

An Artificial Intelligent Aided Unified Network for Secure Beyond 5G Long Term
Evolution [GA: 101096456]

Deliverable 4.2

Resource Elasticity Techniques

Programme: HORIZON-JU-SNS-2022-STREAM-A-01-06

Start Date: 01 January 2023

Duration: 36 Months

NANCY project has received funding from the Smart Networks and Services Joint Undertaking
(SNS JU) under the European Union's Horizon Europe research and innovation programme under
Grant Agreement No 101096456.

D4.2 – Resource Elasticity Techniques

2

Document Control Page

Deliverable Name Resource Elasiticity Techniques

Deliverable Number D4.2

Work Package WP4

Associated Task T4.2 Resource Elasticity & Adapticity Enabling Techniques

Dissemination Level Public

Due Date 30 November 2024

Completion Date 29 November 2024

Submission Date 30 November 2024

Deliverable Lead Partner JSI

Deliverable Author(s) Emanuele De Santis (CRAT), Andrea Wrona (CRAT), Antonio Pietrabiassa
(CRAT), Miguel Catalan Cid (i2CAT), Hatim Chergui (i2CAT), Carolina
Fortuna (JSI), Shih-Kai Chou (JSI), Jernej Hribar (JSI), Jovan Prodanov
(JSI), Maria Belesioti (OTE), Daniel Casini (SSS), Dimitris Manolopoulos
(UBITECH), Panagiotis Sarigiannidis (UOWM), Thomas Lagkas (UOWM),
Dimitrios Pliatsios (UOWM), Athanasios Liatifis (UOWM), Sotirios Tegos
(UOWM)

Version 1.0

Document History

Version Date Change History Author(s)
Organisat

ion

0.1 31/5/2024 Initial Table of contents Shih-Kai Chou, Carolina Fortuna JSI
0.2 13/9/2024 Initial version Shih-Kai Chou JSI

0.3 24/9/2024 Adding to Section 4.3 Jovan Prodanov, Jernej Hribar,
Shih-Kai Chou JSI

0.3 2/10/2024 Adding to Section 2.2
Emanuele De Santis, Andrea
Wrona,
Antonio Pietrabiassa

CRAT

0.4 3/10/2024 Adding to Section 3.2 Dimitris Manolopoulos UBITECH
0.5 7/10/2024 Adding to Section 4.2 Miguel Catalan Cid i2CAT
0.6 8/10/2024 Adding to Section 2.1 Maria Belesioti OTE
0.7 11/10/2024 Adding to Section 4.1 Daniel Casini SSS
0.8 21/10/2024 Adding to Section 3.1 Hatim Chergui i2CAT

0.9 5/11/2024 Adding exclusive summary,
introduction, and conclusion Shih-Kai Chou JSI

0.9 7/11/2024 End-to-end checks, polish
and formatting.

Jovan Prodanov, Carolina Fortuna,
Shih-Kai Chou JSI

1.0 28/11/2024
Addressing the comments
from internal reviewers and
quality check revisions

Jovan Prodanov, Carolina Fortuna,
Shih-Kai Chou/ Emanuele De
Santis/ Miguel Catalan Cid/ Daniel
Casini/ Dimitris Manolopoulos/
Panagiotis Sarigiannidis, Thomas

JSI/
CRAT/
i2CAT/
SSS/

D4.2 – Resource Elasticity Techniques

3

Lagkas, Dimitrios Pliatsios,
Athanasios Liatifis, Sotirios Tegos

UBITECH
/ UOWM

Internal Review History

Name Organisation Date

Maria Belesioti OTE 14 November 2024

Anna Panagopoulou, Alvise Rigo VOS 13 November 2024

Quality Manager Revision

Name Organisation Date
Anna Triantafyllou, Dimitrios

Pliatsios
UOWM 29 November 2024

Legal Notice

The information in this document is subject to change without notice.
The Members of the NANCY Consortium make no warranty of any kind about this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the NANCY Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.
Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or SNS JU. Neither the European
Union nor the SNS JU can be held responsible for them.

D4.2 – Resource Elasticity Techniques

4

Table of Contents

Table of Contents .. 4

List of Figures ... 6

List of Tables .. 7

List of Acronyms .. 8

Executive Summary ... 10

1. Introduction ... 11

1.1. Relation to Other Tasks and Deliverables ... 11

1.2. Purpose of the Document ... 11

1.3. Structure of the Document ... 12

2. Background on resource scaling and MADRL-based scaling ... 13

2.1 Definition of Resource Scaling ... 13

2.2 Multi-agent Deep Reinforcement Learning (MADRL)-based Scaling 13

2.2.1 Introduction to Markov Games and Multi-Agent Reinforcement Learning 13

2.2.2 MADRL-based Solution for Resource Management .. 15

3. Virtualization Platform .. 18

3.1 Scaling With Slice Manager ... 18

3.1.1. Introduction of Slice Manager ... 18

3.1.2. Scaling API ... 18

3.2 Scaling With Maestro .. 20

3.2.1. Introduction of Maestro Orchestrator .. 20

3.2.2. Internal Architecture, Technologies, and Baseline Assets .. 21

3.2.3. Functionalities ... 22

3.2.4. External APIs .. 23

3.2.5. Maestro Architecture in NANCY .. 23

3.2.6. Final Integration Endpoints ... 25

3.2.7. Degrees of Freedom of the Slice Manager .. 27

3.3. Metrics for Characterizing Trade-Offs ... 27

4. Novel Resource Elasticity Mechanisms ... 29

4.1 Scheduling for Time-Critical Tasks ... 29

4.1.1 Period Estimation .. 30

4.1.2 Vertical Scaling with SCHED_DEADLINE .. 36

4.2 PHaul- a DRL-based Path Allocation for Sub6 Enhanced IAB Networks 39

4.1.1. PHaul Design .. 40

4.1.2. Performance Evaluation .. 44

D4.2 – Resource Elasticity Techniques

5

4.3 Elastic Resource Scaling ... 51

4.3.1 Scaling for Disruption-Free Service ... 51

4.3.2 Intra-slice Resource Elasticity in NANCY ... 52

4.3.3 Computational Resource Elasticity with Multi-Agent Deep Reinforcement Learning .. 56

4.3.4 Resource Allocation with DQN .. 57

4.3.5 Resource Allocation with PPO ... 57

4.3.6 Results ... 58

5 Conclusion ... 62

Bibliography ... 63

D4.2 – Resource Elasticity Techniques

6

List of Figures

Figure 1: PUT calls for enabling scale up/down resources in Slice Manager API. 18
Figure 2: Parameters from the API .. 20
Figure 3: Maestro’s high-level architecture. ... 22
Figure 4: NANCY End-to-end Service Orchestrator (Maestro). ... 23
Figure 5: Energy of the Fourier transform of the activations for a periodic task with period T=40ms,
for different numbers of samples. .. 34
Figure 6: Energy of the Fourier transform of the activations for an audio/video player, for different
numbers of samples. ... 34
Figure 7: Energy of the Fourier transform of the activations for a non-periodic task, for different
numbers of samples. ... 35
Figure 8: Energy of the Fourier transform of the activations for the QEMU vCPU thread when two
real-time tasks with periods T1=50ms and T2=75ms run inside the VM. .. 35
Figure 9: Energy of the Fourier transform of the activations for the QEMU vCPU thread when three
real-time tasks with periods T1=45ms, T2=60ms, and T3=105ms run inside the VM. 36
Figure 10: Schematics showing the interconnections between nodes and a distributed decision-
making architecture, in which monitoring data is provided to allow vertical scaling. 37
Figure 11: Elasticity in the CPU bandwidth. .. 38
Figure 12: Worst-case CPU service latency under reservation-based scheduling. 38
Figure 13: Reservation budget. ... 39
Figure 14: PHaul network model ... 40
Figure 15: PHaul agent design ... 42
Figure 16: PHaul path allocation algorithm ... 43
Figure 17: Training evaluation ... 46
Figure 18: Inference time evaluation (Platform: Intel Xeon E5-2618L v4 CPU) 47
Figure 19: Comparison with Brute Force .. 48
Figure 20: Comparison with other heuristics – Efficiency ... 49
Figure 21: Comparison with other heuristics – Fairness ... 49
Figure 22: Broken links evaluation .. 50
Figure 23: Untrained topologies and sub6 evaluation .. 51
Figure 24: Overview of elastic scaling with Kubernetes-based system. ... 53
Figure 25: Overview of resource requests through the Slice Manager API for elastic scaling. 55
Figure 26: Dynamic Intra-Slice Scaling Methods for Response Time Optimization. 58
Figure 27: Efficiency of Dynamic Intra-Slice Scaling Methods. ... 59
Figure 28: Resource allocation and utilization of Dynamic Intra-Slice Scaling with DQN. 60
Figure 29: Resource allocation and utilization of Dynamic Intra-Slice Scaling with Rule-based. 60
Figure 30: Resource allocation and utilization of Dynamic Intra-Slice Scaling with PPO. 60

D4.2 – Resource Elasticity Techniques

7

List of Tables

Table 1: Maestro’s functional requirements. .. 22
Table 2: Maestro software modules used in NANCY .. 23
Table 3: NANCY interfaces implemented by Maestro ... 26
Table 4: Endpoints exposed by Maestro ... 26
Table 5: Information in the state space. ... 56

D4.2 – Resource Elasticity Techniques

8

List of Acronyms

Acronym Explanation
3GPP 3rd Generation Partnership Project

AI Artificial Intelligence
API Application Programming Interface

ARFCN Absolute Radio Frequency Channel Number
B-RAN Blockchain Radio Access Network
BPMN Business Process Model and Notation

CAV Connected Autonomous Vehicles
CG-MARL Centralized-Global Multi-Agent Reinforcement Learning

CPU Central Processing Unit
CU Central Unit

DMDDPG Deterministic Multi-Agent Deep Deterministic Policy Gradient
DQN Deep Q-Network
DRL Deep Reinforcement Learning
DU Distributed Unit

eMBB Enhanced Mobile Broadband
EDF Earliest Deadline First
EE Energy Efficiency

FaaS Function as a Service
HetNet Heterogeneous Network

IAB Integrated Access and Backhaul
IIoT Industrial Internet of Things
IoT Internet of Things
KPI Key Performance Indicator

K8s-aaS Kubernetes as a Service
LaaS Localization as a Service
LCM Life Cycle Management

MADRL Multi-Agent Deep Reinforcement Learning
MAFRL Multi-Agent Federated Reinforcement Learning
MARL Multi-Agent Reinforcement Learning
MEC Multi-access Edge Computing
MFG Mean Field Game
MIoT Massive Internet of Things

MIMO Multiple Input Multiple Output
ML Machine Learning

MDP Markov Decision Process
MT Mobile Terminal

OSM Open Source MANO (Management and Orchestration)
OSS Operations Support System
PaaS Platform as a Service
PPO Proximal Policy Optimization

D4.2 – Resource Elasticity Techniques

9

PRB Physical Resource Block
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RIC RAN Intelligent Controller
RL Reinforcement Learning

SLA Service Level Agreement
SRA Spectrum Resource Allocation
TMF TeleManagement Forum
UE User Equipment

UAV Unmanned Aerial Vehicle
URLLC Ultra-Reliable Low Latency Communications
VNF Virtual Network Function
VM Virtual Machine
VP Virtual Platform

D4.2 – Resource Elasticity Techniques

10

Executive Summary

This deliverable, titled “D4.2-Resource Elasticity Techniques”, details the design, implementation, and
evaluation of resource elasticity techniques within the NANCY B-RAN architecture. The main objectives
are to introduce elasticity in both the networking and computational resources. The focus of this
deliverable is primarily on scalable and efficient resource management mechanisms with advanced
online algorithms.

