible resource adjustment ensures 
that network functions receive the necessary resources to perform optimally under constrained 
conditions, preserving QoS and QoE standards. 

1.2. Purpose of the Document 

In this deliverable, we elaborate on innovative resource elasticity techniques, for time-critical tasks in 
Section 4.1, multi-hop path allocation in Section 4.2, and computation elasticity technique in Section 
4.3. These techniques can be used to power decision engines that interface with existing NANCY 
orchestrators discussed in Section 3. Moreover, these techniques can be deployed on edge devices 
and enable MEC elasticity. As the proposed MEC and computational elasticity techniques are based on 
reinforcement learning, we provide a related theoretical background in Section 2. 

Two key enablers in NANCY for resource elasticity techniques, the Slice Manager and Maestro (Section 
3) lay the foundation for resource elasticity across diverse demands and network conditions through 
virtualization technologies, enabling the components introduced in the following paragraphs to 
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function effectively. More specifically, the existing Slice Manager, serves as a resource orchestrator, 
controlling network slices via an API gateway and enforcing resource allocation and slice 
reconfiguration across clusters. Together with the AI Virtualizer, developed in D3.4, the Slice Manager 
dynamically reallocates inter-slice resources using a multi-agent deep reinforcement learning (MADRL) 
framework, enhancing efficiency and maximizing resource utilization. Maestro, the service 
orchestrator in NANCY, manages service lifecycles across geo-distributed infrastructures. By 
automating deployment, scaling, and real-time resource adjustments, Maestro enables the 
optimization of the performance and scalability across edge and core networks. 

The fluctuating demand of applications, especially those with time-critical tasks, require guaranteed 
QoS for reliable performance. In NANCY, this is achieved with SCHED_DEADLINE (Section 4.1), a 
reservation-based scheduler within the Linux kernel. Through Constant Bandwidth Server algorithm 
with Earliest Deadline First (EDF) scheduling, SCHED_DEADLINE enables predictable CPU allocation by 
allowing the orchestrator to dynamically adjust parameters in the SCHED_DEADLINE, this approach 
prevents overuse and ensures fair resource distribution. By supporting real-time vertical scaling, it 
allows resources to adapt as demands shift, helping NANCY maintain service quality and optimize 
resource utilization efficiently. 

PHaul (Section 4.2), a DRL-based component is deployed to achieve network resource elasticity. It 
oversees the fine-grained distribution of network resources, ensuring that each slice meets its 
performance targets, such as throughput, and fairness, without over-provisioning or underutilizing 
resources. The PHaul design incorporates a Digital Twin, which replicates real-time traffic and network 
conditions to facilitate dynamic flow allocation. This integration allows the PHaul to intelligently and 
adaptively select optimal paths for network traffic, ensuring seamless and efficient service delivery 
across varying network demands.   

Computational elasticity is established as one of the pillars of T4.2. It is achieved through multi-agent 
Deep Reinforcement Learning (MADRL)-based techniques (Section 4.3). These techniques dynamically 
scale computational resources such as CPU and memory utilization within a slice to ensure disruption-
free service. The MADRL framework is particularly effective in environments with fluctuating traffic 
loads, as it formulates resource allocation as a Markov Decision Process (MDP), enabling continuous 
learning and adaptation to real-time network conditions. By utilizing DRL agents for each service within 
the slice, the system can make decentralized decisions regarding resource scaling, thereby optimizing 
the overall performance. These MADRL-based approaches provide real-time control and management 
of resources within the slice, allowing the orchestrator to adjust resources dynamically without 
interrupting services, even in response to unexpected spikes in demand.  This deliverable reports on 
the results of Task 4.2 towards NANCY R10— Experimentally driven reinforcement learning 
optimization of B-RAN discussed in D3.1.  

1.3. Structure of the Document 

The rest of the document is structured as follows: 

• Section 2 – Background on resource scaling and MADRL-based scaling presents the 
background concerning the resource allocation by leveraging methodologies based on MADRL. 

• Section 3 – Virtualization Platform documents the main components of the virtualization 
platform, namely the Slice Manager and Maestro.. 

• Section 4 – Novel Resource Elasticity Mechanisms describes the mechanisms that were 
developed for allocating and scheduling the available resources. 

• Section 5- Conclusion summarizes and concludes the deliverable. 
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2. Background on resource scaling and MADRL-based scaling  

2.1  Definition of Resource Scaling  

The ever-changing traffic needs in B5G communications networks introduce new challenges, making 
scalable computing resources crucial for services and applications to meet their demands efficiently 
and cost-effectively. Managing cloud resources well is essential to maintaining high-quality service 
levels, preventing resource underutilization, and avoiding system overloads. There are two primary 
scaling mechanisms: horizontal scaling and vertical scaling, which are used to adjust the network 
resources to meet demands. These dynamic scaling mechanisms are highly important in B5G networks 
since they allow the automatic allocation of new resources, namely CPU, memory, and storage 
resources, during peak usage to maintain user QoS. However, in off-peak periods, they automatically 
release exceeding resources, enabling 5G network slicing to achieve dynamic balance and automated 
resource allocation, enhancing the flexibility of the 5G network architecture [1]. For example, the Third 
Generation Partnership Project (3GPP) defines three service types for network slicing: Ultra-Reliable 
Low Latency Communications (URLLC), Massive IoT (MIoT) and Enhanced Mobile Broadband (eMBB). 
Scaling adjusts the capacity of individual slices, hosting network functions and applications (VNFs) in 
such a way that allows for the most efficient resource exploitation. In addition, 5G core network slicing 
specifies network services according to the functional and quality requirements of the use cases 
mentioned above. 

Horizontal scaling, or scaling out/in, involves adding or removing entire resource units, such as virtual 
machines (VMs) or containers. This approach is particularly suited for inter-slicing, where resources 
are shared across multiple slices to support various use cases. By expanding or contracting resources 
without disrupting individual slices, horizontal scaling helps balance load across slices, adapting to 
demand changes while supporting diverse applications on a shared infrastructure. 

Vertical scaling, or scaling up/down, increases or decreases resources allocated to an existing instance, 
allowing smoother adjustments within a single slice to meet specific demands without adding new 
units. This method is especially relevant for intra-slicing, where resources are optimized within an 
individual slice. Vertical scaling enables each slice to adjust its resources internally, meeting the unique 
requirements of its hosted applications or services. For example, a slice handling time-sensitive 
applications can scale up CPU or memory within that slice to ensure reliable performance during high 
load periods.  

To address the complexity of dynamic scaling and resource optimization across slices, NANCY employs 
DRL solutions in Section 4.2 and MADRL-based solutions in D3.4 and Section 2. This AI-driven approach 
enables decision-making across network slices, dynamically adjusting resources to ensure efficient, 
high-quality service delivery in response to shifting demands. 

2.2  Multi-agent Deep Reinforcement Learning (MADRL)-based Scaling 

2.2.1 Introduction to Markov Games and Multi-Agent Reinforcement Learning 

Markov Games (also known as stochastic games) extend the concept of Markov Decision Processes 
(MDPs) to a multi-agent setting, providing a formal framework for modelling strategic interactions 
between multiple decision-makers in a dynamic environment [2]. As a matter of fact, Markov Games 
represent the evolution of traditional game theory in mathematics, in which the players involved in 
the game can take only fixed (i.e.: based on predetermined strategy) decisions or actions, thus leading 
to an overall static shared optimization. With Markov Games, instead, it is possible to add a dynamic 
dimension to the game, thus making the state evolve based on the decisions made by the players at 
each time step. 
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A Markov game can be defined by the following tuple: 

𝑀𝑀𝑀𝑀  =  (𝑁𝑁,  𝑆𝑆,  𝐴𝐴𝑖𝑖,  𝑃𝑃,  𝑅𝑅𝑖𝑖,  𝛾𝛾) 

where: 

 𝑆𝑆  is the overall state space, identifying all the measurable quantities that the agents can take 
from the shared environment. Note that there may be a unique set of states for all the players, 
or each player may have its own private state space 𝑆𝑆𝑖𝑖. 

 𝐴𝐴𝑖𝑖  is the action space of agent 𝑖𝑖 , detailing the actions available to each agent. 
 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎1,  …  ,  𝑎𝑎𝑁𝑁|) is the transition probability function, determining the likelihood of 

moving from state 𝑠𝑠 to state 𝑠𝑠′ given the joint actions. 
 𝑅𝑅𝑖𝑖(𝑠𝑠,𝑎𝑎1, … ,  𝑎𝑎𝑁𝑁) is the reward function for player 𝑖𝑖 . 
 𝛾𝛾  ∈ [0,1] is the so-called discount factor, which weighs the importance of future rewards. 

In this concept, several agents, each with potentially opposing or complementary aims, interact with 
the same (shared) environment. These relationships can be cooperative (e.g., all agents share the same 
prize) [3], competitive (e.g., zero-sum games) [4], or mixed (e.g., combining cooperation and 
competition) [5]. Considering not just the dynamics of the environment, but also the decisions and 
behaviors of other agents, each agent seeks to maximize its own cumulative reward over time. In this 
setting, the concept of Markov game equilibrium typically refers to a Nash equilibrium, which occurs 
when no agent can improve its expected cumulative reward by unilaterally changing its policy, 
assuming the other agents' policies remain fixed [6]. 

One of the most common strategies to address and solve Markov Games is a subfield of Reinforcement 
Learning (RL), namely Multi-Agent Reinforcement Learning (MARL). Unlike single-agent RL, where the 
environment is often believed to be stationary, MARL brings additional complexity because each 
agent's activity dynamically affects the environment and the other agents' learning processes. Hence, 
in MARL, each DRL agent corresponds to a specific player and it can perform autonomous actions in 
the same environment, thus influencing the reward of the other players [7]. MARL presents some 
inherent difficulties: 

 From the standpoint of any one agent, the environment becomes non-stationary as each agent 
modifies its policy over time. 

 To learn about the environment and take advantage of the knowledge it has acquired, each 
agent has to explore it. This equilibrium is made more difficult in a multi-agent situation due 
to the existence of additional learning agents. 

 Agents must learn to coordinate their behaviors in cooperative situations, thus requiring a 
communication infrastructure. Layers of complexity are added because agents would have to 
exchange information in order to coordinate their tactics. 

 In competitive circumstances, agents must predict the actions of their opponents, making 
learning analogous to strategic thinking or game theory. 

To account for the presence of numerous agents, MARL algorithms expand classical RL techniques such 
as policy gradient methods or Q-learning. Although some methods consider other agents as part of the 
surroundings and ignore their strategic behavior, other sophisticated methods actively simulate other 
agents' policies or behaviors to enhance learning outcomes.  

The disciplines in which Markov games and MARL are applied are numerous and include (i) robotics, 
where groups of robots may have to coordinate to satisfy some duties; (ii) economics, to describe 
strategic interactions in markets or negotiations; (iii) video games, in which agents have to cooperate 
or compete with human players; and (iv) resource management, where multiple agents (e.g., servers, 
machines, users) need to collaboratively or competitively allocate, distribute, or manage limited 
resources over time, with the goal of optimizing system-wide or individual performance metrics. 
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In particular, resource management problems often involve balancing the competing interests of 
different agents while managing shared, finite resources. MARL provides a powerful framework for 
addressing these challenges by enabling agents to learn cooperative or competitive strategies in 
complex, dynamic environments [8]. 

To account for the presence of numerous agents, MARL algorithms expand classical RL techniques, by 
defining proper rules for exchanging information about the state space, in the case of cooperative 
games. To accomplish T4.2 missions, we are going to explore Deep Q-Networks (DQN) and Proximal 
Policy Optimization (PPO) as RL algorithms applied to multi-agent resource management practices. 

With DQN [9], an agent learns an optimal policy by estimating the Q-value function, which calculates 
the predicted future rewards for actions in various states. DQN is a value-based reinforcement learning 
method. DQN has been effectively used for numerous RL tasks, including multi-agent scenarios, and it 
approximates the Q-value function using deep neural networks. In MARL, every agent keeps track of 
its own Q-network, learning by applying the Bellman equation to update its Q-values. Based on these 
values, the policy is determined (usually via ϵ-greedy action selection). Its primary benefits stem from 
the fact that DQN is very efficient in discrete action spaces, which is the situation for most resource 
management scenarios and can scale well to situations with vast state spaces by utilizing neural 
networks to approximate Q-values. 

On the contrary, PPO [10] is a policy-based algorithm, specifically a sort of policy gradient method. By 
adjusting a policy network's parameters, PPO directly optimizes the policy as opposed to learning a Q-
value function. To guarantee that policy updates are not excessively big, PPO employs a clipped 
surrogate objective function, which aids in stabilizing training. The clipped objective function of PPO 
lowers the possibility of abrupt updates, improving convergence qualities and learning stability. PPO's 
main advantage is that it performs well in continuous action spaces, which increases its adaptability in 
a larger range of MARL problems. By sampling trajectories over full episodes and using them for 
learning, PPO promotes exploration and is especially helpful in cooperative multi-agent systems. 

The performance of these two RL algorithms will be compared in the next section of the present 
deliverable, whereas the next subsection will show how tools based on Markov games and MARL can 
be of great use in solving typical resource management problems. 

2.2.2 MADRL-based Solution for Resource Management  

As shown in the previous section, MARL extends the traditional RL framework by involving multiple 
autonomous agents, each with the capacity to learn, adapt, and make decisions independently, while 
interacting with a shared environment. These agents have the goal of maximizing their individual or 
collective cumulative reward over time. The relevance of this discipline in the resource management 
domain lies in its decentralized nature, which allows it to operate effectively in distributed and highly 
complex environments where centralized control is impractical or inefficient. This is particularly 
significant in scenarios involving the management of computational, network, and energy resources, 
such as in modern wireless communication systems, cloud infrastructures, and the Internet of Things 
(IoT), where various performance metrics, including quality of service (QoS), energy efficiency, and 
latency, must be optimally balanced to meet ever-increasing demands.  

In this sense, the explosive increase in the number of devices, the advent of new high-demand 
applications, and the emergence of heterogeneous networks (HetNets) pose a significant challenge 
[11]. 

Significant issues arise in managing computational and energy resources in distributed systems and 
networks, which MARL can handle well. Future wireless networks, with their heterogeneity and 
scalability, will require efficient management of numerous devices with differing computational and 
energy needs, supporting applications like autonomous vehicles and mobile edge computing. 
Conventional centralized control techniques have trouble scaling and optimizing in real-time, which 
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frequently results in inefficient resource allocation and excessive energy use. On the other hand, MARL 
allows agents to learn and adjust in response to their interactions with the environment, allowing them 
to optimize tasks like energy consumption and spectrum allocation even in unpredictable and dynamic 
environments. The decentralized method of MARL provides scalable and adaptable resource 
management solutions, especially in complex, multi-objective situations, and is well-suited to 
scenarios in which several agents cooperate or compete. 

Several studies have applied MARL to optimize resource management across various domains. One of 
the areas is resource management in computational systems, particularly in telecommunication 
environments. In these contexts, dynamic resource allocation is crucial for optimizing the use of CPU, 
memory, and bandwidth while reducing operational costs. For instance, in edge computing, the 
authors in [12] propose a Decomposed Multi-Agent DDPG (DMDDPG) framework, where agents 
distributed across edge nodes collaboratively learn efficient resource allocation policies, leading to 
improved task execution times and enhanced resource utilization in dynamic environments. 
Differently, the work in [13] presents a scalable MARL framework for distributed wireless resource 
management. Each RL agent makes independent, simultaneous decisions regarding user scheduling 
and power control, showing significant robustness to environmental changes, and achieving 
performance levels comparable to centralized systems while maintaining scalability. 

Furthermore, multi-access edge computing (MEC) powered by unmanned aerial vehicles (UAVs) has 
emerged as a promising solution for future space-aerial-terrestrial integrated communications. In 
response, the authors in [14] propose a Federated Multi-Agent Reinforcement Learning (MAFRL) 
algorithm. This semi-distributed framework jointly optimizes resource allocation, user association, and 
power control, resulting in a 23% reduction in operation time compared to centralized algorithms. 

In the Industrial Internet of Things (IIoT), resource allocation for edge devices is significantly enhanced 
by MARL. For instance, the work described in [15] integrates Deep Reinforcement Learning (DRL) with 
multi-agent systems to optimize the allocation of computational resources and bandwidth, aiming to 
maximize resource efficiency in response to dynamic system changes. This approach effectively 
reduces network traffic, computational load, and processing time, thereby ensuring minimal resource 
consumption and improving overall performance, particularly in terms of latency and error rates. 
Conversely, [16] explores a different angle by employing a Proximal Policy Optimization (PPO)-based 
MARL algorithm within a blockchain-supported hierarchical digital twin IoT framework. Here, the focus 
is on optimizing resource allocation for IoT devices by minimizing system delay and energy 
consumption, while simultaneously ensuring system reliability and learning accuracy. This balance 
between low-latency communication and energy efficiency highlights the versatility of MARL in 
managing resources effectively within increasingly complex and resource-constrained environments. 

In B5G networks, the rise of interconnected subnetworks presents new challenges, particularly with 
regard to interference management. To address this, the authors in [17] propose an intelligent radio 
resource management method based on MARL. This approach simplifies resource management by 
using only the received signal strength indicator (RSSI) for each channel, thus avoiding the complexity 
of gathering channel gain measurements, which is a significant advancement for efficient dynamic 
resource allocation. 

The versatility of MARL in addressing resource allocation challenges is evident across various domains, 
as illustrated by several recent studies. 

In the automotive industry, the article [18] explores resource allocation optimization in connected and 
autonomous vehicles (CAVs). It introduces a Secondary Resource Allocation (SRA) mechanism that 
utilizes a dual time scale for resource distribution among vehicles. By modelling the service process as 
a queuing system, each task request is treated as an individual agent, and the MARL algorithm is 
employed to coordinate resource allocation effectively based on vehicle states and queue conditions. 
The simulation results reveal a notable 13% increase in task completion rates. 
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Similarly, the article [19] addresses the intricate challenges of joint spectrum and power allocation 
within vehicular communication networks, critical for enhancing efficiency in autonomous driving 
through cooperation between vehicles and infrastructure. The authors introduce a novel methodology 
as complete-game MARL (CG-MARL), which combines MARL with cooperative stochastic game theory, 
enhancing stability and scalability in resource allocation as the number of vehicles increases. It also 
incorporates mean-field game (MFG) theory to reduce computational resource consumption while 
maintaining near-optimal performance. 

In the context of energy management, the article [20] tackles the complexities faced in multi-building 
multi-energy virtual power plants. The authors present an innovative approach that integrates a multi-
agent transformer with a parallel adapter module, facilitating streamlined coordination among 
building agents through sequential modelling. 

Eventually, authors in [21] investigate the challenges associated with resource management in 
Serverless Function-as-a-Service (FaaS) environments to mitigate tail latency and enhance resource 
utilization. They highlight the limitations of traditional single-agent reinforcement learning algorithms 
and propose MA-PPO, a multi-agent reinforcement learning algorithm built on Proximal Policy 
Optimization (PPO), aimed at improving overall performance. 

These articles highlight the broad applicability of MARL in optimizing resource allocation across 
different sectors. By using multi-agent systems and advanced algorithms, MARL improves efficiency 
and scalability while addressing complex challenges. This versatility showcases MARL's potential to 
drive innovation and enhance computational and network resource management in future 
technologies. 
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3. Virtualization Platform 

3.1  Scaling With Slice Manager  

3.1.1. Introduction of Slice Manager 

The slice composition workflow in the ETSI framework provides a systematic methodology for the 
creation and management of network slices, which is essential for ensuring dynamic and efficient 
network operations. This process is facilitated by a specialized tool known as the Slice Manager (SM), 
which executes a series of well-defined steps. The workflow commences with (i) the allocation of 
compute resources and chunks. This step involves integrating a Kubernetes (K8s) cluster into the SM 
using its Kubeconfig file, validating connectivity and credentials, and subsequently retrieving and 
storing relevant resource information in the database. Each compute chunk corresponds to a K8s 
namespace configured with specific allocations of computing resources, memory, and storage. The 
next phase (ii) addresses the setup of network resources and chunks, which ensures that the network 
slice possesses the necessary connectivity infrastructure, typically in the form of a VLAN. Following 
this, (iii) radio resources and chunks are established, specifying the required wireless functionalities, 
such as physical resource blocks (PRB) and cell frequencies (ARFCN). Once all resources are configured, 
the process proceeds to (iv) slice creation, where these discrete chunks are logically integrated into a 
cohesive network slice through their associated chunk IDs. Upon successful slice creation, the 
workflow transitions to (v) activation, making the slice fully operational and ready for deployment. The 
final step (vi) involves application instantiation within the slice, which requires onboarding the 
application on the Open Source MANO (OSM) platform. This step enables the provision of specific 
services and functionalities aligned with the network's requirements. This structured workflow ensures 
that all elements of the network slice are meticulously planned, integrated, and executed, thus 
supporting robust and scalable network management solutions. 

 
3.1.2. Scaling API 

The Slice Manager enables up/down scaling computing, memory, and storage resources dedicated to 
an active network slice by modifying the Edge/Cloud chunk quotas through PUT calls, as shown in 
Figure 1. 

 

Figure 1: PUT calls for enabling scale up/down resources in Slice Manager API. 

The calls’ parameters are provided in this excerpt from the API. Yaml, as presented in Figure 2. 

  /compute_chunk/{compute_chunk_id}/cpus: 
    put: 
      tags: 
        - Edge/Cloud Compute Chunk 
      summary: Modify a K8s project CPU quota 
      description: >- 
        K8s Project CPU quota modify method 
      operationId: modifyCpuComputeChunk 
      parameters: 
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      - in: path 
        name: compute_chunk_id 
        required: true 
        schema: 
          type: string 
      requestBody: 
        description: The body of the request 
        required: true 
        content: 
          application/json: 
            schema: 
              $ref: "#/components/schemas/ComputeChunkNewCPUInput" 
      responses: 
        '204': 
          description: Request succeeded 
        '404': 
          $ref: '#/components/responses/NotFound' 
        '501': 
          $ref: '#/components/responses/NotImplemented' 
   
  /compute_chunk/{compute_chunk_id}/ram: 
    put: 
      tags: 
        - Edge/Cloud Compute Chunk 
      summary: Modify a K8s project RAM quota 
      description: >- 
        K8s Project RAM quota modify method 
      operationId: modifyRamComputeChunk 
      parameters: 
      - in: path 
        name: compute_chunk_id 
        required: true 
        schema: 
          type: string 
      requestBody: 
        description: The body of the request 
        required: true 
        content: 
          application/json: 
            schema: 
              $ref: "#/components/schemas/ComputeChunkNewRAMInput" 
      responses: 
        '204': 
          description: Request succeeded 
        '404': 
          $ref: '#/components/responses/NotFound' 
        '501': 
          $ref: '#/components/responses/NotImplemented' 
   
  /compute_chunk/{compute_chunk_id}/storage: 
    put: 
      tags: 
        - Edge/Cloud Compute Chunk 
      summary: Modify a K8s project storage quota 
      description: >- 
        K8s Project Storage quota modify method 
      operationId: modifyStorageComputeChunk 
      parameters: 
      - in: path 
        name: compute_chunk_id 
        required: true 
        schema: 
          type: string 
      requestBody: 
        description: The body of the request 
        required: true 
        content: 
          application/json: 
            schema: 
              $ref: "#/components/schemas/ComputeChunkNewStorageInput" 
      responses: 
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        '204': 
          description: Request succeeded 
        '404': 
          $ref: '#/components/responses/NotFound' 
        '501': 
          $ref: '#/components/responses/NotImplemented' 

Figure 2: Parameters from the API 

3.2  Scaling With Maestro  

Maestro is a prototype service orchestrator for managing the lifecycle of end-to-end services atop 
geo-distributed heterogeneous infrastructures. 

Today's infrastructures expand towards the end users, where numerous Internet of Things (IoT) and/or 
user equipment (UE) devices require connectivity with local (edge) or remote (far in the cloud) services. 
This connectivity may often be provided via cellular (5G and beyond) networks or low-power IoT 
networks integrated with multiple geo-distributed (edge and core) cloud infrastructures. 

3.2.1. Introduction of Maestro Orchestrator 

Maestro is a cloud-native service orchestrator that provides automated service deployment, 
localization, lifecycle management, and scaling, while dynamically exploiting the underlying network 
services for optimizing service performance, security, and scalability. During runtime, Maestro also 
implements a policy framework that associates service instances with high-level policies. 

Such complex ecosystems pose several challenges in the way service onboarding, deployment, and 
lifecycle management (LCM) are performed in an end-to-end fashion, mainly because: 

• Modern services are structured as collections of independently deployable and loosely 
coupled microservices. 

• Modern services may span across multiple administrative domains - managed by different 
owners - who often do not trust each other. 

• Modern services are often associated with service level agreements (SLAs), which pose strict 
compute (i.e., CPU, main memory, storage) and network (i.e., latency, throughput, packet loss) 
requirements. 

Maestro is a holistic end-to-end service orchestration platform that aims to bridge these gaps by 
offering zero-trust multi-domain service orchestration abstractions to various stakeholders. 
Specifically, Maestro addresses requirements for the following stakeholders: 

Infrastructure Owners:   

• Allows infrastructure owners/providers to register new (private) domains and services under 
the platform’s realm through a programmable zero-trust connectivity (ZTC) fabric. 

• Manages services across multiple geo-distributed “non-trusted” domains acting as the root of 
trust. 

Service Providers: 

• Allows service providers to package distributed services as if they are centralized, thus moving 
complexity to the platform. 

• Offers a single set of service management APIs, no matter how many domains an application 
expands to. 

• Supports state-of-the-art service packaging tools (i.e., Kubernetes, helm, and docker-
compose). 

https://kubernetes.io/
https://helm.sh/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
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• Provides programmable connectivity services across clusters/domains, giving a single-cluster 
illusion to the users. 

• Provides a real-time view of the deployed service instances’ state. 
• Provides knobs to change a service instance’s runtime state via a service update API and/or 

real-time policies. 
Relevant Platform Providers: 

• Decouples service and resource management via integration with operations support systems 
(OSS) using open standardized APIs. In the NANCY project, Maestro comes with ETSI OpenSlice 
(OSL SDG) only when it comes to computing resources. 

• Maestro deals with service management.   
• Delegates resource management to OSS (e.g.,  ETSI OpenSlice).   
• Manages multiple OSS instances.   
• Integrates with vanilla container orchestration platforms (i.e., Kubernetes). 

 
3.2.2. Internal Architecture, Technologies, and Baseline Assets 

Figure 2 depicts a high-level functional architecture of Maestro that will be used as a baseline platform 
for NANCY. At the northbound API, Maestro expects service providers to package their services in one 
or more containers forming a service graph. Once a containerized service is available, Maestro offers 
a UI (and a northbound API) that allows service providers to onboard the containerized service in an 
intuitive manner (step 1 in Figure 2). In step 2, a complete service is declared in Maestro’s language, 
and service providers can order an instance of this service. This requires Maestro to create a service-
level slice (step 3 in Figure 2), formulate a slice intent message towards a specific OSS (step 4 in Figure 
2), and dispatch this slice intent message to the underlying OSS (step 5 in Figure 2). 

Note that steps 3-5 are necessary for a service deployment as Maestro is a service-level orchestrator 
and, thus does not have a direct view of the underlying infrastructure (only infrastructure-level does 
have such view). For this reason, Maestro requests a certain amount of computing and network 
resources (i.e., a slice) to be allocated by an OSS, on top of which Maestro performs service 
deployment. When the underlying OSS allocates the requested slice (step 6 in Figure 2), the slice is 
returned to Maestro (step 7 in Figure 2) and service deployment begins. In this step, Maestro takes 
control of the allocated slice by connecting to the designated endpoints of the virtual infrastructure to 
initiate service deployment (step 8 in Figure 2). Maestro allows service providers to deploy their 
services atop both Infrastructure as a Service (IaaS) platforms, such as OpenStack and Platform as a 
Service (PaaS) platforms, such as Kubernetes. Maestro’s deployment engine spawns the appropriate 
containers in the case of Kubernetes or Virtual Machines (VMs) in the case of IaaS platforms and 
requests the monitoring module to deploy its monitoring routines (step 9 in Figure 2). Finally, during 
service runtime, Maestro invokes a dedicated LCM component for managing the lifecycle of deployed 
service instances, as shown in step 10 in Figure 3. 

https://osl.etsi.org/
https://osl.etsi.org/
https://kubernetes.io/
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Figure 3: Maestro’s high-level architecture. 

3.2.3. Functionalities 

Table 1 presents the key functional requirements of Maestro for a successful integration with the 
rest of NANCY’s ecosystem. 

Table 1: Maestro’s functional requirements. 

FR-ID FR-Description Related Module(s)/ 
Component(s) 

FR1 Access to the NANCY services repository through an API NANCY services 
repository 

FR2 Offer NANCY end user Service Exposure set of APIs through TM 
Forum’s service catalogue API (northbound/user facing API) End Users 

FR3 Support TM Forum’s service order and inventory APIs in 
collaboration with OpenSlice (southbound API) OpenSlice 

FR4 Manage cloud applications through an API on each testbed Testbeds 
FR5 Manage telemetry agents per application component Testbeds 
FR6 Consume telemetry in Prometheus format Testbeds 
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3.2.4. External APIs 

Maestro requires several external interfaces that enable communication with adjacent components 
for service orchestration, data collection, and consumption of reusable artifacts. These interfaces were 
presented in Deliverable D6.1 - Β-RAN and 5G End-to-end Facilities Setup (Section 4, Table 4-1), and 
include: 

• The end user Service Exposure (BSS) set of APIs through NIS1 
• The Resource Service Exposure set of APIs through NIS2 
• The NANCY Service Repository and Registry set of APIs through NIS3 

3.2.5. Maestro Architecture in NANCY 

The final form of NANCY’s end-to-end service orchestrator (Maestro1) is depicted in Figure 4. At the 
northbound, Maestro exposes a set of standardized open APIs based on TMForum, to facilitate 
interaction with stakeholders (e.g., end-users, service providers, etc.) or peering systems (e.g., an 
operations support system (OSS), such as ETSI OpenSlice2) 

 

Figure 4: NANCY End-to-end Service Orchestrator (Maestro). 