In Section 2, the deliverable provides an overview of resource elasticity, addressing the challenge of
scaling in distributed systems (Section 2.1) and justifying the adoption of Muti-agent deep
reinforcement learning (MADRL) to manage computational resources by providing solid theoretical
backgrounds of different MADRL-based algorithms (Section 2.2).

Then, Section 3 provides an overview of the NANCY orchestrators that can be controlled by resource
elasticity decision engines, namely the Slice Manager (Section 3.1) and Maestro (Section 3.2). These
two orchestrators support resource elasticity through their API. They can dynamically adjust resources
based on when certain API functions are called, enabling efficient vertical and horizontal scaling. The
tradeoff metrics used to monitor the system and trigger scaling are identified in Section 3.3.

The elasticity techniques that can empower the decision engines controlling the orchestrators of the
host operating systems are described in Section 4 and constitute the main contributions of this
deliverable. The novel elasticity techniques, including SCHED_DEADLINE (Section 4.1), PHaul (Section
4.2), and MADRL-based solutions for computational resource elasticity (Section 4.3), are explained and
evaluated in detail. First, SCHED_DEADLINE is used to manage CPU resources by providing predictable
CPU allocation to time-sensitive tasks, ensuring that applications with strict latency requirements
maintain consistent and fair performance. Second, PHaul, a dynamic path allocation mechanism based
on DRL is able to effectively manage network load and enhance the resilience of the network by
allocating network resources across paths to meet throughput and fairness constraints. Lastly, MADRL-
based computational resource elasticity leverages MADRL algorithms, such as Proximal Policy
Optimization (PPO) and Deep Q-Networks (DQN) to dynamically scale CPU and memory resources
within network slices, enabling efficient, disruption-free service by responding to fluctuating demand
in real time.

D4.2 – Resource Elasticity Techniques

11

1. Introduction

NANCY aims to provide flexible resource management and smart pricing, which are realized in WP4
through the following key objectives:

(a) design low-complexity computational offloading and social-aware caching mechanisms;
(b) identify the B-RAN functions whose operation should be adjusted to the available

computational/MEC resources;
(c) characterize the trade-off between NFs performance and resource usage;
(d) develop low-complexity proactive scaling mechanisms;
(e) develop ultra-reliable and low-latency cooperative and multi-hopping access schemes

tailored for delay, security, and resilience critical applications, hence addressing the
requirement for reliable communication with latency limitations;

(f) develop smart pricing policies that will significantly reduce the ownership cost.

1.1. Relation to Other Tasks and Deliverables

While Objectives (a) and (b) have been addressed in D4.1, and Objectives (e) and (f) will be addressed
in D4.3, D4.4, and D4.5, D4.2 focuses on Objectives (c) and (d), which is the outcome of T4.2 titled
“Resource elasticity enabling techniques” and will be reported in this deliverable. T4.2 focuses on
developing a resource elasticity framework, which is structured around two key pillars: (1)
computational elasticity and (2) MEC elasticity. This task develops advanced online algorithms to
dynamically and efficiently allocate network and computational resources to users and devices at
various time scales. These algorithms aim to ensure Quality of Service (QoS) and Quality of Experience
(QoE) for multiple served users and devices, which can be achieved by SLAs (Service Level Agreements)
developed in D4.1.

Guided by the parameters defined in the SLA, NANCY leverages AI-driven automation to enable
dynamic resource allocation and optimize network performance in real time. This dynamic resource
allocation is supported by Network Functions Virtualization (NFV), which enables the flexible
deployment of network functions, while network slicing divides the network infrastructure into
multiple virtual slices, each slice tailored to specific applications and user needs. These needs are
defined in SLAs, which outline the performance guarantees, such as maximal tolerable latency or
minimal available bandwidth, that the network must meet to ensure QoS across different slices. To
maintain this balance, effective resource management is crucial. AI algorithms and resource elasticity
mechanisms work to optimize the allocation of networking and computational resources to adapt to
varying demands and provide optimal QoS/QoE for users. This flexible resource adjustment ensures
that network functions receive the necessary resources to perform optimally under constrained
conditions, preserving QoS and QoE standards.

1.2. Purpose of the Document

In this deliverable, we elaborate on innovative resource elasticity techniques, for time-critical tasks in
Section 4.1, multi-hop path allocation in Section 4.2, and computation elasticity technique in Section
4.3. These techniques can be used to power decision engines that interface with existing NANCY
orchestrators discussed in Section 3. Moreover, these techniques can be deployed on edge devices
and enable MEC elasticity. As the proposed MEC and computational elasticity techniques are based on
reinforcement learning, we provide a related theoretical background in Section 2.

Two key enablers in NANCY for resource elasticity techniques, the Slice Manager and Maestro (Section
3) lay the foundation for resource elasticity across diverse demands and network conditions through
virtualization technologies, enabling the components introduced in the following paragraphs to

D4.2 – Resource Elasticity Techniques

12

function effectively. More specifically, the existing Slice Manager, serves as a resource orchestrator,
controlling network slices via an API gateway and enforcing resource allocation and slice
reconfiguration across clusters. Together with the AI Virtualizer, developed in D3.4, the Slice Manager
dynamically reallocates inter-slice resources using a multi-agent deep reinforcement learning (MADRL)
framework, enhancing efficiency and maximizing resource utilization. Maestro, the service
orchestrator in NANCY, manages service lifecycles across geo-distributed infrastructures. By
automating deployment, scaling, and real-time resource adjustments, Maestro enables the
optimization of the performance and scalability across edge and core networks.

The fluctuating demand of applications, especially those with time-critical tasks, require guaranteed
QoS for reliable performance. In NANCY, this is achieved with SCHED_DEADLINE (Section 4.1), a
reservation-based scheduler within the Linux kernel. Through Constant Bandwidth Server algorithm
with Earliest Deadline First (EDF) scheduling, SCHED_DEADLINE enables predictable CPU allocation by
allowing the orchestrator to dynamically adjust parameters in the SCHED_DEADLINE, this approach
prevents overuse and ensures fair resource distribution. By supporting real-time vertical scaling, it
allows resources to adapt as demands shift, helping NANCY maintain service quality and optimize
resource utilization efficiently.

PHaul (Section 4.2), a DRL-based component is deployed to achieve network resource elasticity. It
oversees the fine-grained distribution of network resources, ensuring that each slice meets its
performance targets, such as throughput, and fairness, without over-provisioning or underutilizing
resources. The PHaul design incorporates a Digital Twin, which replicates real-time traffic and network
conditions to facilitate dynamic flow allocation. This integration allows the PHaul to intelligently and
adaptively select optimal paths for network traffic, ensuring seamless and efficient service delivery
across varying network demands.

Computational elasticity is established as one of the pillars of T4.2. It is achieved through multi-agent
Deep Reinforcement Learning (MADRL)-based techniques (Section 4.3). These techniques dynamically
scale computational resources such as CPU and memory utilization within a slice to ensure disruption-
free service. The MADRL framework is particularly effective in environments with fluctuating traffic
loads, as it formulates resource allocation as a Markov Decision Process (MDP), enabling continuous
learning and adaptation to real-time network conditions. By utilizing DRL agents for each service within
the slice, the system can make decentralized decisions regarding resource scaling, thereby optimizing
the overall performance. These MADRL-based approaches provide real-time control and management
of resources within the slice, allowing the orchestrator to adjust resources dynamically without
interrupting services, even in response to unexpected spikes in demand. This deliverable reports on
the results of Task 4.2 towards NANCY R10— Experimentally driven reinforcement learning
optimization of B-RAN discussed in D3.1.

1.3. Structure of the Document

The rest of the document is structured as follows:

• Section 2 – Background on resource scaling and MADRL-based scaling presents the
background concerning the resource allocation by leveraging methodologies based on MADRL.

• Section 3 – Virtualization Platform documents the main components of the virtualization
platform, namely the Slice Manager and Maestro..

• Section 4 – Novel Resource Elasticity Mechanisms describes the mechanisms that were
developed for allocating and scheduling the available resources.

• Section 5- Conclusion summarizes and concludes the deliverable.

D4.2 – Resource Elasticity Techniques

13

2. Background on resource scaling and MADRL-based scaling

2.1 Definition of Resource Scaling

The ever-changing traffic needs in B5G communications networks introduce new challenges, making
scalable computing resources crucial for services and applications to meet their demands efficiently
and cost-effectively. Managing cloud resources well is essential to maintaining high-quality service
levels, preventing resource underutilization, and avoiding system overloads. There are two primary
scaling mechanisms: horizontal scaling and vertical scaling, which are used to adjust the network
resources to meet demands. These dynamic scaling mechanisms are highly important in B5G networks
since they allow the automatic allocation of new resources, namely CPU, memory, and storage
resources, during peak usage to maintain user QoS. However, in off-peak periods, they automatically
release exceeding resources, enabling 5G network slicing to achieve dynamic balance and automated
resource allocation, enhancing the flexibility of the 5G network architecture [1]. For example, the Third
Generation Partnership Project (3GPP) defines three service types for network slicing: Ultra-Reliable
Low Latency Communications (URLLC), Massive IoT (MIoT) and Enhanced Mobile Broadband (eMBB).
Scaling adjusts the capacity of individual slices, hosting network functions and applications (VNFs) in
such a way that allows for the most efficient resource exploitation. In addition, 5G core network slicing
specifies network services according to the functional and quality requirements of the use cases
mentioned above.

Horizontal scaling, or scaling out/in, involves adding or removing entire resource units, such as virtual
machines (VMs) or containers. This approach is particularly suited for inter-slicing, where resources
are shared across multiple slices to support various use cases. By expanding or contracting resources
without disrupting individual slices, horizontal scaling helps balance load across slices, adapting to
demand changes while supporting diverse applications on a shared infrastructure.

Vertical scaling, or scaling up/down, increases or decreases resources allocated to an existing instance,
allowing smoother adjustments within a single slice to meet specific demands without adding new
units. This method is especially relevant for intra-slicing, where resources are optimized within an
individual slice. Vertical scaling enables each slice to adjust its resources internally, meeting the unique
requirements of its hosted applications or services. For example, a slice handling time-sensitive
applications can scale up CPU or memory within that slice to ensure reliable performance during high
load periods.

To address the complexity of dynamic scaling and resource optimization across slices, NANCY employs
DRL solutions in Section 4.2 and MADRL-based solutions in D3.4 and Section 2. This AI-driven approach
enables decision-making across network slices, dynamically adjusting resources to ensure efficient,
high-quality service delivery in response to shifting demands.