The internal components of the Maestro orchestrator are summarised in Table 2, where relevant 
descriptions and useful references are provided for further clarification. 

Table 2: Maestro software modules used in NANCY 

Software module Description 

API Gateway A thin entry-point to the Maestro TMF APIs – based on Kong3 – which 
dispatches input requests to the correct TMF API endpoint. 

TMF API The entire set of TMF APIs supported by Maestro are highlighted in different 
colours according to Figure 3 as follows: 

 
1 UBITECH, “Maestro open documentation,” [Online]. Available: https://maestro-mkdocs.readthedocs.io/ 
2 ETSI, “OpenSlice (OSL) Software Development Group (SDG),” [Online]. Available: https://osl.etsi.org/ 
3 Kong Inc., “Kong Gateway: Simplify API Management. Unlock AI Innovation,” [Online]. Available: 
https://konghq.com/ 

https://maestro-mkdocs.readthedocs.io/
https://osl.etsi.org/
https://konghq.com/
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(i) onboarding services into various catalogs and categories based on TMF 633 
Service Catalog Management API [22]. 
(ii) ordering services from the catalog(s) based on TMF 641 Service Ordering 
Management API [23]. 
(iii) observing the service instances’ lifecycle based on TMF 638 Service 
Inventory Management API [24]. 
(iv) onboarding resources into various catalogs and categories based on TMF 
634 Resource Catalog Management API [25]. 
(v) ordering resources from the catalog(s) based on TMF 652 Resource 
Ordering Management API [26]. 
(vi) observing the resource instances’ lifecycle based on TMF 639 Resource 
Inventory Management API [27]. 
(vii) managing Maestro stakeholders (both individuals and organisations) 
using the TMF 632 Party Management [28] and TMF 669 Party Role 
Management API [29]. 
(viii) managing the points of presence of infrastructure resources (available 
locations where Maestro can order services from OpenSlice) using the TMF 
674 Geographical Site Management [30] and TMF 673 Geographical Address 
Management API [31]. 

SONATA 

The heart of Maestro; SONATA employs RedHat’s Kogito4 open-source 
Business Process Model and Notation (BPMN) software library to encode 
service orchestration workflows into BPMN diagrams that describe the exact 
lifecycle of service specifications, service orders, and service instances. 

Helm Engine 
The component that undertakes to translate every user-defined service into 
deployable service descriptors that can be applied to an underlying (set of) 
cluster(s) via Helm5. 

OSS Client 

The component that undertakes to interact with one or more OpenSlice6 
instances to order resources for the end-user services [32]. To allocate 
compute resources, Maestro consumes a Kubernetes-as-a-Service (K8s-aaS) 
service from OpenSlice, while for 5G-enabled services Maestro consumes a 
5G-aaS service from OpenSlice (5G-aaS not available for NANCY). 

ZTC Client 

The component that undertakes to interconnect Maestro with remote –
private (sitting within a restricted domains) – testbeds where Maestro is 
requested to deploy services. This component is based on OpenZiti zero-trust 
platform7. For example, this component provides Maestro access to private 
Kubernetes8 clusters allocated by OpenSlice across NANCY testbeds. 

Telemetry Client 
A thin component – based on Prometheus9 – that undertakes to register 
service telemetry data. This data is useful for service observation, 
maintenance, and policy execution. Integrates with AI & Analytics. 

Visualization Client A thin component that undertakes to visualize service telemetry data for 
Maestro stakeholders. This component is likely to be useless for NANCY as the 

 
4 RedHat, “Kogito Cloud-Native Business Automation”, Available: https://kogito.kie.org/ 
5 Cloud Native Computing Foundation, “Helm: The package manager for Kubernetes”, Available: 
https://helm.sh/ 
6 ETSI, “OpenSlice (OSL) Software Development Group (SDG),” [Online]. Available: https://osl.etsi.org/ 
7 NetFoundry, “OpenZiti: Open-Source Zero-Trust Platform,” [Online]. Available: https://openziti.io/ 
8 Cloud Native Computing Foundation, Kubernetes, “Production-Grade Container Orchestration,” [Online]. 
Available: https://kubernetes.io/ 
9 Cloud Native Computing Foundation, “Prometheus: From metrics to insight,“ [Online]. Available: 
https://prometheus.io/ 

https://kogito.kie.org/
https://helm.sh/
https://osl.etsi.org/
https://openziti.io/
https://kubernetes.io/
https://prometheus.io/
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service telemetry will be visualized through the NANCY AI & Analytics 
component. 

Database 

A PostgreSQL10 database that persists the entire TMF schema (service, party, 
geographic site/address, resource schema) as well as state information of 
core Maestro components (i.e., SONATA, Helm Engine, OSS Client, and ZTC 
Client). 

Authentication A Keycloak11 instance is used to authenticate users against Maestro, before 
allowing these users to access the Maestro Northbound APIs. 

Logging 

A central component – based on Grafana Loki12 – that aggregates, stores, and 
queries log entries from every Maestro microservice. It integrates well with 
Grafana13 and Prometheus14 allowing to visualize logs and generate alerts out 
of these logs respectively. 

Tracing 

A central component – based on Grafana Tempo15 – that integrates with 
popular open-source tracing protocols, such as OpenTelemetry16, to collect 
and persist traces from every Maestro microservice. It integrates well with 
Grafana13 and Prometheus14 allowing to visualize traces and generate alerts 
out of these traces respectively. 

Monitoring 
An open-source cloud-hosted monitoring and alerting system – based on 
Prometheus14 – that is enhanced with long-term persistence and high-
availability features using Grafana Mimir17. 

Dashboard 
An external dashboard that leverages Grafana13 to integrate with (i) Grafana 
Loki12 for visualizing service logs, (ii) Grafana Tempo15 for visualizing service 
traces, and (iii) Grafana Mimir17 for visualizing service SLAs. 

Message Bus A central component – based on Apache Kafka18 – to enable asynchronous 
message exchange and event management among all Maestro microservices. 

 

3.2.6. Final Integration Endpoints 

Maestro supports and implements the endpoints summarized in Table 3, for more details about the 
NANCY Interface Set (NIS) and NANCY Interface (NI) as well as for a visual representation of these 
interfaces with the Functional and deployment view of the NANCY architecture annotated with 
interface IDs, see D6.1 (Figure 2-1 and Table 4-1.). 

 
10 PostgreSQL, “The World's Most Advanced Open-source Relational Database,” [Online]. Available: 
https://www.postgresql.org/ 
11 Cloud Native Computing Foundation, “Keycloak: Open-source Identity and Access Management,” [Online]. 
Available: https://www.keycloak.org/ 
12 Grafana Labs, “Grafana Loki: Log monitoring for faster troubleshooting at scale,” [Online]. Available: 
https://grafana.com/oss/loki/ 
13 Grafana Labs, “Grafana: Visualize your data, optimize your performance,” [Online]. Available: 
https://grafana.com/oss/grafana/ 
14 Cloud Native Computing Foundation, “Prometheus: From metrics to insight,“ [Online]. Available: 
https://prometheus.io/ 
15 Grafana Labs, “Grafana Tempo: Distributed tracing system for better application performance,” [Online]. 
Available: https://grafana.com/oss/tempo/ 
16 Cloud Native Computing Foundation, “OpenTelemetry: High-quality, ubiquitous, and portable telemetry to 
enable effective observability,” [Online]. Available: https://opentelemetry.io/ 
17 Grafana Labs, “Grafana Mimir: Open-source, horizontally scalable, highly available, multi-tenant TSDB for long-
term storage for Prometheus,” [Online]. Available: https://grafana.com/oss/mimir/ 
18 Apache, “Kafka: Open-source distributed event streaming platform,” [Online]. Available: 
https://kafka.apache.org/ 

https://www.postgresql.org/
https://www.keycloak.org/
https://grafana.com/oss/loki/
https://grafana.com/oss/grafana/
https://prometheus.io/
https://grafana.com/oss/tempo/
https://opentelemetry.io/
https://grafana.com/oss/mimir/
https://kafka.apache.org/
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Table 3: NANCY interfaces implemented by Maestro  

Interface-ID Related Modules Type 
NIS1 Maestro, BSS Service exposure to NANCY stakeholders 
NIS2 Maestro, OSS (OpenSlice) Service management API 

NIS3 Maestro, CI/CD Platform, OSS 
(OpenSlice) Service artefacts management API 

NIS5 Maestro, OSS (OpenSlice), Telemetry, 
AI, Analytics Telemetry and monitoring API 

NIS6 Maestro, OSS (OpenSlice), Compute 
controllers Service deployment API 

Maestro implements the above interfaces as follows: 

• NIS1 - Service Exposure to NANCY Stakeholders: integration is performed via a production 
Maestro swagger API dedicated to NANCY-related services. Table 5 shows the endpoints that 
Maestro exposes to NANCY stakeholders via NIS1. 

• NIS2 - Service Management API with OSS (OpenSlice): Through this interface, Maestro 
communicates with the OpenSlice Operations Support System (OSS) to manage service 
deployment. By leveraging OpenSlice's capabilities, Maestro can request the allocation of 
necessary compute resources, supporting orchestrated deployments without directly 
interacting with the infrastructure. 

• NIS2 - Service Management API with OSS (OpenSlice): Through this interface, Maestro 
communicates with the OpenSlice Operations Support System (OSS) to manage service 
deployment. By leveraging OpenSlice's capabilities, Maestro can request the allocation of 
necessary compute resources, supporting orchestrated deployments without directly 
interacting with the infrastructure. 

• NIS3 - Service Artefacts Management API: This interface facilitates interactions between 
Maestro, the CI/CD platform, and OSS, enabling seamless management of service artifacts. It 
ensures that the necessary service components and configurations are available and updated 
as needed across the deployment lifecycle. 

• NIS5 - Telemetry and Monitoring API: Maestro integrates with monitoring systems such as 
Prometheus, allowing it to collect and register service telemetry data. This interface is crucial 
for real-time observation and policy-driven adjustments, maintaining optimal performance 
and supporting analytic insights. 

• NIS6 - Service Deployment API with Compute Controllers: Finally, Maestro utilizes this interface 
to execute service deployment commands, translating user-defined service descriptors into 
Helm-based deployment specifications. This enables scalable service orchestration across 
various platforms, including Kubernetes clusters, which is essential for flexible deployment on 
cloud or edge infrastructures 

Table 4: Endpoints exposed by Maestro 

Endpoint Title Description Version 
/tmf-api/service-catalog-
management/v4 

633 Service Catalog 
Management 

Provides a catalog of services 4.0.0 
/tmf-api/service-category-
management/v4 

Provides a category of services that belongs 
to a certain catalog 4.0.0 

/tmf-api/service-candidate-
management/v4 

Provides a candidate of services that belongs 
to a certain category 4.0.0 

/tmf-api/service-specification-
management/v4 

Provides a specification of services that maps 
to a certain candidate 4.0.0 

https://maestro.euprojects.net/tmf-api/q/swagger-ui/
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/tmf-api/service-order-
management/v4 

641 Service Order 
Management 

Provides the ability to query and manipulate 
active service instances 4.1.0 

/tmf-api/service-inventory-
management/v4 

638 Service Inventory 
Management 

Provides the ability to query and manipulate 
active service instances 4.0.0 

/tmf-api/resource-catalog-
management/v4 

634 Resource Catalog 
Management 

Provides a catalog of resources 4.1.0 

/tmf-api/resource-category-
management/v4 

Provides a category of resources that belongs 
to a certain catalog 4.1.0 

/tmf-api/resource-candidate-
management/v4 

Provides a candidate of resources that 
belongs to a certain category 4.1.0 

/tmf-api/resource-
specification-management/v4 

Provides a specification of resources that 
maps to a certain candidate 4.1.0 

/tmf-api/resource-order-
management/v4 

652 Resource Order 
Management 

Provides the ability to manage resource 
orders that comprise of one or more 
resource specifications 

4.0.0 

/tmf-api/resource-inventory-
management/v4 

639 Resource 
Inventory 
Management 

Provides the ability to query and manipulate 
active resource instances 4.0.1 

/tmf-api/party-
management/individual/v4 652 Party 

Management API 

Manage individual parties 4.0.0 

/tmf-api/party-
management/organisation/v4 

Manage corporate parties (i.e., 
organizations) 4.0.0 

/tmf-api/party-role-
management/v4 

669 Party Role 
Management API 

Manage party roles 4.0.0 

/tmf-api/geographic-site-
management/v5 

674 Geographic Site 
Management API 

Manage resource locations at abstract sites, 
where each site may contain a list of 
geographic addresses 

5.0.0 

3.2.7. Degrees of Freedom of the Slice Manager 

The degrees of freedom in resource scaling and allocation, including vertical scaling and intra-slice 
resource elasticity, are actually implemented by OpenSlice within the Maestro framework. While 
Maestro acts as the service orchestrator, coordinating the lifecycle of services, it delegates the direct 
management of resources (like compute, memory, and storage) to OpenSlice, which functions as the 
underlying resource orchestrator. 

In this setup: 

• Maestro handles high-level service orchestration, policy enforcement, and interaction with 
external components (e.g., via APIs for monitoring and telemetry). 

• OpenSlice manages resource provisioning at the infrastructure level (like Kubernetes 
clusters), enabling Maestro to apply vertical scaling, resource elasticity, and specific 
deployment requirements as defined in the NANCY project. 

Thus, Maestro leverages OpenSlice's capabilities to perform the actual resource adjustments required 
by service instances. 

3.3.  Metrics for Characterizing Trade-Offs  

The trade-off between efficiency and performance in virtualized computing environments is closely 
tied to CPU and memory metrics such as limits, usage, and utilization, along with the application’s 
response time. For example, high CPU utilization can indicate efficient resource usage, but when 
utilization approaches or exceeds limits, the environment, such as a slice, may begin throttling the 
system. This throttling leads to a decrease in resource availability, causing degraded performance and 
an increase in application response times. Therefore, balancing CPU limits and utilization is crucial to 
maintaining performance without overloading the system, ensuring that applications remain 
responsive while maximizing efficiency. Similarly, in network environments, the balance between 
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efficiency and resilience relies on two critical metrics: throughput and fairness. These metrics are 
essential for managing network load effectively while ensuring stable performance and equitable 
resource distribution across network paths. Maximizing throughput reflects effective resource usage 
across paths, but without fairness, certain paths can become congested, leading to performance 
degradation. Ensuring fairness alongside throughput prevents bottlenecks and maintains consistent 
service levels across the network. Below are the several metrics for characterizing such trade-offs that 
are used in Section 4: 

• Response Time: This metric tracks how long the application takes to respond to a request. It's 
a direct reflection of performance from the user's perspective. As CPU and memory resources 
become constrained, response times generally increase due to throttling or resource 
exhaustion. 

• CPU Utilization: CPU Utilization measures how much of the allocated CPU resources are being 
used by the application. High utilization often indicates efficient resource use but can lead to 
throttling if the demand exceeds the allocated limits. This results in degraded performance, 
visible through longer response times. Maintaining a balance is crucial to avoid over-
provisioning while preventing throttling. 

• Memory Utilization: Similar to CPU, memory utilization tracks how much memory the 
application is consuming. Applications that exceed their memory limits can face performance 
penalties, such as garbage collection or out-of-memory (OOM) kills, which severely impact 
response times and stability. 

• CPU/Memory Limits: These represent the upper bound of resources the Kubernetes scheduler 
allows the pod to consume. When utilization approaches or exceeds these limits, the system 
may begin throttling, reducing performance. Reinforcement learning in the setup helps adjust 
these limits dynamically based on historical data and current usage trends to balance efficiency 
and performance. 

• Available CPU/Memory in the Environment: This tracks the remaining capacity in the 
application environment. Monitoring the available CPU and memory ensures that scaling 
decisions are made with an awareness of application-level resource availability. 

• Throughput: This metric measures the volume of data successfully transmitted across a 
network path within a given time frame. High throughput signifies efficient resource use, 
which contributes to overall network performance. However, optimizing throughput alone can 
lead to uneven path utilization, potentially causing congestion on overused paths. Balancing 
throughput across all paths ensures a smooth data flow without overloading specific 
segments. 

• Fairness: Fairness evaluates the equitable distribution of network resources across paths, 
preventing any single path from becoming overly congested. This metric is critical in 
maintaining resilience, especially under varying traffic conditions, as it ensures consistent 
performance across the network by distributing load evenly. 
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4. Novel Resource Elasticity Mechanisms 

In this section, we elaborate on innovative resource elasticity techniques for time-critical tasks in 
Section 4.1. Moreover, we provide a detailed explanation of the multi-hop path allocation algorithm, 
PHual in Section 4.2, which efficiently manages the spectral resource. Finally, the computation 
elasticity technique is presented in Section 4.3. 

4.1 Scheduling for Time-Critical Tasks 

In NANCY, the scheduling of time-critical tasks relies on the SCHED_DEADLINE scheduler of Linux [33]. 
SCHED_DEADLINE is a reservation-based scheduler that allows the provision of QoS guarantees to 
applications that implement the Constant Bandwidth Server reservation algorithm [34], which in turn 
relies on the Earliest Deadline First (EDF) scheduling algorithm. SCHED_DEADLINE is an integral part of 
the Linux mainline kernel, hence available to all Linux users. SCHED_DEADLINE allows reserving a 
fraction of the CPU bandwidth under bounded service latency by configuring two parameters: a budget 
Q (also called runtime) and a period P. SCHED_DEADLINE ensures that, every P time units, Q time units 
of execution time budget are provided to the target application. The target application can consist of 
Linux threads and QEMU/KVM virtual machines. Containers are also compatible thanks to an out-of-
tree patch [35], which has been extended in the context of NANCY to be used with newer kernel 
versions. SCHED_DEADLINE is not only a resource partitioning mechanism: it also acts as a resource 
enforcer, ensuring that no more than Q time units are allocated every period P. This allows multiple, 
untrusted, applications to be collocated within the same computing infrastructure (e.g., CPU cores). 
Parameters Q and P are equivalently mapped to two other parameters: the CPU bandwidth assigned 
to the reservation 𝛼𝛼 = 𝑄𝑄/𝑃𝑃 and the worst-case service latency 𝛥𝛥 = 2 ⋅ (P − Q) with which the target 
application can be provided access to the CPU. 

Scaling SCHED_DEADLINE reservations.  This section describes how to flexibly manage the “vertical” 
scaling of virtualized applications using SCHED_DEADLINE. Generally speaking, vertical scaling refers 
to adding more computational capabilities to the current machines. In this context, it refers to adding 
computational power to SCHED_DEADLINE reservations, which involves: (i) increasing the CPU 
bandwidth 𝛼𝛼 and/or (ii) reducing the service latency 𝛥𝛥. This has a direct correspondence to finding the 
most suitable values for the period P and budget Q parameters of reservations and dynamically 
adapting the parameters when the workload conditions change. Indeed, assigning proper 
configuration parameters to reservation is of key importance since: 

1. If the budget is too small, or the period is too large, QoS constraints cannot be guaranteed; 
2. If the budget is too large, or the period is too small, the physical edge platform can be 

underutilized. 

Both conditions are clearly unwanted. Hence, a coarse, generous, provisioning of the parameters, e.g., 
assigning a large CPU bandwidth to an application without properly tailoring it with its computational 
needs, would conflict to avoid the platform underutilization. Therefore, proper methods to 
dynamically detect and monitor application’s needs are required. 

In D3.4, we addressed the problem of monitoring the runtime budget of SCHED_DEADLINE 
reservations to avoid resource underutilization. In this deliverable, we complement the budget 
monitoring mechanism provided in D3.4 by (1) addressing the problem of setting a proper period 
parameter for SCHED_DEADLINE reservations, thus providing mechanisms to set both the budget and 
the period of SCHED_DEADLINE reservations and (2) discussing how the runtime monitor (used to 
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estimate the budget) and period estimator can be used together to achieve a comprehensive vertical 
scaling of a virtualized application using SCHED_DEADLINE. 

4.1.1 Period Estimation 

Problem Modeling.  The considered system is composed of a distributed network of edge nodes. Each 
edge node is a (Linux-based) computing platform with homogeneous physical cores. On each edge 
node serves a set 𝒱𝒱 of VPs, denoted as 𝑣𝑣𝑗𝑗, which includes 𝑚𝑚𝑗𝑗 vCPUs  𝑐𝑐𝑗𝑗,1, … 𝑐𝑐𝑗𝑗,𝑚𝑚𝑗𝑗.  

A VP can be a virtual machine managed by KVM/QEMU or a container. In the following, we discuss 
how to match SCHED_DEADLINE reservations with VPs. 

Each VP 𝑣𝑣𝑗𝑗 is characterized by a tuple (𝑄𝑄𝑗𝑗, 𝑃𝑃𝑗𝑗), where 𝑄𝑄𝑗𝑗 = �𝑄𝑄𝑗𝑗,1, …𝑄𝑄𝑗𝑗,𝑚𝑚𝑗𝑗� and 𝑃𝑃𝑗𝑗 = �𝑃𝑃𝑗𝑗,1, …𝑃𝑃𝑗𝑗,𝑚𝑚𝑗𝑗� are 
the vectors of budgets and periods of each individual vCPU 𝑐𝑐𝑗𝑗,𝑥𝑥 ∈ 𝑣𝑣𝑗𝑗. 

The virtual platforms in set 𝒱𝒱 are scheduled by the Linux operating system according to the EDF 
algorithm. 

The workload running inside each vCPU is scheduled with one of the other Linux schedulers (e.g., the 
fixed-priority scheduler). Each 𝑣𝑣𝑗𝑗 serves a workload composed of a set of tasks 𝛤𝛤𝑗𝑗. Each task 𝜏𝜏𝑖𝑖 ∈ 𝛤𝛤𝑗𝑗 is 
characterized by an execution time 𝐶𝐶𝑖𝑖 and an activation period 𝑇𝑇𝑖𝑖, meaning that the task is considered 
releasing a (potentially, infinite) sequence of instances (called jobs), each one spaced by 𝑇𝑇𝑖𝑖 time units. 

Estimating the period of tasks.  To properly set the reservation scheduling parameters, it is paramount 
to accurately estimate the tasks’ activation patterns. In particular, it is essential to identify tasks that 
can be modeled through periodic activation patterns and to estimate their activation periods. This can 
be performed by identifying tasks’ activation events and performing a frequency-domain analysis on 
them [36]. 

The Linux kernel’s function tracer (ftrace19) is used to extract the tasks’ “wakeup” events, indicating 
that a process or thread becomes selectable by the kernel CPU scheduler, moving from a blocked state 
to the ready state. The sequence of wakeups for each relevant task is registered by modeling the 𝑗𝑗𝑡𝑡ℎ 
wakeup of task 𝜏𝜏𝑖𝑖, occurring at time 𝑟𝑟𝑖𝑖,𝑗𝑗, as a Dirac delta 𝛿𝛿�𝑡𝑡 − 𝑟𝑟𝑖𝑖,𝑗𝑗� centered at time 𝑟𝑟𝑖𝑖,𝑗𝑗. After 
collecting 𝑁𝑁 of these events, a function 𝑎𝑎𝑖𝑖(𝑡𝑡) = ∑ 𝛿𝛿𝑗𝑗 �𝑡𝑡 − 𝑟𝑟𝑖𝑖,𝑗𝑗� describing the activations of task 𝜏𝜏𝑖𝑖 is 
built and is transformed to the frequency domain: 

 
The energy of this Fourier transform is then computed as 

 

  

 
19 The Linux Fundation, ‘’Kernel’s function Tracer’,’ [Online]. Available:  
https://www.kernel.org/doc/html/latest/trace/ftrace.html. 

Identifying peaks in this energy function can then estimate the task’s periodicity [27].

https://www.kernel.org/doc/html/latest/trace/ftrace.html
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The program originally used to detect periodic tasks with a top-like interface [37] has been modified 
turning it into PeriodWiz, (the Period Wizard) [38], a daemon that sets up ftrace for tracing the 
wakeup events of the monitored real-time tasks; 

• stores the functions 𝑎𝑎𝑖𝑖(𝑡𝑡) describing the activation patterns of such tasks; 

• periodically (with a configurable period 𝑇𝑇) computes the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) for each monitored task 
𝜏𝜏𝑖𝑖, looking at the peaks in 𝑆𝑆𝑖𝑖(𝑓𝑓) and identifying the periodic tasks with their periods. 

PeriodWiz exports an RPC interface that allows clients to add new tasks to the set of real-time tasks to 
be monitored (by registering a new process ID) and to query for the period of a monitored task. 

Clearly, it is essential to compute the Fourier transform of 𝑎𝑎𝑖𝑖( ) after collecting an appropriate 
number 𝑁𝑁 of events: if a too-small number is selected, not enough samples are registered in 𝑎𝑎𝑖𝑖(𝑡𝑡) and 
the period estimation risks to be based on noisy data; on the other hand, if 𝑁𝑁 is too large, we risk 
detecting periodic tasks with a too-long delay. 

Some experiments about this will be reported in the following. To address this issue, the daemon starts 
by computing 𝑆𝑆𝑖𝑖(𝑓𝑓) based on a small number of samples and increases 𝑁𝑁 if the task is not identified 
as periodic. When a maximum 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥 is reached without identifying a period, the task is marked as “not 
periodic” and 𝑁𝑁 is not increased further. 

Another parameter is the period 𝑇𝑇 of PeriodWiz. It has no influence on the sampling frequency of 
wakeup events, which are registered by the tracing facilities. However, it is important to tune it 
properly: if 𝑇𝑇 is too long, a period estimate can be available after too much time and after enough 
samples have been collected, while if 𝑇𝑇 is too short, PeriodWiz can spuriously wake up (causing 
overhead at the operating system level) without enough samples being collected. 

From task periods to reservation periods.  Classical real-time systems consider the parameters of each 
thread to be known and a static workload (no new thread joins at runtime), enabling the design of the 
vCPU parameters offline, at design time. The considered edge computing context is instead much 
different and provides a dynamic workload of VM or containers, which need to correspond to a VP 𝑣𝑣𝑗𝑗. 
However, deciding the parameters 𝑄𝑄𝑗𝑗,𝑥𝑥 and 𝑃𝑃𝑗𝑗,𝑥𝑥 is a hard task when no prior information about the 
workload is available. 

The tool PeriodWiz presented in this paper [38] allows to detect the periodicity of a task running in a 
Linux system. 

However, once the periods 𝑇𝑇𝑖𝑖 of the tasks 𝜏𝜏𝑖𝑖 ∈ 𝛤𝛤𝑗𝑗  assigned to a VP 𝑣𝑣𝑗𝑗 have been obtained, they must 

be used to configure the VP itself, i.e., the budgets �𝑄𝑄𝑗𝑗,1, …𝑄𝑄𝑗𝑗,𝑚𝑚𝑗𝑗� and periods �𝑃𝑃𝑗𝑗,1, …𝑃𝑃𝑗𝑗,𝑚𝑚𝑗𝑗�, and 
possibly also the number of vCPUs 𝑚𝑚𝑗𝑗. 

Once the period is decided thanks to the methods proposed in this document, a value for the budget 
parameter is also needed. This parameter can be estimated using the monitoring tool presented in 
D3.4. 

The one-vCPU-per-task approach.  If the VP is implemented by a container, the host operating system 
has complete visibility of all the tasks running in the container. Therefore, a simple - yet effective - 
option could be to assign a SCHED_DEADLINE vCPU to each task, setting its budget to 𝑄𝑄𝑗𝑗,𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖 and 
𝑃𝑃𝑗𝑗,𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖. 

This parameter assignment guarantees that each job of 𝜏𝜏𝑖𝑖 always receives at least the 𝐶𝐶𝑖𝑖 time units 
required to complete before the next activation, which occurs with period 𝑇𝑇𝑖𝑖 [33]. Clearly, this can only 
be guaranteed if the physical platform is not overloaded. For example, if vCPUs are assigned to physical 
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cores following a partitioned scheduling approach, the physical core in which 𝑐𝑐𝑗𝑗,𝑖𝑖 is allocated must not 
be overloaded: this must be verified by checking that the sum of the ratios of the budgets and periods 
of all the vCPUs allocated to a physical core is less than or equal to one [39]. 

When using this approach, the number of vCPUs 𝑚𝑚𝑗𝑗 is equal to the cardinality of set 𝛤𝛤𝑗𝑗 (�𝛤𝛤𝑗𝑗�). 

When VPs are implemented by a KVM-like virtual machine, this approach is not possible. Indeed, the 
host operating system has no visibility for the tasks running inside the VM but only visibility about the 
Linux processes that implement the virtual CPUs of the virtual machine. Also, scheduling the individual 
tasks with the SCHED_DEADLINE policy of the guest kernel would not lead to the intended temporal 
behaviour since the VM is subject to the scheduling effects occurring at the host operating system 
level. Since the guest kernel sees the host’s “real-time”, every time the VM is preempted, the tasks 
running in the guest would be accounted for the wrong runtimes (including the time for which the VM 
did not run). 

To overcome this issue, the m-vCPU approach can be used. 

The m-vCPU approach. The m-vCPU approach considers a fixed number 𝑚𝑚𝑗𝑗 of vCPUs to implement the 
VP 𝑣𝑣𝑗𝑗, allowing vCPUs to manage multiple tasks. As previously discussed, this approach is more natural 
for using SCHED_DEADLINE reservations for the processes implementing the vCPUs of a VM under 
KVM-like virtualization. 