2.2 Multi-agent Deep Reinforcement Learning (MADRL)-based Scaling

2.2.1 Introduction to Markov Games and Multi-Agent Reinforcement Learning

Markov Games (also known as stochastic games) extend the concept of Markov Decision Processes
(MDPs) to a multi-agent setting, providing a formal framework for modelling strategic interactions
between multiple decision-makers in a dynamic environment [2]. As a matter of fact, Markov Games
represent the evolution of traditional game theory in mathematics, in which the players involved in
the game can take only fixed (i.e.: based on predetermined strategy) decisions or actions, thus leading
to an overall static shared optimization. With Markov Games, instead, it is possible to add a dynamic
dimension to the game, thus making the state evolve based on the decisions made by the players at
each time step.

D4.2 – Resource Elasticity Techniques

14

A Markov game can be defined by the following tuple:

𝑀𝑀𝑀𝑀  =  (𝑁𝑁,  𝑆𝑆,  𝐴𝐴𝑖𝑖,  𝑃𝑃,  𝑅𝑅𝑖𝑖,  𝛾𝛾)

where:

 𝑆𝑆 is the overall state space, identifying all the measurable quantities that the agents can take
from the shared environment. Note that there may be a unique set of states for all the players,
or each player may have its own private state space 𝑆𝑆𝑖𝑖.

 𝐴𝐴𝑖𝑖 is the action space of agent 𝑖𝑖 , detailing the actions available to each agent.
 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎1,  …  ,  𝑎𝑎𝑁𝑁|) is the transition probability function, determining the likelihood of

moving from state 𝑠𝑠 to state 𝑠𝑠′ given the joint actions.
 𝑅𝑅𝑖𝑖(𝑠𝑠,𝑎𝑎1, … ,  𝑎𝑎𝑁𝑁) is the reward function for player 𝑖𝑖 .
 𝛾𝛾  ∈ [0,1] is the so-called discount factor, which weighs the importance of future rewards.

In this concept, several agents, each with potentially opposing or complementary aims, interact with
the same (shared) environment. These relationships can be cooperative (e.g., all agents share the same
prize) [3], competitive (e.g., zero-sum games) [4], or mixed (e.g., combining cooperation and
competition) [5]. Considering not just the dynamics of the environment, but also the decisions and
behaviors of other agents, each agent seeks to maximize its own cumulative reward over time. In this
setting, the concept of Markov game equilibrium typically refers to a Nash equilibrium, which occurs
when no agent can improve its expected cumulative reward by unilaterally changing its policy,
assuming the other agents' policies remain fixed [6].

One of the most common strategies to address and solve Markov Games is a subfield of Reinforcement
Learning (RL), namely Multi-Agent Reinforcement Learning (MARL). Unlike single-agent RL, where the
environment is often believed to be stationary, MARL brings additional complexity because each
agent's activity dynamically affects the environment and the other agents' learning processes. Hence,
in MARL, each DRL agent corresponds to a specific player and it can perform autonomous actions in
the same environment, thus influencing the reward of the other players [7]. MARL presents some
inherent difficulties:

 From the standpoint of any one agent, the environment becomes non-stationary as each agent
modifies its policy over time.

 To learn about the environment and take advantage of the knowledge it has acquired, each
agent has to explore it. This equilibrium is made more difficult in a multi-agent situation due
to the existence of additional learning agents.

 Agents must learn to coordinate their behaviors in cooperative situations, thus requiring a
communication infrastructure. Layers of complexity are added because agents would have to
exchange information in order to coordinate their tactics.

 In competitive circumstances, agents must predict the actions of their opponents, making
learning analogous to strategic thinking or game theory.

To account for the presence of numerous agents, MARL algorithms expand classical RL techniques such
as policy gradient methods or Q-learning. Although some methods consider other agents as part of the
surroundings and ignore their strategic behavior, other sophisticated methods actively simulate other
agents' policies or behaviors to enhance learning outcomes.

The disciplines in which Markov games and MARL are applied are numerous and include (i) robotics,
where groups of robots may have to coordinate to satisfy some duties; (ii) economics, to describe
strategic interactions in markets or negotiations; (iii) video games, in which agents have to cooperate
or compete with human players; and (iv) resource management, where multiple agents (e.g., servers,
machines, users) need to collaboratively or competitively allocate, distribute, or manage limited
resources over time, with the goal of optimizing system-wide or individual performance metrics.

D4.2 – Resource Elasticity Techniques

15

In particular, resource management problems often involve balancing the competing interests of
different agents while managing shared, finite resources. MARL provides a powerful framework for
addressing these challenges by enabling agents to learn cooperative or competitive strategies in
complex, dynamic environments [8].

To account for the presence of numerous agents, MARL algorithms expand classical RL techniques, by
defining proper rules for exchanging information about the state space, in the case of cooperative
games. To accomplish T4.2 missions, we are going to explore Deep Q-Networks (DQN) and Proximal
Policy Optimization (PPO) as RL algorithms applied to multi-agent resource management practices.

With DQN [9], an agent learns an optimal policy by estimating the Q-value function, which calculates
the predicted future rewards for actions in various states. DQN is a value-based reinforcement learning
method. DQN has been effectively used for numerous RL tasks, including multi-agent scenarios, and it
approximates the Q-value function using deep neural networks. In MARL, every agent keeps track of
its own Q-network, learning by applying the Bellman equation to update its Q-values. Based on these
values, the policy is determined (usually via ϵ-greedy action selection). Its primary benefits stem from
the fact that DQN is very efficient in discrete action spaces, which is the situation for most resource
management scenarios and can scale well to situations with vast state spaces by utilizing neural
networks to approximate Q-values.

On the contrary, PPO [10] is a policy-based algorithm, specifically a sort of policy gradient method. By
adjusting a policy network's parameters, PPO directly optimizes the policy as opposed to learning a Q-
value function. To guarantee that policy updates are not excessively big, PPO employs a clipped
surrogate objective function, which aids in stabilizing training. The clipped objective function of PPO
lowers the possibility of abrupt updates, improving convergence qualities and learning stability. PPO's
main advantage is that it performs well in continuous action spaces, which increases its adaptability in
a larger range of MARL problems. By sampling trajectories over full episodes and using them for
learning, PPO promotes exploration and is especially helpful in cooperative multi-agent systems.

The performance of these two RL algorithms will be compared in the next section of the present
deliverable, whereas the next subsection will show how tools based on Markov games and MARL can
be of great use in solving typical resource management problems.

2.2.2 MADRL-based Solution for Resource Management

As shown in the previous section, MARL extends the traditional RL framework by involving multiple
autonomous agents, each with the capacity to learn, adapt, and make decisions independently, while
interacting with a shared environment. These agents have the goal of maximizing their individual or
collective cumulative reward over time. The relevance of this discipline in the resource management
domain lies in its decentralized nature, which allows it to operate effectively in distributed and highly
complex environments where centralized control is impractical or inefficient. This is particularly
significant in scenarios involving the management of computational, network, and energy resources,
such as in modern wireless communication systems, cloud infrastructures, and the Internet of Things
(IoT), where various performance metrics, including quality of service (QoS), energy efficiency, and
latency, must be optimally balanced to meet ever-increasing demands.

In this sense, the explosive increase in the number of devices, the advent of new high-demand
applications, and the emergence of heterogeneous networks (HetNets) pose a significant challenge
[11].

Significant issues arise in managing computational and energy resources in distributed systems and
networks, which MARL can handle well. Future wireless networks, with their heterogeneity and
scalability, will require efficient management of numerous devices with differing computational and
energy needs, supporting applications like autonomous vehicles and mobile edge computing.
Conventional centralized control techniques have trouble scaling and optimizing in real-time, which

D4.2 – Resource Elasticity Techniques

16

frequently results in inefficient resource allocation and excessive energy use. On the other hand, MARL
allows agents to learn and adjust in response to their interactions with the environment, allowing them
to optimize tasks like energy consumption and spectrum allocation even in unpredictable and dynamic
environments. The decentralized method of MARL provides scalable and adaptable resource
management solutions, especially in complex, multi-objective situations, and is well-suited to
scenarios in which several agents cooperate or compete.

Several studies have applied MARL to optimize resource management across various domains. One of
the areas is resource management in computational systems, particularly in telecommunication
environments. In these contexts, dynamic resource allocation is crucial for optimizing the use of CPU,
memory, and bandwidth while reducing operational costs. For instance, in edge computing, the
authors in [12] propose a Decomposed Multi-Agent DDPG (DMDDPG) framework, where agents
distributed across edge nodes collaboratively learn efficient resource allocation policies, leading to
improved task execution times and enhanced resource utilization in dynamic environments.
Differently, the work in [13] presents a scalable MARL framework for distributed wireless resource
management. Each RL agent makes independent, simultaneous decisions regarding user scheduling
and power control, showing significant robustness to environmental changes, and achieving
performance levels comparable to centralized systems while maintaining scalability.

Furthermore, multi-access edge computing (MEC) powered by unmanned aerial vehicles (UAVs) has
emerged as a promising solution for future space-aerial-terrestrial integrated communications. In
response, the authors in [14] propose a Federated Multi-Agent Reinforcement Learning (MAFRL)
algorithm. This semi-distributed framework jointly optimizes resource allocation, user association, and
power control, resulting in a 23% reduction in operation time compared to centralized algorithms.

In the Industrial Internet of Things (IIoT), resource allocation for edge devices is significantly enhanced
by MARL. For instance, the work described in [15] integrates Deep Reinforcement Learning (DRL) with
multi-agent systems to optimize the allocation of computational resources and bandwidth, aiming to
maximize resource efficiency in response to dynamic system changes. This approach effectively
reduces network traffic, computational load, and processing time, thereby ensuring minimal resource
consumption and improving overall performance, particularly in terms of latency and error rates.
Conversely, [16] explores a different angle by employing a Proximal Policy Optimization (PPO)-based
MARL algorithm within a blockchain-supported hierarchical digital twin IoT framework. Here, the focus
is on optimizing resource allocation for IoT devices by minimizing system delay and energy
consumption, while simultaneously ensuring system reliability and learning accuracy. This balance
between low-latency communication and energy efficiency highlights the versatility of MARL in
managing resources effectively within increasingly complex and resource-constrained environments.

In B5G networks, the rise of interconnected subnetworks presents new challenges, particularly with
regard to interference management. To address this, the authors in [17] propose an intelligent radio
resource management method based on MARL. This approach simplifies resource management by
using only the received signal strength indicator (RSSI) for each channel, thus avoiding the complexity
of gathering channel gain measurements, which is a significant advancement for efficient dynamic
resource allocation.

The versatility of MARL in addressing resource allocation challenges is evident across various domains,
as illustrated by several recent studies.

In the automotive industry, the article [18] explores resource allocation optimization in connected and
autonomous vehicles (CAVs). It introduces a Secondary Resource Allocation (SRA) mechanism that
utilizes a dual time scale for resource distribution among vehicles. By modelling the service process as
a queuing system, each task request is treated as an individual agent, and the MARL algorithm is
employed to coordinate resource allocation effectively based on vehicle states and queue conditions.
The simulation results reveal a notable 13% increase in task completion rates.

D4.2 – Resource Elasticity Techniques

17

Similarly, the article [19] addresses the intricate challenges of joint spectrum and power allocation
within vehicular communication networks, critical for enhancing efficiency in autonomous driving
through cooperation between vehicles and infrastructure. The authors introduce a novel methodology
as complete-game MARL (CG-MARL), which combines MARL with cooperative stochastic game theory,
enhancing stability and scalability in resource allocation as the number of vehicles increases. It also
incorporates mean-field game (MFG) theory to reduce computational resource consumption while
maintaining near-optimal performance.