Furthermore, this approach can also be used when using containers to simplify the decision-making 
problem: for example, if 𝑚𝑚𝑗𝑗 is fixed, the budget and periods of all the vCPUs can be set to the same 

value (𝑄𝑄𝑗𝑗,1 = ⋯ = 𝑄𝑄𝑗𝑗,𝑚𝑚𝑗𝑗 = 𝑄𝑄𝑗𝑗) and �𝑃𝑃𝑗𝑗,1 = ⋯ = 𝑃𝑃𝑗𝑗,𝑚𝑚𝑗𝑗 = 𝑃𝑃𝑗𝑗�, and the set of parameters needed to 
identify the timing behavior of a VP just consist of the triplet �𝑄𝑄𝑗𝑗 ,𝑃𝑃𝑗𝑗,𝑚𝑚𝑗𝑗�. 

In this case, suitable budget and period parameters can be achieved using methods from the real-time 
systems literature for the design of the parameters of reservation servers. A vast literature exists on 
this topic; however, since in an edge architecture these parameters need to be defined online, we refer 
the interested reader to works [40], [41], that provide heuristics methods for designing the reservation 
budgets and periods in a few milliseconds. 

Running PeriodWiz inside a VP. The implementation choice for the virtual platform not only influences 
the assignment of the reservation parameters from tasks’ parameters but also affects how PeriodWiz 
can be used. 

If the virtual platform in which the application is running is based on a Docker-like container, the host 
kernel has complete visibility of the application’s tasks, hence the PeriodWiz daemon can run on the 
host and can trace the tasks to identify their periods without issues. 

If, instead, the virtual platform is based on KVM-like virtualization, then the host kernel only sees the 
VM’s vCPU threads. Hence, PeriodWiz cannot directly trace the application’s tasks to detect their 
periods. In this second case, there are various possibilities: 

• The PeriodWiz daemon can be executed inside the VM; in this case, if the host scheduler does 
not affect the applications’ activation pattern, the daemon can still detect periodic applications 
and their periods. 

• The PeriodWiz daemon can be executed in the host to analyze the activation pattern of the 
vCPU threads. 
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• The applications’ activation patterns can be detected before starting the applications in the 
virtual platform by running the application in a container or on a different node, where 
PeriodWiz can analyze it. 

We consider some of these cases later in the evaluation. 

Evaluation.  We now evaluate the effects of the number 𝑁𝑁 of samples using our frequency-estimation 
mechanism on 3 different applications: a synthetic real-time application composed of a periodic task 
with period 𝑃𝑃 = 40𝑚𝑚𝑠𝑠, the ffplay video player reproducing a video (with its synchronized audio track) 
at 33 frames per second (FPS), and a non-periodic application performing some processing on data 
stored on the disk. 

Figure 5 shows the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) of the Fourier transform for the periodic task, with 𝑁𝑁 ∈ {5,10,20} 
samples. The figure shows how increasing the number of samples increases the energy of the 
frequency peaks as well, making it easier to detect them. Our tool is able to identify the program as 
periodic (with the correct period 𝑇𝑇 = 40𝑚𝑚𝑠𝑠) when 𝑁𝑁 = 10 or 𝑁𝑁 = 20 samples are used; hence, the 
minimum delay for identifying the task as periodic is 𝛿𝛿 = 40𝑚𝑚𝑠𝑠 ⋅ 10 = 400𝑚𝑚𝑠𝑠. 

Figure 6 shows the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) of the Fourier transform for the audio/video player, computed on 𝑁𝑁 ∈
{10,20,50} samples (in this case, 𝑁𝑁 = 5 did not provide any useful information). Although this 
application does not exhibit a clearly periodic activation pattern (it has to display a video frame every 
33.3𝑚𝑚𝑠𝑠, to periodically decode and play the audio track, to read the compressed data from disk, etc...) 
the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) allows to identify some peaks. However, such peaks are visible only when enough 
samples are used; in particular, the application is able to identify them for 𝑁𝑁 = 50. 

Finally, Figure 7 shows the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) of the Fourier transform for a non-periodic application, 
computed on 𝑁𝑁 ∈ {20,50,100} samples. In this case, it is clearly not possible to identify any peaks in 
the energy function, and PeriodWiz marks the application as “not periodic”. 

Moreover, PeriodWiz has been tested to analyze the activation patterns of various periodic tasks, using 
cyclictest20, rt-app21 and some synthetic real-time applications, and it was always able to correctly 
identify such applications as periodic (with the correct period). It has also been tested with some 
“almost periodic” applications (such as audio/video players), and it was able to detect periodic 
activation patterns. However, the presence of aperiodic components in the application caused 
deviations from the expected period. For example, an audio/video player reproducing video at 30FpS 
(i.e., the expected period is 1/30 seconds, that is, 33.3 ms) was detected as periodic with a period 𝑇𝑇 =
11.1𝑚𝑚𝑠𝑠, probably because audio decoding/reproduction and file parsing introduced some high-
frequency components. Nevertheless, 11.1𝑚𝑚𝑠𝑠 is a suitable period for an application at 30FpS (hence 
with a video period of 33.3𝑚𝑚𝑠𝑠) since it is a sub-multiple of the video period. 

 
20 The Linux Foundation, ”Cyclictest”, Available: 
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start 
21 Github, ”rt-app”, Available: https://github.com/scheduler-tools/rt-app 

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://github.com/scheduler-tools/rt-app
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Figure 5: Energy of the Fourier transform of the activations for a periodic task with period T=40ms, for different numbers of 

samples. 

 

 
Figure 6: Energy of the Fourier transform of the activations for an audio/video player, for different numbers of samples. 
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Figure 7: Energy of the Fourier transform of the activations for a non-periodic task, for different numbers of samples. 

 
Figure 8: Energy of the Fourier transform of the activations for the QEMU vCPU thread when two real-time tasks with 

periods T1=50ms and T2=75ms run inside the VM. 
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Figure 9: Energy of the Fourier transform of the activations for the QEMU vCPU thread when three real-time tasks with 

periods T1=45ms, T2=60ms, and T3=105ms run inside the VM. 

Finally, some experiments have been conducted to check how PeriodWiz performs when trying to 
identify tasks running in a QEMU/KVM VM. To this end, some periodic task sets have been executed 
inside QEMU/KVM VMs, using the PeriodWiz daemon to analyze the activation pattern of the QEMU’s 
vCPU threads. For example, when running two periodic real-time tasks with periods 𝑇𝑇1 = 50𝑚𝑚𝑠𝑠 and 
𝑇𝑇2 = 75𝑚𝑚𝑠𝑠 in a single-CPU VM, PeriodWiz identifies the vCPU thread as periodic with period 𝑇𝑇 =
25𝑚𝑚𝑠𝑠; Figure 8 shows the energy of 𝑆𝑆(𝑓𝑓), which has a peak in 𝑓𝑓 = 40𝐻𝐻𝐻𝐻 (corresponding to 𝑇𝑇 =
1000𝑚𝑚𝑠𝑠/40 = 25𝑚𝑚𝑠𝑠) allowing to identify the period. Similarly, Figure 9 shows the energy of the 
Fourier transform when three tasks with periods 𝑇𝑇1 = 45𝑚𝑚𝑠𝑠, 𝑇𝑇2 = 60𝑚𝑚𝑠𝑠, and 𝑇𝑇3 = 105𝑚𝑚𝑠𝑠 run inside 
the VM. In this case, PeriodWiz identifies the vCPU thread as periodic with period 15𝑚𝑚𝑠𝑠. More 
experiments revealed that PeriodWiz is generally able to identify the greatest common divisor of the 
periods of the tasks running in the VM; this is actually a very good choice for the vCPU’s reservation 
period. Hence, we conclude that this approach is usable for hypervisor-based VMs, too. 

4.1.2 Vertical Scaling with SCHED_DEADLINE 

Figure 10 shows a reference architecture for edge systems using SCHED_DEADLINE reservations. The 
figure shows a distributed runtime decision-making logic with orchestration capabilities (e.g., the 
SCHED_DEADLINE-aware versions of Kubernetes developed in the context of Task 3.3). In the NANCY 
architecture, this distributed decision-making logic with orchestration capabilities (time-sensitive 
orchestrator, for short), can perform allocation decisions on a slice of computational resources 
provided to the time-sensitive domain under consideration by a higher-level orchestrator, such as the 
slice manager or Maestro, which is in charge of the coarse-grained allocation a subset of computing 
nodes to the time-sensitive domain. 

In this context, the orchestrator for time-sensitive resources discussed here receives offloading 
requests for applications from mobile devices, which require to be allocated in a VP on the available 
edge nodes. Using SCHED_DEADLINE involves setting the budget and period parameters. Computing 
nodes report to the time-sensitive orchestrator monitoring data and receive updated values for the 
budgets and periods of the vCPUs implementing each VP. When an offloading request is received by 
the orchestrator, the periodicity of the application’s tasks is estimated with PeriodWiz. As previously 
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discussed, PeriodWiz can be either running on the same edge node of the deployed VP or in a remote 
node (e.g., together with the orchestrator). 

 
Figure 10: Schematics showing the interconnections between nodes and a distributed decision-making architecture, in 

which monitoring data is provided to allow vertical scaling. 

Scaling. Once the period is estimated, the runtime monitoring mechanism developed in Task 3.4 of 
NANCY can be used to monitor the timing behavior of SCHED_DEADLINE reservations. An example is 
reported in the following. Two tasks are served by two reservations. Both reservations were detected 
to have a period of 100ms by PeriodWiz.  

The two tasks are characterized by dynamic execution times: the first task initially exhibits an execution 
time of 5ms, then 15ms, then stabilizes to 10ms. The second task instead ranges from 10ms, to 30ms, 
and finally to 20ms. In this example, the period is kept constant, but variations in the period can also 
be detected by running PeriodWiz if needed (i.e., if another task dynamically joins the reservation). 
Figure 11 and Figure 12 report the results in terms of CPU bandwidth and worst-case CPU service 
latency of the two reservations corresponding to the two tasks. 

The figures show how our monitoring mechanism is able to elastically provide more bandwidth to the 
reservations (and hence to the tasks) as soon as their execution time increases. Furthermore, Figure 
12 shows the effects on the worst-case CPU service latency, computed as discussed at the beginning 
of the section. In this example, we assume all latency values are acceptable for the reservation timing 
constraints; when this is not the case, this information can be used by the scaling mechanism to further 
enhance the assignment of parameters. 

Overall, the mechanisms provided in Task 3.4 and Task 4.2 provide effective ways to enable the vertical 
scaling of SCHED_DEADLINE reservations, achieved by dynamically changing the budget and period 
parameters, which directly determine the reservation of the CPU bandwidth. 

These techniques can be used to adjust the resource poll of B-RAN workloads with the goal of providing 
sufficient resources for all functions. When this is not possible, the solution can also provide 
mechanisms to allow graceful degradation by reducing the amount of resources assigned (reducing 
the budget and/or increasing the period). 
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Figure 11: Elasticity in the CPU bandwidth. 

 

 
Figure 12: Worst-case CPU service latency under reservation-based scheduling. 

Finally, Figure 13 shows another run of the same experiment on a higher number of samples and 
tracking a different metric, i.e., the reservation budget (runtime). 
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Figure 13: Reservation budget. 

 

4.2 PHaul- a DRL-based Path Allocation for Sub6 Enhanced IAB Networks 

Relying on dedicated fiber for backhauling presents a significant obstacle to the large-scale and dense 
deployment of outdoor small cells. In Release 16, 3GPP introduced the Integrated Access and Backhaul 
(IAB) technology to address this issue [42], which allows the utilization of the same spectrum in access 
and backhaul. IAB enables operators to start deployments with a small number of fibers connected 
mm-wave small cells, known as donor nodes in IAB terminology, and to extend service coverage by 
deploying additional IAB nodes that are wirelessly backhauled via donor nodes. These nodes can 
provide direct service to User Equipments (UEs), or act as parent nodes for other IAB nodes, extending 
the multi-hop or mesh backhaul network.  

While the IAB model defined by 3GPP is spectrum agnostic, allowing operation either in the mm-wave 
or sub-6 GHz spectrum, the main use case for IAB networks is to provide mm-wave spectrum in the 
access and backhaul, complementing the Sub6 spectrum offered by the macro-cell layer. However, the 
performance of the mm-wave IAB backhaul segment depends heavily on the availability of line of sight 
(LoS) conditions in the selected deployment sites. To mitigate LoS dependence, in NANCY, we propose 
to complement the mm-wave backhaul segment of IAB networks with additional Sub6 backhaul links, 
which contribute to the capacity and robustness of the backhaul network. We refer to such networks 
as Sub6 enhanced IAB networks.  

3GPP has defined the Backhaul Adaptation Protocol (BAP) which uses source routing to route IAB flows 
according to a classifier matching IAB flows into pre-provisioned backhaul paths. In this context, we 
have designed and evaluated the PHaul solution, a forwarding engine for Sub6 enhanced IAB networks 
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that accommodates different traffic engineering criteria or SLAs to optimize IAB path allocation. PHaul 
combines an offline path selection heuristic with an online Deep Reinforcement Learning (DRL) agent 
based on Proximal Policy Optimization (PPO). By leveraging a network digital twin of the IAB wireless 
backhaul, PHaul periodically monitors the input traffic of the backhaul network and updates flow to 
path mappings, performing decisions on the non-real-time domain. Although the results are focused 
on the IAB scenario, the proposed path forwarding engine could also be applied to other multi-hop or 
mesh scenarios within the scope of NANCY’s User Case 2 “Advanced coverage expansion”, provided 
that the main requirements are met: stable multi-path topology, low link variability and minimal 
interference. In network slicing environments, the availability of paths and the targeted SLAs for each 
slice would be defined by the Virtualization Platforms defined in Section 3, establishing the action 
space, state space and rewards to be used by the PHaul agent and within the digital twin.  

In the next subsections, we present the key points of the design and implementation of the PHaul 
solution, together with the most significant results of its evaluation. Additional information and 
evaluations can be found in the referred journal paper [33].   

4.1.1.  PHaul Design 

Figure 14 depicts the network model being considered. In the bottom left of the figure, we depict the 
logical architecture of a Sub6-enhanced IAB node, which, following the IAB architecture, features a 
Distributed Unit (DU) and Mobile Terminated (MT) function both for the Sub6 and the mm-wave 
bands. However, only the mm-wave DU will be used to connect UEs in the access of IAB nodes, as Sub6 
access coverage is already provided by the macro layer. The donor nodes have a wired connection to 
the Centralized Units (CU), which in this scenario are common to all the donor nodes. The main 
elements of the Figure 14 are described as follows:  

 

 

Figure 14: PHaul network model 

I. IAB donor nodes, denoted as dk ∈ D, featuring both a Sub6 and a mm-wave DUs, which connect 
UEs and other IAB nodes to the wired network, where the Centralized Unit (CU) components 
are located. 

II. IAB nodes, denoted as si ∈ S, provide access to UEs and other IAB nodes. An IAB node may 
directly connect to an IAB donor or to another IAB node. Multi-path is supported by 
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embedding multiple MT functions into a single IAB node or by using Dual Connectivity. IAB 
nodes can establish more than one link to other IAB donors or IAB parent nodes. IAB nodes 
provide access to multiple UEs, where each UE establishes a separate PDU session. However, 
we consider that in the backhaul, traffic from all UEs is aggregated into a single backhaul PDU 
session, which we refer to as a backhaul flow. 

III. Backhaul flows, fi ∈ F, originate at non-donor IAB nodes. Each backhaul flow carries a time-
varying traffic load, λi(t), generated by all the UEs in RRC_CONNECTED state. Each backhaul 
flow is mapped to a pre-provisioned IAB backhaul path defined between an IAB and an IAB 
donor. For each flow, the source is fixed, i.e. si however any donor dk could be used as 
destination, as long as a backhaul path exists. The reason is that all donor nodes provide access 
to the wired network where the CU resides.  

IV. The Sub6 backhaul, shown in red in Figure 14, and the mm-wave backhaul, shown in blue in 
Figure 14, provide a set of backhaul paths between IAB nodes and IAB donors. Due to different 
propagation characteristics in the Sub6 and mm-wave bands, different paths may be available 
in the Sub6 and mm-wave backhaul networks. The BAP protocol in IAB uses source-based 
forwarding. Hence, each flow fi is bound to use a single path, where paths are pre-provisioned. 
In particular, we consider that a set of k ≤ Kmax paths are pre-provisioned for each flow in the 
Sub6 and the mm-wave backhaul networks, where Ps

ni,dk indicates the n-th pre-provisioned 
path for flow fi between si and dk. Thus, a given backhaul flow could be routed across a total 
of 2Kmax paths considering both networks but can only use a single path at a given time.      

V. Finally, a flow-path mapping engine is defined as a control plane entity that periodically 
obtains the state of the network, e.g., through reading load counters in the IAB nodes. Based 
on the obtained information, the flow-path mapping engine updates the mappings between 
backhaul flows and backhaul paths in each IAB node. The PHaul agent resides in the flow-path 
mapping engine. Notice that various backhaul flows can traverse the same backhaul node and 
compete for the capacity of a given Sub6 or mm-wave backhaul link. In this case, we assume 
that backhaul nodes assign capacity to each flow traversing a backhaul link using a max-min 
fairness criteria. 

Based on the described network model we can define the set of paths available to flow fi as Pi
selected , 

with Pi
selected ≤ 2Kmax. Periodically, the flow-path mapping engine samples the traffic matrix from each 

backhaul flow and updates the per-flow path allocations. The goal of PHaul is to, based on the current 
traffic matrix {λi(t)}, assign for each flow fi a single path Popt

si,di ∈ Pi
selected, to optimize a given traffic 

engineering criteria JTE. The execution time of the PHaul agent is the key factor to determine how often 
path allocations can be adapted to the varying traffic matrices. Regarding the traffic engineering 
criteria, we consider JTE to be a varying objective function defined by the operator of the IAB network 
as a function of the effective data rates, ϕi(t), allocated to each backhaul flow, where the effective data 
rate represents the actual rate that can be served from that flow, as compared to the overall flow 
demand represented by λi(t). In the case of the evaluation presented later, we considered the following 
engineering criteria:  

I. Throughput efficiency: The goal is to maximize the proportion of load that can be carried by 
the network. This traffic engineering criterion would be appropriate in networks where 
demand is expected to be heterogeneous across IAB nodes. 

0 ≤  𝐽𝐽𝑇𝑇𝑇𝑇  = ∑ 𝜙𝜙𝑖𝑖(𝑡𝑡)𝑖𝑖  
∑ λ𝑖𝑖(𝑡𝑡)𝑖𝑖

 ≤ 1  (1) 

II. Fairness: The goal is to maximize throughput fairness across the |F| flows. This traffic 
engineering criterion would be appropriate when demand across IAB nodes is expected to be 
uniform.   
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0 ≤  𝐽𝐽𝑇𝑇𝑇𝑇  = (∑ 𝜙𝜙𝑖𝑖(𝑡𝑡))𝑖𝑖  2

|𝐹𝐹|∑ 𝜙𝜙𝑖𝑖(𝑡𝑡)2𝑖𝑖
 ≤ 1  (2) 

Although not considered in the introduced evaluation, a weighted criteria combining fairness and 
throughput efficiency according to a weight, will allow the operator to decide on the criteria according 
to its business goals or Service Level Agreement (SLA).  

Once the network model is defined, let us introduce the design principles of PHaul’s DRL Agent. The 
goal of this agent is to periodically collect traffic demands for all the flows and make a path allocation 
decision to optimize the traffic engineering criteria. One possible implementation could consider 
jointly allocating all the flows |F| in each DRL action, but this would lead to an action space of size |A| 
= (2Kmax)|F|, which wouldn’t be feasible for practical networks. Therefore, in PHaul we considered a 
reduction in the action by which consists of the allocation of a path for a single flow, instead of a joint 
allocation for the |F| flows. The agent, which performs on a digital twin of the IAB backhaul network, 
observes the resulting reward of the applied action over the digital twin, and continues sampling the 
reduced action space until an allocation for all the flows is obtained, which can then be programmed 
over the real network. The rationale behind this design approach is the following: 

1. The topology and link characteristics of the Sub6 enhanced IAB network are expected to be 
stable and can therefore be easily reproduced by a digital twin (e.g. a network simulator). If 
the topology changes significantly, e.g. due to link failure, then the digital twin can be 
correspondingly updated. 

5 The traffic demands can also be considered stable for periods of several seconds and can 
therefore be modelled in the digital twin. This is the time budget available to perform an 
allocation decision. 

6 Reducing the action space, i.e. allocating a path for only one flow at each action, simplifies 
training and leads to better convergence properties of the DRL agent. 

7 The repeated application of the simplified agent over the digital twin should allow to sample 
the larger action space leading to well-performing allocations. 

Figure 15 describes the high-level operation of PHaul. First, we distinguish the two modules that 
compose PHaul, namely: i) the path computation heuristic, and ii) the path allocation agent.  

 

Figure 15: PHaul agent design 

The path computation heuristic operates offline, and its goal is to examine the topology of the physical 
network to derive a set of up to Kmax paths for each backhaul flow through both the Sub6 and the mm-



D4.2 – Resource Elasticity Techniques  
 

 
43 

wave backhaul networks. We refer to this set of potential paths as Pi
selected. The obtained set of paths 

is only recomputed when the topology of the physical network changes. We considered and evaluated 
different heuristics, such as finding the shortest path, finding the path with the least common last hop 
(i.e., to avoid a bottleneck in the IAB donors) and finding the path with the least common IAB nodes 
(i.e., avoid bottlenecks in all the IAB links). As evaluated in (Pueyo, Camps-Mur, & Catalan-Cid), 
combining the latter strategy with PHaul resulted in an increased effective capacity in the network by 
considering the path allocations of previous flows and minimizing the number of joint links across 
them. Therefore, this strategy will be used as the default path computation heuristic hereinafter.  

Regarding the path allocation agent, the algorithm in Figure 16 depicts the operation of the PHaul 
agent according to the following variables:  

1. NetDTwin is a digital twin of the wireless backhaul network, which allows to perform flow 
allocations and to compute the resulting per-flow effective data rates, ϕi(n), and the resulting 
rewards r(n), (see Figure 15). 

8 The set of paths available to a flow fi is defined as a vector of size 2Kmax, with the following 
components Pi

selected={Pi,1
sub6, Pi,1

mmwave, …, Pi,Kmax
sub6, Pi,Kmax

mmwave }. 
9 The allocation vector Γi, i ≤ |F|, where |F}| is the number of flows, and the i-th component of 

this vector contains the index within Pi
selected representing the path allocated to flow fi.  

 

Figure 16: PHaul path allocation algorithm 

Based on the previous variables, the action space, state space and rewards used by the PHaul agent 
are defined as follows: 
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A. Action Space: It is defined as an integer 0 ≤ a ≤ Kmax |F|, where |F| is the number of flows and Kmax 
is the number of paths available per flow in the Sub6 and mm-wave networks. Each action a 
comprehends a single flow allocation to one path in Pi

selected. 
B. State space: The environment state in PHaul is modeled as a vector containing the collection of 

input and effective data-rates for each flow, as well as the current path allocated to each flow (line 
20 in Figure 16). Note that PHaul can return to a same action, as the effect will differ depending 
on the allocation of the other flows. Therefore, the current allocation is part of the state space.  

C. Reward: The PHaul reward is modelled after the traffic engineering criteria defined by the network 
operator, as defined in formulas (1) and (2). As aforementioned, a weighted combination of both 
formulas is also possible through g as shown in formula (3).  

𝑟𝑟(𝑛𝑛) = (1 + 𝛾𝛾)𝑡𝑡ℎ𝑟𝑟(𝑛𝑛) + (1 − 𝛾𝛾)𝑓𝑓𝑎𝑎𝑖𝑖𝑟𝑟(𝑛𝑛)    (3) 

Given that we cannot know a priory how far from 1 both 𝑡𝑡ℎ𝑟𝑟(𝑛𝑛) and 𝑓𝑓𝑎𝑎𝑖𝑖𝑟𝑟(𝑛𝑛) will be in a practical 
network, we redefine the reward as: 

−2 ≤ 𝑟𝑟(𝑛𝑛) = (1 + 𝛾𝛾)𝑡𝑡ℎ𝑟𝑟(𝑛𝑛) + (1 − 𝛾𝛾)𝑓𝑓𝑎𝑎𝑖𝑖𝑟𝑟(𝑛𝑛) ≥ 2  (4) 
 

𝐽𝐽(𝑛𝑛) = (𝐽𝐽(𝑛𝑛)−𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚)−(𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚−𝐽𝐽(𝑛𝑛))
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚−𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚

     (5) 

Where thr(n) and fair(n) are computed according to equation (5) and are constantly updated based 
on the rewards obtained in each interaction with the network digital twin (line 3 in Figure 16). Note 
that normalizing the reward to the maximum and minimum throughput or fairness values obtained 
throughout the Nsteps iterations with the network digital twin is helpful for the agent to understand 
if the actions being applied across the different iterations are pushing the reward in the right 
direction 

D. Termination condition: The PHaul agent terminates after executing N steps iterations over the 
network digital twin, or as soon as an allocation is found that results in an optimal reward (line 18). 
In practice, Nsteps is a hyper-parameter between |F| and (2Kmax)|F|, that allows to trade-off accuracy 
and inference time. 

E. Selected DRL algorithm: In this work, we base our implementation on the Proximal Policy 
Optimization (PPO) [10] algorithm, which achieves state-of-the-art performance across a wide-
range of challenging tasks and outperforms several other DRL algorithms [44]. 

4.1.2.  Performance Evaluation 

To evaluate PHaul we have developed a flow-level simulation model in Python, connected to 
OpenAI's Gym environment, which is used to implement the PHaul path allocation agent based on 
PPO. The developed simulator can be understood as the network digital twin component, i.e. it 
allows to generate random backhaul topologies and traffic matrices, to allocate a backhaul flow 
through a given path, and to estimate the effective capacity, obtained by a flow under a given set of 
flow allocations. 

To model representative IAB backhaul topologies, we developed a random topology generator after 
the exemplary IAB network reported in [45], which covers a suburban area in Chicago, US. We generate 
IAB topologies in the following way. First, we start with a first layer of 3 donor nodes. Then, for each 
donor node we generate n IAB child nodes, with n being a uniform random variable between 1 and 3. 
We repeat this process for each layer of IAB nodes until the target number of nodes in the topology is 
reached. All IAB nodes have a wireless link to their parent node. Still, we also allow for nodes to have 
multiple parents using a random parameter, edge selection prob, that adds an additional link between 
an IAB node and the IAB node located next to its parent in the upper layer. This parameter allows us 
to control the presence of multiple paths from a given IAB node to the wired network. Notice, that 
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while being random, this topology generation process reflects the topology formation process in a real 
IAB network that would start with a fixed number of donor nodes, and then progressively grow to 
expand the network footprint. Following our network model in Figure 14, the same IAB nodes are 
available in the Sub6 and mm-wave topologies, but the exact links between nodes may differ in each 
topology. In particular, we set edge selection prob to 0.4 in the mm-wave topology and to 0.6 in the 
Sub6 topology to reflect the fact that Sub6 links have wider coverage. Following this approach, we 
consider scenarios with a total number of IAB nodes (including donor nodes) varying from 20 to 60, 
which result in mean hop counts of 3.08 for the case of 20 nodes and 5.12 for the case of 60 nodes.  

We model backhaul links as interference-free with capacities that are stable during the execution of 
the agent. In the case of the mm-wave backhaul, we assume a 30 GHz deployment with an 800 MHz 
carrier bandwidth, resulting in backhaul downlink per-link capacities in suburban environments that 
we select randomly between 800 Mbps and 1 Gbps. For the case of Sub6 links we consider an 
interference-free 80 MHz link with capacities that we select randomly between 200 and 300 Mbps. 
Regarding the input traffic matrix, we model the load offered by each backhaul flow in the following 
way. First, we use a random parameter, node_active_probability, to determine if there are active UEs 
in that node. In case there are active UEs, we model the resulting backhaul traffic as a uniform random 
variable between λmin and λmax, where we consider two scenarios with a growing flow size in Mbps, 
namely: i) λmin =250, λmax=500, and ii) λmin =500, λmax=750. 

To achieve statistically significant results, every time we report a performance figure for a given 
network configuration, we consider at least 10 random topologies for that network configuration, and 
for each of those topologies, we average the results of 250 randomized input traffic matrixes. Unless 
otherwise stated, the PHaul path allocation agent is trained for each specific topology considered. The 
metrics reported in this section correspond to average values that are depicted with their 
corresponding 95% confidence interval, which is however too small to be clearly seen in the figures.  

PHaul is compared to three alternative path allocation agents, namely: i) brute force, ii) subset-sum, 
and iii) random. Brute force is optimal in terms of the objective function since it explores all available 
(2Kmax)|F| flow allocations, but it leads to large execution times, and it can only be used for network 
configurations with a limited number of flows and paths. The subset-sum path allocation agent is a 
greedy heuristic based on the subset-sum problem. It orders the backhaul flows in decreasing order of 
their traffic demand and allocates each flow sequentially trying to maximize the objective function (up 
to 2Kmax|F| steps). Finally, the random allocation simply selects for each flow one of the available paths 
through the mm-wave and Sub6 backhaul networks using a uniform random variable (|F| steps). 

We have released as open source our implementation of PHaul, the implementation of the IAB 
network digital twin, and all the supporting evaluation environments in [46]. 

Training evaluation 

We evaluate in this section the training phase of the PHaul path allocation agent. We want to 
understand how PHaul's performance depends on our training hyper-parameters, namely Nsteps, and 
the parameter training_steps, which determines the overall number of steps considered in the training 
phase of PPO. As performance metrics, we look separately at efficiency obtained with γ = 1 in, and 
then at fairness, obtained with γ = −1.  

Figure 17 depicts in the upper row the impact of Nsteps while fixing training_steps to 105, and in the 
lower row, the impact of training_steps while fixing Nsteps to 300. In these experiments, we consider an 
IAB network size of 50 nodes and vary the node_active_probability parameter between 0.4 and 1, 
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while considering a random backhaul flow rate between 500 and 750 Mbps. We depict experiments 
for Kmax=1 and Kmax=3 paths in the Sub6 and mm-wave networks. 