In the context of energy management, the article [20] tackles the complexities faced in multi-building
multi-energy virtual power plants. The authors present an innovative approach that integrates a multi-
agent transformer with a parallel adapter module, facilitating streamlined coordination among
building agents through sequential modelling.

Eventually, authors in [21] investigate the challenges associated with resource management in
Serverless Function-as-a-Service (FaaS) environments to mitigate tail latency and enhance resource
utilization. They highlight the limitations of traditional single-agent reinforcement learning algorithms
and propose MA-PPO, a multi-agent reinforcement learning algorithm built on Proximal Policy
Optimization (PPO), aimed at improving overall performance.

These articles highlight the broad applicability of MARL in optimizing resource allocation across
different sectors. By using multi-agent systems and advanced algorithms, MARL improves efficiency
and scalability while addressing complex challenges. This versatility showcases MARL's potential to
drive innovation and enhance computational and network resource management in future
technologies.

D4.2 – Resource Elasticity Techniques

18

3. Virtualization Platform

3.1 Scaling With Slice Manager

3.1.1. Introduction of Slice Manager

The slice composition workflow in the ETSI framework provides a systematic methodology for the
creation and management of network slices, which is essential for ensuring dynamic and efficient
network operations. This process is facilitated by a specialized tool known as the Slice Manager (SM),
which executes a series of well-defined steps. The workflow commences with (i) the allocation of
compute resources and chunks. This step involves integrating a Kubernetes (K8s) cluster into the SM
using its Kubeconfig file, validating connectivity and credentials, and subsequently retrieving and
storing relevant resource information in the database. Each compute chunk corresponds to a K8s
namespace configured with specific allocations of computing resources, memory, and storage. The
next phase (ii) addresses the setup of network resources and chunks, which ensures that the network
slice possesses the necessary connectivity infrastructure, typically in the form of a VLAN. Following
this, (iii) radio resources and chunks are established, specifying the required wireless functionalities,
such as physical resource blocks (PRB) and cell frequencies (ARFCN). Once all resources are configured,
the process proceeds to (iv) slice creation, where these discrete chunks are logically integrated into a
cohesive network slice through their associated chunk IDs. Upon successful slice creation, the
workflow transitions to (v) activation, making the slice fully operational and ready for deployment. The
final step (vi) involves application instantiation within the slice, which requires onboarding the
application on the Open Source MANO (OSM) platform. This step enables the provision of specific
services and functionalities aligned with the network's requirements. This structured workflow ensures
that all elements of the network slice are meticulously planned, integrated, and executed, thus
supporting robust and scalable network management solutions.

3.1.2. Scaling API

The Slice Manager enables up/down scaling computing, memory, and storage resources dedicated to
an active network slice by modifying the Edge/Cloud chunk quotas through PUT calls, as shown in
Figure 1.

Figure 1: PUT calls for enabling scale up/down resources in Slice Manager API.

The calls’ parameters are provided in this excerpt from the API. Yaml, as presented in Figure 2.

 /compute_chunk/{compute_chunk_id}/cpus:
 put:
 tags:
 - Edge/Cloud Compute Chunk
 summary: Modify a K8s project CPU quota
 description: >-
 K8s Project CPU quota modify method
 operationId: modifyCpuComputeChunk
 parameters:

D4.2 – Resource Elasticity Techniques

19

 - in: path
 name: compute_chunk_id
 required: true
 schema:
 type: string
 requestBody:
 description: The body of the request
 required: true
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/ComputeChunkNewCPUInput"
 responses:
 '204':
 description: Request succeeded
 '404':
 $ref: '#/components/responses/NotFound'
 '501':
 $ref: '#/components/responses/NotImplemented'

 /compute_chunk/{compute_chunk_id}/ram:
 put:
 tags:
 - Edge/Cloud Compute Chunk
 summary: Modify a K8s project RAM quota
 description: >-
 K8s Project RAM quota modify method
 operationId: modifyRamComputeChunk
 parameters:
 - in: path
 name: compute_chunk_id
 required: true
 schema:
 type: string
 requestBody:
 description: The body of the request
 required: true
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/ComputeChunkNewRAMInput"
 responses:
 '204':
 description: Request succeeded
 '404':
 $ref: '#/components/responses/NotFound'
 '501':
 $ref: '#/components/responses/NotImplemented'

 /compute_chunk/{compute_chunk_id}/storage:
 put:
 tags:
 - Edge/Cloud Compute Chunk
 summary: Modify a K8s project storage quota
 description: >-
 K8s Project Storage quota modify method
 operationId: modifyStorageComputeChunk
 parameters:
 - in: path
 name: compute_chunk_id
 required: true
 schema:
 type: string
 requestBody:
 description: The body of the request
 required: true
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/ComputeChunkNewStorageInput"
 responses:

D4.2 – Resource Elasticity Techniques

20

 '204':
 description: Request succeeded
 '404':
 $ref: '#/components/responses/NotFound'
 '501':
 $ref: '#/components/responses/NotImplemented'

Figure 2: Parameters from the API

3.2 Scaling With Maestro

Maestro is a prototype service orchestrator for managing the lifecycle of end-to-end services atop
geo-distributed heterogeneous infrastructures.

Today's infrastructures expand towards the end users, where numerous Internet of Things (IoT) and/or
user equipment (UE) devices require connectivity with local (edge) or remote (far in the cloud) services.
This connectivity may often be provided via cellular (5G and beyond) networks or low-power IoT
networks integrated with multiple geo-distributed (edge and core) cloud infrastructures.

3.2.1. Introduction of Maestro Orchestrator

Maestro is a cloud-native service orchestrator that provides automated service deployment,
localization, lifecycle management, and scaling, while dynamically exploiting the underlying network
services for optimizing service performance, security, and scalability. During runtime, Maestro also
implements a policy framework that associates service instances with high-level policies.

Such complex ecosystems pose several challenges in the way service onboarding, deployment, and
lifecycle management (LCM) are performed in an end-to-end fashion, mainly because:

• Modern services are structured as collections of independently deployable and loosely
coupled microservices.

• Modern services may span across multiple administrative domains - managed by different
owners - who often do not trust each other.

• Modern services are often associated with service level agreements (SLAs), which pose strict
compute (i.e., CPU, main memory, storage) and network (i.e., latency, throughput, packet loss)
requirements.

Maestro is a holistic end-to-end service orchestration platform that aims to bridge these gaps by
offering zero-trust multi-domain service orchestration abstractions to various stakeholders.
Specifically, Maestro addresses requirements for the following stakeholders:

Infrastructure Owners:

• Allows infrastructure owners/providers to register new (private) domains and services under
the platform’s realm through a programmable zero-trust connectivity (ZTC) fabric.

• Manages services across multiple geo-distributed “non-trusted” domains acting as the root of
trust.

Service Providers:

• Allows service providers to package distributed services as if they are centralized, thus moving
complexity to the platform.

• Offers a single set of service management APIs, no matter how many domains an application
expands to.

• Supports state-of-the-art service packaging tools (i.e., Kubernetes, helm, and docker-
compose).

https://kubernetes.io/
https://helm.sh/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

D4.2 – Resource Elasticity Techniques

21

• Provides programmable connectivity services across clusters/domains, giving a single-cluster
illusion to the users.

• Provides a real-time view of the deployed service instances’ state.
• Provides knobs to change a service instance’s runtime state via a service update API and/or

real-time policies.
Relevant Platform Providers:

• Decouples service and resource management via integration with operations support systems
(OSS) using open standardized APIs. In the NANCY project, Maestro comes with ETSI OpenSlice
(OSL SDG) only when it comes to computing resources.

• Maestro deals with service management.
• Delegates resource management to OSS (e.g., ETSI OpenSlice).
• Manages multiple OSS instances.
• Integrates with vanilla container orchestration platforms (i.e., Kubernetes).

3.2.2. Internal Architecture, Technologies, and Baseline Assets

Figure 2 depicts a high-level functional architecture of Maestro that will be used as a baseline platform
for NANCY. At the northbound API, Maestro expects service providers to package their services in one
or more containers forming a service graph. Once a containerized service is available, Maestro offers
a UI (and a northbound API) that allows service providers to onboard the containerized service in an
intuitive manner (step 1 in Figure 2). In step 2, a complete service is declared in Maestro’s language,
and service providers can order an instance of this service. This requires Maestro to create a service-
level slice (step 3 in Figure 2), formulate a slice intent message towards a specific OSS (step 4 in Figure
2), and dispatch this slice intent message to the underlying OSS (step 5 in Figure 2).

Note that steps 3-5 are necessary for a service deployment as Maestro is a service-level orchestrator
and, thus does not have a direct view of the underlying infrastructure (only infrastructure-level does
have such view). For this reason, Maestro requests a certain amount of computing and network
resources (i.e., a slice) to be allocated by an OSS, on top of which Maestro performs service
deployment. When the underlying OSS allocates the requested slice (step 6 in Figure 2), the slice is
returned to Maestro (step 7 in Figure 2) and service deployment begins. In this step, Maestro takes
control of the allocated slice by connecting to the designated endpoints of the virtual infrastructure to
initiate service deployment (step 8 in Figure 2). Maestro allows service providers to deploy their
services atop both Infrastructure as a Service (IaaS) platforms, such as OpenStack and Platform as a
Service (PaaS) platforms, such as Kubernetes. Maestro’s deployment engine spawns the appropriate
containers in the case of Kubernetes or Virtual Machines (VMs) in the case of IaaS platforms and
requests the monitoring module to deploy its monitoring routines (step 9 in Figure 2). Finally, during
service runtime, Maestro invokes a dedicated LCM component for managing the lifecycle of deployed
service instances, as shown in step 10 in Figure 3.

https://osl.etsi.org/
https://osl.etsi.org/
https://kubernetes.io/

D4.2 – Resource Elasticity Techniques

22

Figure 3: Maestro’s high-level architecture.

3.2.3. Functionalities

Table 1 presents the key functional requirements of Maestro for a successful integration with the
rest of NANCY’s ecosystem.

Table 1: Maestro’s functional requirements.

FR-ID FR-Description Related Module(s)/
Component(s)

FR1 Access to the NANCY services repository through an API NANCY services
repository

FR2 Offer NANCY end user Service Exposure set of APIs through TM
Forum’s service catalogue API (northbound/user facing API) End Users

FR3 Support TM Forum’s service order and inventory APIs in
collaboration with OpenSlice (southbound API) OpenSlice

FR4 Manage cloud applications through an API on each testbed Testbeds
FR5 Manage telemetry agents per application component Testbeds
FR6 Consume telemetry in Prometheus format Testbeds

D4.2 – Resource Elasticity Techniques

23

3.2.4. External APIs

Maestro requires several external interfaces that enable communication with adjacent components
for service orchestration, data collection, and consumption of reusable artifacts. These interfaces were
presented in Deliverable D6.1 - Β-RAN and 5G End-to-end Facilities Setup (Section 4, Table 4-1), and
include:

• The end user Service Exposure (BSS) set of APIs through NIS1
• The Resource Service Exposure set of APIs through NIS2
• The NANCY Service Repository and Registry set of APIs through NIS3

3.2.5. Maestro Architecture in NANCY

The final form of NANCY’s end-to-end service orchestrator (Maestro1) is depicted in Figure 4. At the
northbound, Maestro exposes a set of standardized open APIs based on TMForum, to facilitate
interaction with stakeholders (e.g., end-users, service providers, etc.) or peering systems (e.g., an
operations support system (OSS), such as ETSI OpenSlice2)

Figure 4: NANCY End-to-end Service Orchestrator (Maestro).

The internal components of the Maestro orchestrator are summarised in Table 2, where relevant
descriptions and useful references are provided for further clarification.

Table 2: Maestro software modules used in NANCY

Software module Description

API Gateway A thin entry-point to the Maestro TMF APIs – based on Kong3 – which
dispatches input requests to the correct TMF API endpoint.

TMF API The entire set of TMF APIs supported by Maestro are highlighted in different
colours according to Figure 3 as follows:

1 UBITECH, “Maestro open documentation,” [Online]. Available: https://maestro-mkdocs.readthedocs.io/
2 ETSI, “OpenSlice (OSL) Software Development Group (SDG),” [Online]. Available: https://osl.etsi.org/
3 Kong Inc., “Kong Gateway: Simplify API Management. Unlock AI Innovation,” [Online]. Available:
https://konghq.com/

https://maestro-mkdocs.readthedocs.io/
https://osl.etsi.org/
https://konghq.com/

D4.2 – Resource Elasticity Techniques

24

(i) onboarding services into various catalogs and categories based on TMF 633
Service Catalog Management API [22].
(ii) ordering services from the catalog(s) based on TMF 641 Service Ordering
Management API [23].
(iii) observing the service instances’ lifecycle based on TMF 638 Service
Inventory Management API [24].
(iv) onboarding resources into various catalogs and categories based on TMF
634 Resource Catalog Management API [25].
(v) ordering resources from the catalog(s) based on TMF 652 Resource
Ordering Management API [26].
(vi) observing the resource instances’ lifecycle based on TMF 639 Resource
Inventory Management API [27].
(vii) managing Maestro stakeholders (both individuals and organisations)
using the TMF 632 Party Management [28] and TMF 669 Party Role
Management API [29].
(viii) managing the points of presence of infrastructure resources (available
locations where Maestro can order services from OpenSlice) using the TMF
674 Geographical Site Management [30] and TMF 673 Geographical Address
Management API [31].

SONATA

The heart of Maestro; SONATA employs RedHat’s Kogito4 open-source
Business Process Model and Notation (BPMN) software library to encode
service orchestration workflows into BPMN diagrams that describe the exact
lifecycle of service specifications, service orders, and service instances.

Helm Engine
The component that undertakes to translate every user-defined service into
deployable service descriptors that can be applied to an underlying (set of)
cluster(s) via Helm5.

OSS Client

The component that undertakes to interact with one or more OpenSlice6
instances to order resources for the end-user services [32]. To allocate
compute resources, Maestro consumes a Kubernetes-as-a-Service (K8s-aaS)
service from OpenSlice, while for 5G-enabled services Maestro consumes a
5G-aaS service from OpenSlice (5G-aaS not available for NANCY).

ZTC Client

The component that undertakes to interconnect Maestro with remote –
private (sitting within a restricted domains) – testbeds where Maestro is
requested to deploy services. This component is based on OpenZiti zero-trust
platform7. For example, this component provides Maestro access to private
Kubernetes8 clusters allocated by OpenSlice across NANCY testbeds.

Telemetry Client
A thin component – based on Prometheus9 – that undertakes to register
service telemetry data. This data is useful for service observation,
maintenance, and policy execution. Integrates with AI & Analytics.

Visualization Client A thin component that undertakes to visualize service telemetry data for
Maestro stakeholders. This component is likely to be useless for NANCY as the

4 RedHat, “Kogito Cloud-Native Business Automation”, Available: https://kogito.kie.org/
5 Cloud Native Computing Foundation, “Helm: The package manager for Kubernetes”, Available:
https://helm.sh/
6 ETSI, “OpenSlice (OSL) Software Development Group (SDG),” [Online]. Available: https://osl.etsi.org/
7 NetFoundry, “OpenZiti: Open-Source Zero-Trust Platform,” [Online]. Available: https://openziti.io/
8 Cloud Native Computing Foundation, Kubernetes, “Production-Grade Container Orchestration,” [Online].
Available: https://kubernetes.io/
9 Cloud Native Computing Foundation, “Prometheus: From metrics to insight,“ [Online]. Available:
https://prometheus.io/

https://kogito.kie.org/
https://helm.sh/
https://osl.etsi.org/
https://openziti.io/
https://kubernetes.io/
https://prometheus.io/

D4.2 – Resource Elasticity Techniques

25

service telemetry will be visualized through the NANCY AI & Analytics
component.

Database

A PostgreSQL10 database that persists the entire TMF schema (service, party,
geographic site/address, resource schema) as well as state information of
core Maestro components (i.e., SONATA, Helm Engine, OSS Client, and ZTC
Client).

Authentication A Keycloak11 instance is used to authenticate users against Maestro, before
allowing these users to access the Maestro Northbound APIs.

Logging

A central component – based on Grafana Loki12 – that aggregates, stores, and
queries log entries from every Maestro microservice. It integrates well with
Grafana13 and Prometheus14 allowing to visualize logs and generate alerts out
of these logs respectively.

Tracing

A central component – based on Grafana Tempo15 – that integrates with
popular open-source tracing protocols, such as OpenTelemetry16, to collect
and persist traces from every Maestro microservice. It integrates well with
Grafana13 and Prometheus14 allowing to visualize traces and generate alerts
out of these traces respectively.

Monitoring
An open-source cloud-hosted monitoring and alerting system – based on
Prometheus14 – that is enhanced with long-term persistence and high-
availability features using Grafana Mimir17.

Dashboard
An external dashboard that leverages Grafana13 to integrate with (i) Grafana
Loki12 for visualizing service logs, (ii) Grafana Tempo15 for visualizing service
traces, and (iii) Grafana Mimir17 for visualizing service SLAs.

Message Bus A central component – based on Apache Kafka18 – to enable asynchronous
message exchange and event management among all Maestro microservices.

3.2.6. Final Integration Endpoints

Maestro supports and implements the endpoints summarized in Table 3, for more details about the
NANCY Interface Set (NIS) and NANCY Interface (NI) as well as for a visual representation of these
interfaces with the Functional and deployment view of the NANCY architecture annotated with
interface IDs, see D6.1 (Figure 2-1 and Table 4-1.).

10 PostgreSQL, “The World's Most Advanced Open-source Relational Database,” [Online]. Available:
https://www.postgresql.org/
11 Cloud Native Computing Foundation, “Keycloak: Open-source Identity and Access Management,” [Online].
Available: https://www.keycloak.org/
12 Grafana Labs, “Grafana Loki: Log monitoring for faster troubleshooting at scale,” [Online]. Available:
https://grafana.com/oss/loki/
13 Grafana Labs, “Grafana: Visualize your data, optimize your performance,” [Online]. Available:
https://grafana.com/oss/grafana/
14 Cloud Native Computing Foundation, “Prometheus: From metrics to insight,“ [Online]. Available:
https://prometheus.io/
15 Grafana Labs, “Grafana Tempo: Distributed tracing system for better application performance,” [Online].
Available: https://grafana.com/oss/tempo/
16 Cloud Native Computing Foundation, “OpenTelemetry: High-quality, ubiquitous, and portable telemetry to
enable effective observability,” [Online]. Available: https://opentelemetry.io/
17 Grafana Labs, “Grafana Mimir: Open-source, horizontally scalable, highly available, multi-tenant TSDB for long-
term storage for Prometheus,” [Online]. Available: https://grafana.com/oss/mimir/
18 Apache, “Kafka: Open-source distributed event streaming platform,” [Online]. Available:
https://kafka.apache.org/

https://www.postgresql.org/
https://www.keycloak.org/
https://grafana.com/oss/loki/
https://grafana.com/oss/grafana/
https://prometheus.io/
https://grafana.com/oss/tempo/
https://opentelemetry.io/
https://grafana.com/oss/mimir/
https://kafka.apache.org/

D4.2 – Resource Elasticity Techniques

26

Table 3: NANCY interfaces implemented by Maestro

Interface-ID Related Modules Type
NIS1 Maestro, BSS Service exposure to NANCY stakeholders
NIS2 Maestro, OSS (OpenSlice) Service management API

NIS3 Maestro, CI/CD Platform, OSS
(OpenSlice) Service artefacts management API

NIS5 Maestro, OSS (OpenSlice), Telemetry,
AI, Analytics Telemetry and monitoring API

NIS6 Maestro, OSS (OpenSlice), Compute
controllers Service deployment API

Maestro implements the above interfaces as follows:

• NIS1 - Service Exposure to NANCY Stakeholders: integration is performed via a production
Maestro swagger API dedicated to NANCY-related services. Table 5 shows the endpoints that
Maestro exposes to NANCY stakeholders via NIS1.

• NIS2 - Service Management API with OSS (OpenSlice): Through this interface, Maestro
communicates with the OpenSlice Operations Support System (OSS) to manage service
deployment. By leveraging OpenSlice's capabilities, Maestro can request the allocation of
necessary compute resources, supporting orchestrated deployments without directly
interacting with the infrastructure.

• NIS2 - Service Management API with OSS (OpenSlice): Through this interface, Maestro
communicates with the OpenSlice Operations Support System (OSS) to manage service
deployment. By leveraging OpenSlice's capabilities, Maestro can request the allocation of
necessary compute resources, supporting orchestrated deployments without directly
interacting with the infrastructure.

• NIS3 - Service Artefacts Management API: This interface facilitates interactions between
Maestro, the CI/CD platform, and OSS, enabling seamless management of service artifacts. It
ensures that the necessary service components and configurations are available and updated
as needed across the deployment lifecycle.

• NIS5 - Telemetry and Monitoring API: Maestro integrates with monitoring systems such as
Prometheus, allowing it to collect and register service telemetry data. This interface is crucial
for real-time observation and policy-driven adjustments, maintaining optimal performance
and supporting analytic insights.