 

Figure 17: Training evaluation 

We can see how, both for efficiency and fairness, performance is low when Nsteps and training_steps 
are small, and smoothly increases when these parameters grow. Notice though that Nsteps will have an 
impact on the execution time of a trained agent, while training_steps only affects the overall training 
time, which is not a critical parameter. Looking at the knee exhibited by the training curves, we can 
see that this is independent of the node_active_probability parameter, which means that regardless 
of the level of activity in the network the PHaul agent training performance is maintained. The number 
of paths Kmax does not impact either the position of the knee in the training curves. Based on these 
results the training of PHaul agent can be simplified by setting a fixed value of Nsteps and training_steps, 
regardless of the number of paths or the number of active flows, which relaxes the requirements to 
train the PHaul network digital twin in real networks. Hereafter we consider Nsteps= 300 and 
training_steps=20000. 

We observe on the left part of Figure 17 how efficiency decreases when increasing 
node_active_probability. This is expected because a higher node_active_probability means more load 
being injected into the wireless backhaul, which is saturated in all cases. The impact of 
node_active_probability is however not so clear when looking at fairness (right part of Figure 17). The 
reason is that regardless of the number of backhaul flows active in the network, PHaul is able to 
allocate the bottleneck bandwidth across these flows in a fair way when considering this objective. 
Looking at the impact of varying the number of paths Kmax, as expected, we observe that considering 
more paths leads to higher network efficiency as flows can be better balanced through the network. 
Notice though, that the potential gain achieved by increasing Kmax depends on the path diversity 
available in the IAB topology, which is limited in our scenarios that mostly consist of tree-like topologies 
with limited multi-path opportunities. 
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Inference time 

The main goal of PHaul is to periodically read the traffic matrix from the physical network to then 
update the mapping between backhaul flows and pre-provisioned backhaul paths. The frequency of 
these updates is thus limited by the execution time of the path allocation agent. Figure 18 depicts the 
average execution time of the PHaul, subset-sum and random agents, when increasing the IAB network 
between 20 and 60 nodes.  

 

Figure 18: Inference time evaluation (Platform: Intel Xeon E5-2618L v4 CPU) 

As expected, the execution times of PHaul are larger than those of subset-sum and random. However, 
PHaul keeps an execution time below 10 seconds which slightly increases with the network size. A 10-
second interval to reconfigure the forwarding in the backhaul is a reasonable value to observe 
significant changes in the traffic matrix (i.e., UEs transitioning from idle to connected status, or vice 
versa). It is also relevant to observe how the execution time of PHaul is fairly independent of the 
network size. The reason is that the execution time of PHaul is dominated by the Nsteps parameter, 
which defines the number of interactions with the network digital twin. It is thus possible to reduce 
execution time in PHaul by reducing Nsteps, at the cost of losing accuracy in terms of the objective 
function, as depicted in Figure 17. Regarding the number of paths Kmax, we can see that they only have 
a marginal impact on the execution time of PHaul. The reason is that increasing it translates into an 
increase in the size of the action space, which may impact convergence time in the training phase, but 
it results in a minor impact with respect to the time required to decide what action to choose in the 
inference phase. This is not the same for subset-sum, which is clearly affected by the number of paths, 
as it needs to evaluate 2Kmax candidate path allocations for each flow. Finally, the execution time of 
the random agent is negligible, as it only involves computing a random number. 

Comparison against competing heuristics 

Figure 19 depicts a comparison with the brute force allocation, which illustrates how far PHaul 
performance is from the optimal allocation. Due to the high computational requirements of the brute 
force agent, we are only able to carry out this benchmark with a limited network size of 20 IAB nodes 
and with Kmax = 1. To have a meaningful comparison, we need to ensure that the network is saturated, 
for which we configure node_active_probability=1 and use flow load between 500 and 750 Mbps. We 
can see in Figure 19 that both the efficiency and fairness achieved by PHaul lie very close to the brute 
force agent, which validates the performance of PHaul in the considered scenario. The performance 
gap between PHaul and brute force is however expected to increase if larger topologies are 
considered. 
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Figure 19: Comparison with Brute Force 

Next, we evaluate the performance of the PHaul, the subset-sum and the random path allocation 
agents, when increasing the size of the IAB network from 20 to 60 nodes, including 3 IAB donor nodes. 
We do not consider the brute force agent in this section because of its excessive computational time.  

Figure 20 depicts the results for the efficiency objective under different network and load conditions. 
We can see how for all network configurations the PHaul agent outperforms subset-sum, which in turn 
outperforms the random agent. A maximum gain of 17% is observed for PHaul when compared to 
subset-sum, and of 36% when compared to random. All agents benefit from considering a larger 
number of paths, but this gain is more evident when the flow data rates are higher. Note that subset-
sum is a well- bin-packing heuristic that sorts backhaul flows in decreasing order of size and greedily 
starts allocating them one at a time. The reason why PHaul is able to outperform subset-sum is that in 
the training process PHaul is able to learn a representation of the topology of the IAB network, which 
it can then correlate with a given traffic matrix distribution to derive non-trivial allocations that result 
in good performance. For all the agents, efficiency decreases as network size increases, and the 
decrease is higher for higher flow data rates. The reason for this behavior is that introducing new IAB 
nodes results in a higher offered load, regulated by the parameter ￼node active probability￼. This 
effect dominates over any increase in cross-section bandwidth that may result from the additional 
backhaul links contributed by the new IAB nodes. 
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Figure 20: Comparison with other heuristics – Efficiency 

Figure 21 depicts the results in terms of fairness. Unlike efficiency, fairness exhibits a rather flat 
behavior when the size of the IAB network grows. In our network model, each IAB node allocates per-
flow capacities in a bottleneck link using a water-filling algorithm. Therefore, the means that the 
different agents use to improve fairness is to select the paths for each flow such that all flows in the 
network achieve a similar effective capacity. We can see how PHaul is the best agent in achieving a fair 
allocation, resulting in a close to perfect fairness for all considered network settings, and for both 1 
and 3 available paths. A maximum gain of 13% is observed in terms of fairness for PHaul when 
compared to subset-sum, and of 20% when compared to random. The reason for the good 
performance of PHaul, is that in the training phase PHaul is able to learn correlations between a given 
traffic matrix and the set of available paths that result in a good fairness metric. 

 
Figure 21: Comparison with other heuristics – Fairness 
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Broken links 

Given the nature of the IAB wireless backhaul, transitory broken links can occur due to link blockage 
at mm-wave frequencies, or due to unplanned interference at Sub6 frequencies. The goal of this 
section is to evaluate how resilient is PHaul to these events since it is not realistic to assume that PHaul 
can be retrained every time a link breaks. The resulting topology upon a link break will differ from the 
topology that PHaul has been trained on, and hence a performance degradation can be expected. The 
goal of this section is to quantify this degradation. 

Figure 22 depicts the results of an experiment where we consider a network of 40 IAB nodes, with a 
flow load between 500 and 750 Mbps and node_active_probability=0.4. We increase the number of 
simultaneous broken links from 1 to 5, which we consider representative of this network size. For each 
point in the x-axis we consider 10 different topologies and 250 random samples with different traffic 
matrixes. In each sample, we randomly remove x links from the network but ensure that end-to-end 
connectivity for all backhaul flows remains possible. Figure 22 compares the performance in terms of 
efficiency and fairness, considering the ideal performance where PHaul is retrained every time that a 
link is removed from the topology (shown in blue), versus the performance to be expected in practice 
when PHaul has only been trained for the full topology but continues to perform inferences when links 
are removed (shown in brown). 

 

Figure 22: Broken links evaluation 

Based on the results, the overall efficiency reduces as the number of broken links increases, because 
the network has less capacity, but the efficiency loss because of having PHaul operate over a network 
with broken links is only around 5%. In the case of fairness, we observe that the loss in fairness is even 
smaller, being around 2%. We note that the tree-like structure of IAB backhaul networks tends to result 
in backup paths that are like the original ones, which helps explain the good performance of PHaul 
observed in this experiment. 

Untrained topologies and impact of sub6 

Having seen in the previous section that PHaul is reliable to small changes in the topology, in this 
section we deepen our evaluation in two directions. First, we evaluate the performance of PHaul on 
topologies that differ significantly from the topology that PHaul has been trained on. Second, we 
evaluate the performance of PHaul with and without Sub6 connectivity, to quantify the gains that 
adding Sub6 spectrum provides on efficiency and fairness metrics. 

To evaluate PHaul with untrained topologies, we consider again 10 topologies for each considered 
network size, but we trained PHaul with only one of the 10 topologies. All topologies share the same 
number of IAB nodes and the same number of donor nodes, which is what makes PHaul applicable 
across them. Topologies though, differ in the number of layers and in the links connecting IAB nodes. 
To evaluate the gains provided by Sub6 spectrum, we run each topology under two configurations: i) 
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a first configuration where both mm-wave and Sub6 spectrum are available, and ii) a second 
configuration where only mm-wave links are available. 

Figure 23 depicts for a growing network size the performance in terms of efficiency and fairness. For 
this experiment, we assume a flow load between 500 and 750 Mbps and node_active_probability=0.4. 
We consider the following four configurations: i) Sub6 enhanced IAB where PHaul is trained specifically 
for each topology (blue lines), ii) Sub6 enhanced IAB where PHaul is only trained for one topology 
(brown lines), iii) mm-wave only IAB where PHaul is trained for each topology (green lines), and iv) 
mm-wave only IAB where PHaul is only trained for one topology (red lines).  

 

Figure 23: Untrained topologies and sub6 evaluation 

Looking at the impact on efficiency, we can see how using untrained topologies results in a slight 
degradation of about 9% in efficiency. Removing Sub6 spectrum, but retraining PHaul every time, 
results in an efficiency loss of around 25%, which justifies the gains provided by Sub6 spectrum, since, 
using PHaul, a Sub6 enhanced IAB network with untrained topologies is still more efficient that a 
perfectly trained mm-wave only IAB network. Finally, removing Sub6 spectrum and using untrained 
topologies results in an overall degradation slightly above 30%.  In the case of fairness, we can see that 
the trend is maintained, but interestingly, removing Sub6 spectrum results in a degradation of around 
4%, whereas using untrained topologies result in a higher degradation of around 7%. The reason is that 
when removing Sub6 spectrum the overall network capacity reduces, but PHaul is still able to allocate 
the available capacity across flows in a fair way. Fairness is however impacted when PHaul runs over 
untrained topologies, although the impact is small. Finally, removing Sub6 spectrum and using 
untrained topologies results in the worst case in a degradation of around 15%. 

These results quantify the benefits of adding Sub6 spectrum to the IAB backhaul, as proposed in 
NANCY, and validate that PHaul has a graceful degradation when used over topologies that differ 
significantly from the topologies that have been used for training, which validate the application of 
PHaul in practical networks. 

4.3  Elastic Resource Scaling 

4.3.1 Scaling for Disruption-Free Service 

Scaling within a network slice while maintaining disruption-free service for NANCY B-RAN services is 
critical to ensuring that various key services, such as localization, data analytics, and many others, 
maintain seamless performance even as conditions like network load, number of requests, service 
demands, etc. fluctuate. The decision to adjust a slice must also ensure that when resources are shared 
among multiple services, key performance metrics, such as latency or throughput, as listed in Section 
3.3, are not compromised, and ongoing services are not interrupted. For example, in an URLLC slice, 
user location data is critical for decision-making processes for autonomous vehicles. If the system 
cannot accurately locate a vehicle in real-time, it could lead to catastrophic outcomes, such as collisions 
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or failure to navigate safely in dynamic traffic conditions. Therefore, scaling within a network slice 
(vertical scaling) is essential for ensuring that resource allocation can be dynamically adjusted in real-
time without affecting the reliability of these high-priority services. 

To achieve elastic resource adjustments within a designed slice for multiple services, Deep 
Reinforcement Learning (DRL) has been identified as the most promising approach for real-time 
decision-making in dynamic network environments [13]. As mentioned in Section 2.2,by formulating 
the scaling problem as a Markov Decision Process (MDP), DRL enables flexible, dynamic resource 
management by modeling the environment with states (e.g., current resource usage), actions (e.g., 
scaling up or down), and rewards (e.g., improved performance). A model-free, online learning method 
allows agents to learn optimal policies through trial and error, continuously updating their decisions 
based on real-time feedback from the network. This ensures that as conditions such as network load 
fluctuate, the DRL agent can dynamically adjust resources without requiring prior knowledge of 
transition dynamics. This adaptive approach makes DRL highly effective for maintaining optimal 
performance in complex 5G networks while managing multiple services within the slice. 

4.3.2  Intra-slice Resource Elasticity in NANCY 

The intra-slice resource elasticity in NANCY's system involves the dynamic management of resources 
within a Kubernetes-based system. The system is designed to ensure efficient and elastic resource 
allocation by handling fluctuating traffic loads, e.g., requests to perform localization service, which is 
developed in D3.2 as one of the common network functionalities.  More specifically, the system 
operates by hosting containers (pods) on virtual machines (VMs), and managing the execution of these 
pods as they handle service requests. These service requests utilize HTTP as the protocol and are 
further routed through the Ingress controller, which directs them to the appropriate services. These 
services then distribute the requests to the relevant pods based on internal routing and load-balancing 
mechanisms. By continuously adjusting resources based on demand, the system ensures seamless 
performance under varying conditions, optimizing both resource utilization and service reliability. 
Moreover, this is shown in Figure 24, which provides a high-level overview of the system used for 
implementing elasticity, along with the five steps required to set up and dynamically allocate 
resources, which can be seen at the bottom of the figure. 

The core of this elastic system lies in the resource elasticity technique, which continuously monitors 
resource usage and adjusts resource allocation dynamically to meet service demands. This guarantees 
that the system can handle fluctuations in traffic load by scaling resources as needed without causing 
service disruption. To support real-time monitoring, Prometheus is configured to collect key 
performance metrics at one-second intervals, such as the limitation and utilization of the CPU. This 
high-frequency monitoring enables the resource elasticity mechanism to respond swiftly to changes in 
demand, ensuring optimal performance and resource utilization across the slice. 
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Figure 24: Overview of elastic scaling with Kubernetes-based system. 

In Figure 24, Steps 1 to 5 sum up the resource elasticity process mentioned above. More specifically, 
in order to enable seamless resource scaling, which is shown in Step 5, the InPlacePodVerticalScaling 
feature gate 22 is activated, allowing for dynamic resource adjustments without requiring container 
restarts. This step is crucial as it ensures continuous operation and minimizes disruption when scaling 
resources up or down in response to fluctuating demands. Moreover, real-time resource management 
is facilitated through communication with the Kubernetes cluster using the Python Kubernetes API 23, 
enabling precise control over resource allocation. Commands such as "patching" are used to modify 
resources, allowing for the addition or removal of CPU and memory allocations as needed. This ensures 
efficient resource management while maintaining uninterrupted service continuity. 