• NIS6 - Service Deployment API with Compute Controllers: Finally, Maestro utilizes this interface
to execute service deployment commands, translating user-defined service descriptors into
Helm-based deployment specifications. This enables scalable service orchestration across
various platforms, including Kubernetes clusters, which is essential for flexible deployment on
cloud or edge infrastructures

Table 4: Endpoints exposed by Maestro

Endpoint Title Description Version
/tmf-api/service-catalog-
management/v4

633 Service Catalog
Management

Provides a catalog of services 4.0.0
/tmf-api/service-category-
management/v4

Provides a category of services that belongs
to a certain catalog 4.0.0

/tmf-api/service-candidate-
management/v4

Provides a candidate of services that belongs
to a certain category 4.0.0

/tmf-api/service-specification-
management/v4

Provides a specification of services that maps
to a certain candidate 4.0.0

https://maestro.euprojects.net/tmf-api/q/swagger-ui/

D4.2 – Resource Elasticity Techniques

27

/tmf-api/service-order-
management/v4

641 Service Order
Management

Provides the ability to query and manipulate
active service instances 4.1.0

/tmf-api/service-inventory-
management/v4

638 Service Inventory
Management

Provides the ability to query and manipulate
active service instances 4.0.0

/tmf-api/resource-catalog-
management/v4

634 Resource Catalog
Management

Provides a catalog of resources 4.1.0

/tmf-api/resource-category-
management/v4

Provides a category of resources that belongs
to a certain catalog 4.1.0

/tmf-api/resource-candidate-
management/v4

Provides a candidate of resources that
belongs to a certain category 4.1.0

/tmf-api/resource-
specification-management/v4

Provides a specification of resources that
maps to a certain candidate 4.1.0

/tmf-api/resource-order-
management/v4

652 Resource Order
Management

Provides the ability to manage resource
orders that comprise of one or more
resource specifications

4.0.0

/tmf-api/resource-inventory-
management/v4

639 Resource
Inventory
Management

Provides the ability to query and manipulate
active resource instances 4.0.1

/tmf-api/party-
management/individual/v4 652 Party

Management API

Manage individual parties 4.0.0

/tmf-api/party-
management/organisation/v4

Manage corporate parties (i.e.,
organizations) 4.0.0

/tmf-api/party-role-
management/v4

669 Party Role
Management API

Manage party roles 4.0.0

/tmf-api/geographic-site-
management/v5

674 Geographic Site
Management API

Manage resource locations at abstract sites,
where each site may contain a list of
geographic addresses

5.0.0

3.2.7. Degrees of Freedom of the Slice Manager

The degrees of freedom in resource scaling and allocation, including vertical scaling and intra-slice
resource elasticity, are actually implemented by OpenSlice within the Maestro framework. While
Maestro acts as the service orchestrator, coordinating the lifecycle of services, it delegates the direct
management of resources (like compute, memory, and storage) to OpenSlice, which functions as the
underlying resource orchestrator.

In this setup:

• Maestro handles high-level service orchestration, policy enforcement, and interaction with
external components (e.g., via APIs for monitoring and telemetry).

• OpenSlice manages resource provisioning at the infrastructure level (like Kubernetes
clusters), enabling Maestro to apply vertical scaling, resource elasticity, and specific
deployment requirements as defined in the NANCY project.

Thus, Maestro leverages OpenSlice's capabilities to perform the actual resource adjustments required
by service instances.

3.3. Metrics for Characterizing Trade-Offs

The trade-off between efficiency and performance in virtualized computing environments is closely
tied to CPU and memory metrics such as limits, usage, and utilization, along with the application’s
response time. For example, high CPU utilization can indicate efficient resource usage, but when
utilization approaches or exceeds limits, the environment, such as a slice, may begin throttling the
system. This throttling leads to a decrease in resource availability, causing degraded performance and
an increase in application response times. Therefore, balancing CPU limits and utilization is crucial to
maintaining performance without overloading the system, ensuring that applications remain
responsive while maximizing efficiency. Similarly, in network environments, the balance between

D4.2 – Resource Elasticity Techniques

28

efficiency and resilience relies on two critical metrics: throughput and fairness. These metrics are
essential for managing network load effectively while ensuring stable performance and equitable
resource distribution across network paths. Maximizing throughput reflects effective resource usage
across paths, but without fairness, certain paths can become congested, leading to performance
degradation. Ensuring fairness alongside throughput prevents bottlenecks and maintains consistent
service levels across the network. Below are the several metrics for characterizing such trade-offs that
are used in Section 4:

• Response Time: This metric tracks how long the application takes to respond to a request. It's
a direct reflection of performance from the user's perspective. As CPU and memory resources
become constrained, response times generally increase due to throttling or resource
exhaustion.

• CPU Utilization: CPU Utilization measures how much of the allocated CPU resources are being
used by the application. High utilization often indicates efficient resource use but can lead to
throttling if the demand exceeds the allocated limits. This results in degraded performance,
visible through longer response times. Maintaining a balance is crucial to avoid over-
provisioning while preventing throttling.

• Memory Utilization: Similar to CPU, memory utilization tracks how much memory the
application is consuming. Applications that exceed their memory limits can face performance
penalties, such as garbage collection or out-of-memory (OOM) kills, which severely impact
response times and stability.

• CPU/Memory Limits: These represent the upper bound of resources the Kubernetes scheduler
allows the pod to consume. When utilization approaches or exceeds these limits, the system
may begin throttling, reducing performance. Reinforcement learning in the setup helps adjust
these limits dynamically based on historical data and current usage trends to balance efficiency
and performance.

• Available CPU/Memory in the Environment: This tracks the remaining capacity in the
application environment. Monitoring the available CPU and memory ensures that scaling
decisions are made with an awareness of application-level resource availability.

• Throughput: This metric measures the volume of data successfully transmitted across a
network path within a given time frame. High throughput signifies efficient resource use,
which contributes to overall network performance. However, optimizing throughput alone can
lead to uneven path utilization, potentially causing congestion on overused paths. Balancing
throughput across all paths ensures a smooth data flow without overloading specific
segments.

• Fairness: Fairness evaluates the equitable distribution of network resources across paths,
preventing any single path from becoming overly congested. This metric is critical in
maintaining resilience, especially under varying traffic conditions, as it ensures consistent
performance across the network by distributing load evenly.

D4.2 – Resource Elasticity Techniques

29

4. Novel Resource Elasticity Mechanisms

In this section, we elaborate on innovative resource elasticity techniques for time-critical tasks in
Section 4.1. Moreover, we provide a detailed explanation of the multi-hop path allocation algorithm,
PHual in Section 4.2, which efficiently manages the spectral resource. Finally, the computation
elasticity technique is presented in Section 4.3.

4.1 Scheduling for Time-Critical Tasks

In NANCY, the scheduling of time-critical tasks relies on the SCHED_DEADLINE scheduler of Linux [33].
SCHED_DEADLINE is a reservation-based scheduler that allows the provision of QoS guarantees to
applications that implement the Constant Bandwidth Server reservation algorithm [34], which in turn
relies on the Earliest Deadline First (EDF) scheduling algorithm. SCHED_DEADLINE is an integral part of
the Linux mainline kernel, hence available to all Linux users. SCHED_DEADLINE allows reserving a
fraction of the CPU bandwidth under bounded service latency by configuring two parameters: a budget
Q (also called runtime) and a period P. SCHED_DEADLINE ensures that, every P time units, Q time units
of execution time budget are provided to the target application. The target application can consist of
Linux threads and QEMU/KVM virtual machines. Containers are also compatible thanks to an out-of-
tree patch [35], which has been extended in the context of NANCY to be used with newer kernel
versions. SCHED_DEADLINE is not only a resource partitioning mechanism: it also acts as a resource
enforcer, ensuring that no more than Q time units are allocated every period P. This allows multiple,
untrusted, applications to be collocated within the same computing infrastructure (e.g., CPU cores).
Parameters Q and P are equivalently mapped to two other parameters: the CPU bandwidth assigned
to the reservation 𝛼𝛼 = 𝑄𝑄/𝑃𝑃 and the worst-case service latency 𝛥𝛥 = 2 ⋅ (P − Q) with which the target
application can be provided access to the CPU.

Scaling SCHED_DEADLINE reservations. This section describes how to flexibly manage the “vertical”
scaling of virtualized applications using SCHED_DEADLINE. Generally speaking, vertical scaling refers
to adding more computational capabilities to the current machines. In this context, it refers to adding
computational power to SCHED_DEADLINE reservations, which involves: (i) increasing the CPU
bandwidth 𝛼𝛼 and/or (ii) reducing the service latency 𝛥𝛥. This has a direct correspondence to finding the
most suitable values for the period P and budget Q parameters of reservations and dynamically
adapting the parameters when the workload conditions change. Indeed, assigning proper
configuration parameters to reservation is of key importance since:

1. If the budget is too small, or the period is too large, QoS constraints cannot be guaranteed;
2. If the budget is too large, or the period is too small, the physical edge platform can be

underutilized.

Both conditions are clearly unwanted. Hence, a coarse, generous, provisioning of the parameters, e.g.,
assigning a large CPU bandwidth to an application without properly tailoring it with its computational
needs, would conflict to avoid the platform underutilization. Therefore, proper methods to
dynamically detect and monitor application’s needs are required.

In D3.4, we addressed the problem of monitoring the runtime budget of SCHED_DEADLINE
reservations to avoid resource underutilization. In this deliverable, we complement the budget
monitoring mechanism provided in D3.4 by (1) addressing the problem of setting a proper period
parameter for SCHED_DEADLINE reservations, thus providing mechanisms to set both the budget and
the period of SCHED_DEADLINE reservations and (2) discussing how the runtime monitor (used to

D4.2 – Resource Elasticity Techniques

30

estimate the budget) and period estimator can be used together to achieve a comprehensive vertical
scaling of a virtualized application using SCHED_DEADLINE.

4.1.1 Period Estimation

Problem Modeling. The considered system is composed of a distributed network of edge nodes. Each
edge node is a (Linux-based) computing platform with homogeneous physical cores. On each edge
node serves a set 𝒱𝒱 of VPs, denoted as 𝑣𝑣𝑗𝑗, which includes 𝑚𝑚𝑗𝑗 vCPUs 𝑐𝑐𝑗𝑗,1, … 𝑐𝑐𝑗𝑗,𝑚𝑚𝑗𝑗.

A VP can be a virtual machine managed by KVM/QEMU or a container. In the following, we discuss
how to match SCHED_DEADLINE reservations with VPs.

Each VP 𝑣𝑣𝑗𝑗 is characterized by a tuple (𝑄𝑄𝑗𝑗, 𝑃𝑃𝑗𝑗), where 𝑄𝑄𝑗𝑗 = �𝑄𝑄𝑗𝑗,1, …𝑄𝑄𝑗𝑗,𝑚𝑚𝑗𝑗� and 𝑃𝑃𝑗𝑗 = �𝑃𝑃𝑗𝑗,1, …𝑃𝑃𝑗𝑗,𝑚𝑚𝑗𝑗� are
the vectors of budgets and periods of each individual vCPU 𝑐𝑐𝑗𝑗,𝑥𝑥 ∈ 𝑣𝑣𝑗𝑗.

The virtual platforms in set 𝒱𝒱 are scheduled by the Linux operating system according to the EDF
algorithm.

The workload running inside each vCPU is scheduled with one of the other Linux schedulers (e.g., the
fixed-priority scheduler). Each 𝑣𝑣𝑗𝑗 serves a workload composed of a set of tasks 𝛤𝛤𝑗𝑗. Each task 𝜏𝜏𝑖𝑖 ∈ 𝛤𝛤𝑗𝑗 is
characterized by an execution time 𝐶𝐶𝑖𝑖 and an activation period 𝑇𝑇𝑖𝑖, meaning that the task is considered
releasing a (potentially, infinite) sequence of instances (called jobs), each one spaced by 𝑇𝑇𝑖𝑖 time units.

Estimating the period of tasks. To properly set the reservation scheduling parameters, it is paramount
to accurately estimate the tasks’ activation patterns. In particular, it is essential to identify tasks that
can be modeled through periodic activation patterns and to estimate their activation periods. This can
be performed by identifying tasks’ activation events and performing a frequency-domain analysis on
them [36].