The code below demonstrates how the Python Kubernetes API is used to achieve real-time resource 
adjustments, further highlighting the implementation of Step 5 for maintaining operational efficiency 
and flexibility within the system: 

1. def patch_pod(pod_name, cpu_request, cpu_limit, memory_request, 
2.               memory_limit, container_name, namespace="default"): 
3.     config.load_incluster_config() 
4.     api_instance = client.CoreV1Api() 
5.     patch = { 
6.         "spec": { 
7.             "containers": [ 
8.                 { 
9.                     "name": container_name, 
10.                     "resources": { 

 
22 “InPlacePodVerticalScaling,” [Online]. Available: https://kubernetes.io/docs/tasks/configure-pod-
container/resize-container-resources  
23 “Python Kubernetes API,” [Online]. Available: https://github.com/kubernetes-client/python  

https://kubernetes.io/docs/tasks/configure-pod-container/resize-container-resources
https://kubernetes.io/docs/tasks/configure-pod-container/resize-container-resources
https://github.com/kubernetes-client/python
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11.                         "requests": {"cpu": cpu_request,  
12.                                      "memory": memory_request}, 
13.                         "limits": {"cpu": cpu_limit,  
14.                                    "memory": memory_limit} 
15.                     } 
16.                 } 
17.             ] 
18.         } 
19.     } 
20.     try: 
21.         api_instance.patch_namespaced_pod( 
22.             name=pod_name, 
23.             namespace=namespace, 
24.             body=patch, 
25.         ) 
26.     except Exception as e: 
27.         print(f"Error: {e}") 

 

4.3.2.1 Integrating Resource Elasticity with the Slice Manager API 
To enable MADRL-based resource elasticity through the Slice Manager API, telemetry must first be 
configured as a resource within the system for monitoring purposes, as shown in Figure 25. Telemetry 
continuously tracks the overall health and performance of the cluster and its services. Once deployed, 
specific Prometheus instance details are registered with the telemetry resource, allowing it to gather 
real-time metrics from these instances. This provides real-time access to performance data, which can 
be used to dynamically manage resources and optimize the cluster's operation. In the following steps, 
a new slice of computation resources, referred to as compute chunks is created to handle specific 
workloads. Based on the telemetry data, the resources of existing chunks can be adjusted to meet 
demand. 
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Figure 25: Overview of resource requests through the Slice Manager API for elastic scaling. 

4.3.2.2  Integrating Resource Elasticity with Maestro 
Maestro’s APIs provide robust capabilities for implementing resource elasticity across various 
scenarios. For intra-slice scaling, the Service Inventory API (TMF 638) can be utilized to dynamically 
adjust compute, memory, and storage resources for active service instances. This ensures that 
individual services within a slice can scale vertically to handle fluctuating workloads without disruption. 
Additionally, for inter-slice resource management, Maestro's TMF 641 Service Order Management API 
enables the orchestrator to allocate or redistribute resources between slices to optimize overall 
network performance while adhering to SLA requirements. These functionalities allow Maestro to 
maintain a seamless balance between resource efficiency and service quality, demonstrating its 
adaptability in both localized and distributed scaling scenarios. 

These APIs facilitate communication between the operational support systems (OSS) and business 
support systems (BSS) within the telecommunications industry. Key features of these APIs are 
standardization, modularity, ecosystem interoperability, enhanced agility, improved data sharing, etc. 
The detail of the steps is summarized as follows: 

• The first step uses the Service Ordering API, which allows for the creation and provisioning of 
a service with resource specifications for a target infrastructure.  

• Upon successful service creation, an organized collection of resources, assets, services and 
configurations, known as the service inventory, is deployed alongside. This inventory is crucial 
for managing and tracking the components involved in service delivery. 

• For the dynamic adjustment of resources, the Service Inventory API can be updated with the 
PATCH command. This allows changes to be made to the inventory in real-time based on 
current needs. 

• The Management cluster within the Maestro architecture continuously monitors real-time 
metrics. Based on these metrics, resource allocation for services can be dynamically adjusted 
to align with network demand, ensuring optimal performance and resource utilization. 
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Moreover, the decision for resource allocation to each service is determined by MADRL, and it is 
detailed in the next section. 

4.3.3  Computational Resource Elasticity with Multi-Agent Deep Reinforcement Learning 

To develop an effective slicing resource management solution, we decided to employ a MADRL 
framework to handle the dynamic allocation of processing power. In this context, the processing power 
specifically refers to the allocation of CPU resources for different services within the network slice. 
More specifically, each service within the slice is assigned an independent DRL agent, which is 
responsible for making real-time decisions about how many CPUs should be allocated to maintain 
optimal performance. These agents operate independently, yet they jointly make decisions to 
maximize the performance of the entire system. More specifically, we employ standard MADRL 
algorithms such as DQN and PPO with a shared reward. 

Before analyzing in detail how state and action spaces are characterized, it is appropriate to conduct 
an analysis on the theoretical foundations of the discipline known as Markov Games and one of its 
major declinations, namely Multi-Agent Reinforcement Learning. After an introduction on these 
aspects, a state-of-the-art review on MADRL techniques for computational resource management is 
presented, so to motivate the proposed approach to tackle resource elasticity problems, and 
particularly the ones in the scope of NANCY. 

4.3.3.1   State Space Definition 
As seen in the introduction about Markov Games and MARL, the state space is the information that 
agents use to make the decision, which is based on several key metrics gathered by Prometheus that 
accurately capture the current of the system and allow for real-time decision-making by the agents. 
The information included in the state space is summarized in Table 5: Information in the state space.  

Table 5: Information in the state space. 

Information Description 
Limit The upper resource boundary allocated to each service. 
Usage The current CPU usage of the service. 
Available The remaining resources available within the slice. 
Utilization Percentage The percentage of allocated resources being utilized by the service. 
Other Utilizations The average resource utilization of other services managed by the multi-

agent system within the slice. 

This information, also known as state variables, provides a comprehensive snapshot of resource 
allocation and usage, enabling each agent to make informed decisions about how to adjust CPU 
resources. 

4.3.3.2  Shared Reward Function and Utilization Reward 

The shared reward function24 is defined as the signal that the agents use to understand how well they 
perform, it has to be carefully designed to balance efficient resource utilization while maintaining low 
response times. For example, the shared reward function rewards agents for keeping CPU usage within 
predefined optimal ranges, and it penalizes both under-utilization and over-utilization. Moreover, the 
reward function encourages agents to adapt their resource allocations dynamically based on current 
demand while ensuring the overall performance and responsiveness of the system. Specifically, the 

 
24 “Reward function,” [Online]. Available: https://github.com/sensorlab/agent-edge-
autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/train_mdqn.py#L370 
 

https://github.com/sensorlab/agent-edge-autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/train_mdqn.py#L370
https://github.com/sensorlab/agent-edge-autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/train_mdqn.py#L370
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reward combines a utilization reward25, which adjusts based on the proximity of resource usage to 
the optimal range, and a shared reward, which penalizes long response times. This design ensures that 
agents prioritize both resource efficiency and service quality, driving the system towards optimal 
performance under varying network conditions. Note that shared reward means that agents are also 
rewarded for the actions of other agents and their own actions impact on the performance of other 
agents. Such an approach is well-established in collaborative environments.  

4.3.4  Resource Allocation with DQN 

With the Deep Q-Network (DQN) algorithm [9], slice resource allocation is performed discretely. In our 
implementation, the agent controls the service's resource allocation through an action space 
consisting of three possible actions: increase, decrease, or maintain resources. The DQN algorithm uses 
a deep neural network to approximate Q-values, which represent the expected rewards for each state-
action pair. The agent learns an optimal policy through the Q-learning algorithm by updating the Q-
values based on observed state-action-reward transitions during interactions with the environment. 
As a model-free, off-policy algorithm, DQN benefits from experience replay, allowing the agent to learn 
from past experiences while breaking correlations between consecutive transitions for more efficient 
training. To further stabilize training, DQN employs a target network that provides fixed Q-value 
targets, reducing the risk of policy oscillations. This makes DQN suitable for environments where 
decisions can be mapped to a discrete action space. 

4.3.5  Resource Allocation with PPO 

In contrast, Proximal Policy Optimization (PPO) [10] is designed for continuous control tasks, offering 
finer adjustments compared to discrete approaches like DQN. PPO outputs actions within a continuous 
range (e.g., [-1, 1]), which can be scaled and applied to adjust resource allocation smoothly and 
precisely. As a policy-gradient algorithm, PPO improves the policy by increasing the likelihood of 
actions that yield higher rewards. To ensure stability, PPO employs a clipped surrogate objective, 
which limits the size of policy updates, preventing large, destabilizing changes to the policy. This 
objective closely approximates the true goal of maximizing expected rewards, while the clipping 
mechanism constrains the amount by which the policy can change in each update, maintaining stable 
and gradual improvements. Additionally, PPO enhances learning efficiency by reusing the same data 
multiple times within a single optimization step, extracting more value from each collected experience. 
This reduces the need for large amounts of data while accelerating the learning process, making it 
particularly effective in dynamic environments where resources need to be adjusted rapidly. For intra-
slice scaling, PPO is advantageous because it allows for more granular adjustments of resources. By 
selecting a specific range, i.e., the maximum allowable increase or decrease of resources, PPO can 
allocate resources in a more precise manner compared to the DQN approach, which operates within a 
discrete action space. This precision is essential for environments that require fine-tuned control of 
resources to maintain optimal performance. 

By utilizing both DQN and PPO in a multi-agent environment, the NANCY resource elasticity module 
can adapt to a wide range of computing resource management scenarios, such as CPU resource 
allocation, which will be discussed in the next section. 

 

 
25 “Utilization reward,” [Online]. Available: https://github.com/sensorlab/agent-edge-
autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/envs.py#L104 
 

https://github.com/sensorlab/agent-edge-autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/envs.py#L104
https://github.com/sensorlab/agent-edge-autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/envs.py#L104
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4.3.6 Results 

4.3.6.1 Simulation Results  
In this section, we demonstrate the performance of intra-slice scaling, by deploying a Localization 
Prediction Service (Localization as a Service, or LaaS), which uses machine learning algorithms to 
predict device locations based on available data inputs. The service is deployed in a hybrid edge-cloud 
setup, consisting of a Microk8s cluster running on two Raspberry Pis and a virtual machine. 
Prometheus Stack is employed to gather and visualize real-time performance metrics. To compare 
performance, we implement a reactive rule-based scaling approach as a baseline method. More 
specifically, it predefines thresholds for CPU utilization, which allows us to benchmark the MADRL 
methods. For instance, when CPU utilization exceeds a specified threshold, the method allocates 
additional resources. Whereas, when the CPU utilization falls below the threshold, the assigned 
resources are reduced. 

 

 

Figure 26: Dynamic Intra-Slice Scaling Methods for Response Time Optimization. 

To evaluate the performance of the MADRL-based solutions, response time is considered as one of the 
main metrics for evaluation, defined as the time interval between requesting a service to make an 
inference and receiving the results. More specifically, these approaches are compared within a 
designated time frame and use LaaS for evaluation.  In addition, the cluster is subjected to 90 requests 
per second, and the response time was measured at 5-second intervals. As shown in Figure 26 (on a 
logarithmic scale), scaling is triggered at the 25-second mark. After fully scaling, the rule-based 
algorithm has an average of 38.2 ms response time, while PPO had an average of 32.9 ms and DQN 
had an average of 30.6 ms. Both MADRL methods show slight improvements to the baseline in 
response times, with DQN providing a 20% improvement and PPO delivering a 14% improvement.  
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Figure 27: Efficiency of Dynamic Intra-Slice Scaling Methods. 

CPU Utilization is another performance metric for evaluating the effectiveness of the intra-slice scaling 
algorithms. By using the same setup, Figure 27 illustrates the average CPU utilization of all services in 
the cluster over time, demonstrating the effectiveness of the MADRL-based methods. As we can see 
from the figure, PPO delivers a smoother and more consistent utilization pattern, while the other 
methods exhibit more abrupt fluctuations in resource allocation. This is due to PPO having more fine-
grained resource adjustment than DQN as well as rule-based methods. This is further supported by 
Figure 28, Figure 29 and Figure 30, where the CPU allocations and utilization are displayed as service 
scale over the designated time frame. As depicted in Figure 30, PPO shows lees fluctuation of the CPU 
allocations than the other two methods, which implies granular adjustments made by PPO result in a 
more efficient scaling process, as evidenced by the steadier resource usage compared to the abrupt 
changes seen in the discrete methods. 
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Figure 28: Resource allocation and utilization of Dynamic Intra-Slice Scaling with DQN. 

 

Figure 29: Resource allocation and utilization of Dynamic Intra-Slice Scaling with Rule-based. 

 

 

Figure 30: Resource allocation and utilization of Dynamic Intra-Slice Scaling with PPO. 
4.3.6.2 Demonstration 
The localization service from D3.3 and the DRL-based scaling implementations were integrated into a 
live demonstration to showcase real-time resource elasticity managed by DRL agents. During the 
demonstration, system performance was analyzed both before and after resource elasticity was 
applied. Without elasticity, inadequate scaling led to longer response times and a clear degradation in 
performance. Once resource elasticity was introduced, the DRL agents dynamically adjusted resources 
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according to network demands, significantly improving response times and overall system 
performance. This dynamic scaling capability highlights the advantages of DRL in managing complex, 
real-time resource allocation scenarios effectively.  

A video demonstration of the real-time resource elasticity managed by DRL agents has been uploaded 
at the following link: https://youtu.be/mIydIkWhcoI 

 

 

The source code will be available at the following repository: https://github.com/sensorlab/agent-
edge-autoscaling  

https://youtu.be/mIydIkWhcoI
https://github.com/sensorlab/agent-edge-autoscaling
https://github.com/sensorlab/agent-edge-autoscaling
https://youtu.be/mIydIkWhcoI
https://youtu.be/LksiGDtevMQ
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5 Conclusion 

The advancements presented in this deliverable highlight NANCY's commitment to achieving flexible 
resource management and cost efficiency to satisfy the QoS/QoE for the applications and the users in 
the dynamic network demands. By addressing the complexity of distributed resource scaling. This 
deliverable underscores the role of elasticity in optimizing computational and network resources to 
ensure high performance across diverse applications and scenarios. 

Two orchestrators, Slice Manager and Maestro, enable these resource elasticity techniques through 
advanced virtualization technologies that dynamically adjust resources based on demands through 
APIs.  

The development of resource elasticity techniques within the framework of NANCY has been 
presented. Namely, SCHED_DEADLINE, PHaul, and MADRL-based computational scaling. Each 
technique has its own purpose and function. For example, SCHED_DEADLINE ensures predictable CPU 
bandwidth allocation for time-sensitive applications, maintaining low latency and stable performance 
across high-demand periods. PHaul, a DRL-based path allocation mechanism, dynamically allocates 
network resources across paths to meet latency, throughput, and bandwidth requirements, effectively 
managing network load and enhancing resilience. Lastly, the MADRL-based computational resource 
elasticity enables real-time scaling of CPU and memory within slices, allowing seamless adaptation to 
fluctuating user demands while optimizing resource utilization. Moreover, these techniques have been 
validated, exhibiting their feasibility in real-world scenarios. Implementation details, including code 
snippets and open source repositories and a demo together with experimental results, are provided 
to facilitate further development, integration, and adoption. 
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