The Linux kernel’s function tracer (ftrace19) is used to extract the tasks’ “wakeup” events, indicating
that a process or thread becomes selectable by the kernel CPU scheduler, moving from a blocked state
to the ready state. The sequence of wakeups for each relevant task is registered by modeling the 𝑗𝑗𝑡𝑡ℎ
wakeup of task 𝜏𝜏𝑖𝑖, occurring at time 𝑟𝑟𝑖𝑖,𝑗𝑗, as a Dirac delta 𝛿𝛿�𝑡𝑡 − 𝑟𝑟𝑖𝑖,𝑗𝑗� centered at time 𝑟𝑟𝑖𝑖,𝑗𝑗. After
collecting 𝑁𝑁 of these events, a function 𝑎𝑎𝑖𝑖(𝑡𝑡) = ∑ 𝛿𝛿𝑗𝑗 �𝑡𝑡 − 𝑟𝑟𝑖𝑖,𝑗𝑗� describing the activations of task 𝜏𝜏𝑖𝑖 is
built and is transformed to the frequency domain:

The energy of this Fourier transform is then computed as

19 The Linux Fundation, ‘’Kernel’s function Tracer’,’ [Online]. Available:
https://www.kernel.org/doc/html/latest/trace/ftrace.html.

Identifying peaks in this energy function can then estimate the task’s periodicity [27].

https://www.kernel.org/doc/html/latest/trace/ftrace.html

D4.2 – Resource Elasticity Techniques

31

The program originally used to detect periodic tasks with a top-like interface [37] has been modified
turning it into PeriodWiz, (the Period Wizard) [38], a daemon that sets up ftrace for tracing the
wakeup events of the monitored real-time tasks;

• stores the functions 𝑎𝑎𝑖𝑖(𝑡𝑡) describing the activation patterns of such tasks;

• periodically (with a configurable period 𝑇𝑇) computes the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) for each monitored task
𝜏𝜏𝑖𝑖, looking at the peaks in 𝑆𝑆𝑖𝑖(𝑓𝑓) and identifying the periodic tasks with their periods.

PeriodWiz exports an RPC interface that allows clients to add new tasks to the set of real-time tasks to
be monitored (by registering a new process ID) and to query for the period of a monitored task.

Clearly, it is essential to compute the Fourier transform of 𝑎𝑎𝑖𝑖() after collecting an appropriate
number 𝑁𝑁 of events: if a too-small number is selected, not enough samples are registered in 𝑎𝑎𝑖𝑖(𝑡𝑡) and
the period estimation risks to be based on noisy data; on the other hand, if 𝑁𝑁 is too large, we risk
detecting periodic tasks with a too-long delay.

Some experiments about this will be reported in the following. To address this issue, the daemon starts
by computing 𝑆𝑆𝑖𝑖(𝑓𝑓) based on a small number of samples and increases 𝑁𝑁 if the task is not identified
as periodic. When a maximum 𝑁𝑁𝑚𝑚𝑚𝑚𝑥𝑥 is reached without identifying a period, the task is marked as “not
periodic” and 𝑁𝑁 is not increased further.

Another parameter is the period 𝑇𝑇 of PeriodWiz. It has no influence on the sampling frequency of
wakeup events, which are registered by the tracing facilities. However, it is important to tune it
properly: if 𝑇𝑇 is too long, a period estimate can be available after too much time and after enough
samples have been collected, while if 𝑇𝑇 is too short, PeriodWiz can spuriously wake up (causing
overhead at the operating system level) without enough samples being collected.

From task periods to reservation periods. Classical real-time systems consider the parameters of each
thread to be known and a static workload (no new thread joins at runtime), enabling the design of the
vCPU parameters offline, at design time. The considered edge computing context is instead much
different and provides a dynamic workload of VM or containers, which need to correspond to a VP 𝑣𝑣𝑗𝑗.
However, deciding the parameters 𝑄𝑄𝑗𝑗,𝑥𝑥 and 𝑃𝑃𝑗𝑗,𝑥𝑥 is a hard task when no prior information about the
workload is available.

The tool PeriodWiz presented in this paper [38] allows to detect the periodicity of a task running in a
Linux system.

However, once the periods 𝑇𝑇𝑖𝑖 of the tasks 𝜏𝜏𝑖𝑖 ∈ 𝛤𝛤𝑗𝑗 assigned to a VP 𝑣𝑣𝑗𝑗 have been obtained, they must

be used to configure the VP itself, i.e., the budgets �𝑄𝑄𝑗𝑗,1, …𝑄𝑄𝑗𝑗,𝑚𝑚𝑗𝑗� and periods �𝑃𝑃𝑗𝑗,1, …𝑃𝑃𝑗𝑗,𝑚𝑚𝑗𝑗�, and
possibly also the number of vCPUs 𝑚𝑚𝑗𝑗.

Once the period is decided thanks to the methods proposed in this document, a value for the budget
parameter is also needed. This parameter can be estimated using the monitoring tool presented in
D3.4.

The one-vCPU-per-task approach. If the VP is implemented by a container, the host operating system
has complete visibility of all the tasks running in the container. Therefore, a simple - yet effective -
option could be to assign a SCHED_DEADLINE vCPU to each task, setting its budget to 𝑄𝑄𝑗𝑗,𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖 and
𝑃𝑃𝑗𝑗,𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖.

This parameter assignment guarantees that each job of 𝜏𝜏𝑖𝑖 always receives at least the 𝐶𝐶𝑖𝑖 time units
required to complete before the next activation, which occurs with period 𝑇𝑇𝑖𝑖 [33]. Clearly, this can only
be guaranteed if the physical platform is not overloaded. For example, if vCPUs are assigned to physical

D4.2 – Resource Elasticity Techniques

32

cores following a partitioned scheduling approach, the physical core in which 𝑐𝑐𝑗𝑗,𝑖𝑖 is allocated must not
be overloaded: this must be verified by checking that the sum of the ratios of the budgets and periods
of all the vCPUs allocated to a physical core is less than or equal to one [39].

When using this approach, the number of vCPUs 𝑚𝑚𝑗𝑗 is equal to the cardinality of set 𝛤𝛤𝑗𝑗 (�𝛤𝛤𝑗𝑗�).

When VPs are implemented by a KVM-like virtual machine, this approach is not possible. Indeed, the
host operating system has no visibility for the tasks running inside the VM but only visibility about the
Linux processes that implement the virtual CPUs of the virtual machine. Also, scheduling the individual
tasks with the SCHED_DEADLINE policy of the guest kernel would not lead to the intended temporal
behaviour since the VM is subject to the scheduling effects occurring at the host operating system
level. Since the guest kernel sees the host’s “real-time”, every time the VM is preempted, the tasks
running in the guest would be accounted for the wrong runtimes (including the time for which the VM
did not run).

To overcome this issue, the m-vCPU approach can be used.

The m-vCPU approach. The m-vCPU approach considers a fixed number 𝑚𝑚𝑗𝑗 of vCPUs to implement the
VP 𝑣𝑣𝑗𝑗, allowing vCPUs to manage multiple tasks. As previously discussed, this approach is more natural
for using SCHED_DEADLINE reservations for the processes implementing the vCPUs of a VM under
KVM-like virtualization.

Furthermore, this approach can also be used when using containers to simplify the decision-making
problem: for example, if 𝑚𝑚𝑗𝑗 is fixed, the budget and periods of all the vCPUs can be set to the same

value (𝑄𝑄𝑗𝑗,1 = ⋯ = 𝑄𝑄𝑗𝑗,𝑚𝑚𝑗𝑗 = 𝑄𝑄𝑗𝑗) and �𝑃𝑃𝑗𝑗,1 = ⋯ = 𝑃𝑃𝑗𝑗,𝑚𝑚𝑗𝑗 = 𝑃𝑃𝑗𝑗�, and the set of parameters needed to
identify the timing behavior of a VP just consist of the triplet �𝑄𝑄𝑗𝑗 ,𝑃𝑃𝑗𝑗,𝑚𝑚𝑗𝑗�.

In this case, suitable budget and period parameters can be achieved using methods from the real-time
systems literature for the design of the parameters of reservation servers. A vast literature exists on
this topic; however, since in an edge architecture these parameters need to be defined online, we refer
the interested reader to works [40], [41], that provide heuristics methods for designing the reservation
budgets and periods in a few milliseconds.

Running PeriodWiz inside a VP. The implementation choice for the virtual platform not only influences
the assignment of the reservation parameters from tasks’ parameters but also affects how PeriodWiz
can be used.

If the virtual platform in which the application is running is based on a Docker-like container, the host
kernel has complete visibility of the application’s tasks, hence the PeriodWiz daemon can run on the
host and can trace the tasks to identify their periods without issues.

If, instead, the virtual platform is based on KVM-like virtualization, then the host kernel only sees the
VM’s vCPU threads. Hence, PeriodWiz cannot directly trace the application’s tasks to detect their
periods. In this second case, there are various possibilities:

• The PeriodWiz daemon can be executed inside the VM; in this case, if the host scheduler does
not affect the applications’ activation pattern, the daemon can still detect periodic applications
and their periods.

• The PeriodWiz daemon can be executed in the host to analyze the activation pattern of the
vCPU threads.

D4.2 – Resource Elasticity Techniques

33

• The applications’ activation patterns can be detected before starting the applications in the
virtual platform by running the application in a container or on a different node, where
PeriodWiz can analyze it.

We consider some of these cases later in the evaluation.

Evaluation. We now evaluate the effects of the number 𝑁𝑁 of samples using our frequency-estimation
mechanism on 3 different applications: a synthetic real-time application composed of a periodic task
with period 𝑃𝑃 = 40𝑚𝑚𝑠𝑠, the ffplay video player reproducing a video (with its synchronized audio track)
at 33 frames per second (FPS), and a non-periodic application performing some processing on data
stored on the disk.

Figure 5 shows the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) of the Fourier transform for the periodic task, with 𝑁𝑁 ∈ {5,10,20}
samples. The figure shows how increasing the number of samples increases the energy of the
frequency peaks as well, making it easier to detect them. Our tool is able to identify the program as
periodic (with the correct period 𝑇𝑇 = 40𝑚𝑚𝑠𝑠) when 𝑁𝑁 = 10 or 𝑁𝑁 = 20 samples are used; hence, the
minimum delay for identifying the task as periodic is 𝛿𝛿 = 40𝑚𝑚𝑠𝑠 ⋅ 10 = 400𝑚𝑚𝑠𝑠.

Figure 6 shows the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) of the Fourier transform for the audio/video player, computed on 𝑁𝑁 ∈
{10,20,50} samples (in this case, 𝑁𝑁 = 5 did not provide any useful information). Although this
application does not exhibit a clearly periodic activation pattern (it has to display a video frame every
33.3𝑚𝑚𝑠𝑠, to periodically decode and play the audio track, to read the compressed data from disk, etc...)
the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) allows to identify some peaks. However, such peaks are visible only when enough
samples are used; in particular, the application is able to identify them for 𝑁𝑁 = 50.

Finally, Figure 7 shows the energy 𝑆𝑆𝑖𝑖(𝑓𝑓) of the Fourier transform for a non-periodic application,
computed on 𝑁𝑁 ∈ {20,50,100} samples. In this case, it is clearly not possible to identify any peaks in
the energy function, and PeriodWiz marks the application as “not periodic”.

Moreover, PeriodWiz has been tested to analyze the activation patterns of various periodic tasks, using
cyclictest20, rt-app21 and some synthetic real-time applications, and it was always able to correctly
identify such applications as periodic (with the correct period). It has also been tested with some
“almost periodic” applications (such as audio/video players), and it was able to detect periodic
activation patterns. However, the presence of aperiodic components in the application caused
deviations from the expected period. For example, an audio/video player reproducing video at 30FpS
(i.e., the expected period is 1/30 seconds, that is, 33.3 ms) was detected as periodic with a period 𝑇𝑇 =
11.1𝑚𝑚𝑠𝑠, probably because audio decoding/reproduction and file parsing introduced some high-
frequency components. Nevertheless, 11.1𝑚𝑚𝑠𝑠 is a suitable period for an application at 30FpS (hence
with a video period of 33.3𝑚𝑚𝑠𝑠) since it is a sub-multiple of the video period.

20 The Linux Foundation, ”Cyclictest”, Available:
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
21 Github, ”rt-app”, Available: https://github.com/scheduler-tools/rt-app

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://github.com/scheduler-tools/rt-app

D4.2 – Resource Elasticity Techniques

34

Figure 5: Energy of the Fourier transform of the activations for a periodic task with period T=40ms, for different numbers of

samples.

Figure 6: Energy of the Fourier transform of the activations for an audio/video player, for different numbers of samples.

D4.2 – Resource Elasticity Techniques

35

Figure 7: Energy of the Fourier transform of the activations for a non-periodic task, for different numbers of samples.

Figure 8: Energy of the Fourier transform of the activations for the QEMU vCPU thread when two real-time tasks with

periods T1=50ms and T2=75ms run inside the VM.

D4.2 – Resource Elasticity Techniques

36

Figure 9: Energy of the Fourier transform of the activations for the QEMU vCPU thread when three real-time tasks with

periods T1=45ms, T2=60ms, and T3=105ms run inside the VM.

Finally, some experiments have been conducted to check how PeriodWiz performs when trying to
identify tasks running in a QEMU/KVM VM. To this end, some periodic task sets have been executed
inside QEMU/KVM VMs, using the PeriodWiz daemon to analyze the activation pattern of the QEMU’s
vCPU threads. For example, when running two periodic real-time tasks with periods 𝑇𝑇1 = 50𝑚𝑚𝑠𝑠 and
𝑇𝑇2 = 75𝑚𝑚𝑠𝑠 in a single-CPU VM, PeriodWiz identifies the vCPU thread as periodic with period 𝑇𝑇 =
25𝑚𝑚𝑠𝑠; Figure 8 shows the energy of 𝑆𝑆(𝑓𝑓), which has a peak in 𝑓𝑓 = 40𝐻𝐻𝐻𝐻 (corresponding to 𝑇𝑇 =
1000𝑚𝑚𝑠𝑠/40 = 25𝑚𝑚𝑠𝑠) allowing to identify the period. Similarly, Figure 9 shows the energy of the
Fourier transform when three tasks with periods 𝑇𝑇1 = 45𝑚𝑚𝑠𝑠, 𝑇𝑇2 = 60𝑚𝑚𝑠𝑠, and 𝑇𝑇3 = 105𝑚𝑚𝑠𝑠 run inside
the VM. In this case, PeriodWiz identifies the vCPU thread as periodic with period 15𝑚𝑚𝑠𝑠. More
experiments revealed that PeriodWiz is generally able to identify the greatest common divisor of the
periods of the tasks running in the VM; this is actually a very good choice for the vCPU’s reservation
period. Hence, we conclude that this approach is usable for hypervisor-based VMs, too.

4.1.2 Vertical Scaling with SCHED_DEADLINE

Figure 10 shows a reference architecture for edge systems using SCHED_DEADLINE reservations. The
figure shows a distributed runtime decision-making logic with orchestration capabilities (e.g., the
SCHED_DEADLINE-aware versions of Kubernetes developed in the context of Task 3.3). In the NANCY
architecture, this distributed decision-making logic with orchestration capabilities (time-sensitive
orchestrator, for short), can perform allocation decisions on a slice of computational resources
provided to the time-sensitive domain under consideration by a higher-level orchestrator, such as the
slice manager or Maestro, which is in charge of the coarse-grained allocation a subset of computing
nodes to the time-sensitive domain.

In this context, the orchestrator for time-sensitive resources discussed here receives offloading
requests for applications from mobile devices, which require to be allocated in a VP on the available
edge nodes. Using SCHED_DEADLINE involves setting the budget and period parameters. Computing
nodes report to the time-sensitive orchestrator monitoring data and receive updated values for the
budgets and periods of the vCPUs implementing each VP. When an offloading request is received by
the orchestrator, the periodicity of the application’s tasks is estimated with PeriodWiz. As previously

D4.2 – Resource Elasticity Techniques

37

discussed, PeriodWiz can be either running on the same edge node of the deployed VP or in a remote
node (e.g., together with the orchestrator).

Figure 10: Schematics showing the interconnections between nodes and a distributed decision-making architecture, in

which monitoring data is provided to allow vertical scaling.

Scaling. Once the period is estimated, the runtime monitoring mechanism developed in Task 3.4 of
NANCY can be used to monitor the timing behavior of SCHED_DEADLINE reservations. An example is
reported in the following. Two tasks are served by two reservations. Both reservations were detected
to have a period of 100ms by PeriodWiz.

The two tasks are characterized by dynamic execution times: the first task initially exhibits an execution
time of 5ms, then 15ms, then stabilizes to 10ms. The second task instead ranges from 10ms, to 30ms,
and finally to 20ms. In this example, the period is kept constant, but variations in the period can also
be detected by running PeriodWiz if needed (i.e., if another task dynamically joins the reservation).
Figure 11 and Figure 12 report the results in terms of CPU bandwidth and worst-case CPU service
latency of the two reservations corresponding to the two tasks.

The figures show how our monitoring mechanism is able to elastically provide more bandwidth to the
reservations (and hence to the tasks) as soon as their execution time increases. Furthermore, Figure
12 shows the effects on the worst-case CPU service latency, computed as discussed at the beginning
of the section. In this example, we assume all latency values are acceptable for the reservation timing
constraints; when this is not the case, this information can be used by the scaling mechanism to further
enhance the assignment of parameters.

Overall, the mechanisms provided in Task 3.4 and Task 4.2 provide effective ways to enable the vertical
scaling of SCHED_DEADLINE reservations, achieved by dynamically changing the budget and period
parameters, which directly determine the reservation of the CPU bandwidth.

These techniques can be used to adjust the resource poll of B-RAN workloads with the goal of providing
sufficient resources for all functions. When this is not possible, the solution can also provide
mechanisms to allow graceful degradation by reducing the amount of resources assigned (reducing
the budget and/or increasing the period).

D4.2 – Resource Elasticity Techniques

38

Figure 11: Elasticity in the CPU bandwidth.

Figure 12: Worst-case CPU service latency under reservation-based scheduling.

Finally, Figure 13 shows another run of the same experiment on a higher number of samples and
tracking a different metric, i.e., the reservation budget (runtime).

D4.2 – Resource Elasticity Techniques

39

Figure 13: Reservation budget.

4.2 PHaul- a DRL-based Path Allocation for Sub6 Enhanced IAB Networks

Relying on dedicated fiber for backhauling presents a significant obstacle to the large-scale and dense
deployment of outdoor small cells. In Release 16, 3GPP introduced the Integrated Access and Backhaul
(IAB) technology to address this issue [42], which allows the utilization of the same spectrum in access
and backhaul. IAB enables operators to start deployments with a small number of fibers connected
mm-wave small cells, known as donor nodes in IAB terminology, and to extend service coverage by
deploying additional IAB nodes that are wirelessly backhauled via donor nodes. These nodes can
provide direct service to User Equipments (UEs), or act as parent nodes for other IAB nodes, extending
the multi-hop or mesh backhaul network.

While the IAB model defined by 3GPP is spectrum agnostic, allowing operation either in the mm-wave
or sub-6 GHz spectrum, the main use case for IAB networks is to provide mm-wave spectrum in the
access and backhaul, complementing the Sub6 spectrum offered by the macro-cell layer. However, the
performance of the mm-wave IAB backhaul segment depends heavily on the availability of line of sight
(LoS) conditions in the selected deployment sites. To mitigate LoS dependence, in NANCY, we propose
to complement the mm-wave backhaul segment of IAB networks with additional Sub6 backhaul links,
which contribute to the capacity and robustness of the backhaul network. We refer to such networks
as Sub6 enhanced IAB networks.

3GPP has defined the Backhaul Adaptation Protocol (BAP) which uses source routing to route IAB flows
according to a classifier matching IAB flows into pre-provisioned backhaul paths. In this context, we
have designed and evaluated the PHaul solution, a forwarding engine for Sub6 enhanced IAB networks

D4.2 – Resource Elasticity Techniques

40

that accommodates different traffic engineering criteria or SLAs to optimize IAB path allocation. PHaul
combines an offline path selection heuristic with an online Deep Reinforcement Learning (DRL) agent
based on Proximal Policy Optimization (PPO). By leveraging a network digital twin of the IAB wireless
backhaul, PHaul periodically monitors the input traffic of the backhaul network and updates flow to
path mappings, performing decisions on the non-real-time domain. Although the results are focused
on the IAB scenario, the proposed path forwarding engine could also be applied to other multi-hop or
mesh scenarios within the scope of NANCY’s User Case 2 “Advanced coverage expansion”, provided
that the main requirements are met: stable multi-path topology, low link variability and minimal
interference. In network slicing environments, the availability of paths and the targeted SLAs for each
slice would be defined by the Virtualization Platforms defined in Section 3, establishing the action
space, state space and rewards to be used by the PHaul agent and within the digital twin.

In the next subsections, we present the key points of the design and implementation of the PHaul
solution, together with the most significant results of its evaluation. Additional information and
evaluations can be found in the referred journal paper [33].

4.1.1. PHaul Design

Figure 14 depicts the network model being considered. In the bottom left of the figure, we depict the
logical architecture of a Sub6-enhanced IAB node, which, following the IAB architecture, features a
Distributed Unit (DU) and Mobile Terminated (MT) function both for the Sub6 and the mm-wave
bands. However, only the mm-wave DU will be used to connect UEs in the access of IAB nodes, as Sub6
access coverage is already provided by the macro layer. The donor nodes have a wired connection to
the Centralized Units (CU), which in this scenario are common to all the donor nodes. The main
elements of the Figure 14 are described as follows:

Figure 14: PHaul network model

I. IAB donor nodes, denoted as dk ∈ D, featuring both a Sub6 and a mm-wave DUs, which connect
UEs and other IAB nodes to the wired network, where the Centralized Unit (CU) components
are located.

II. IAB nodes, denoted as si ∈ S, provide access to UEs and other IAB nodes. An IAB node may
directly connect to an IAB donor or to another IAB node. Multi-path is supported by

D4.2 – Resource Elasticity Techniques

41

embedding multiple MT functions into a single IAB node or by using Dual Connectivity. IAB
nodes can establish more than one link to other IAB donors or IAB parent nodes. IAB nodes
provide access to multiple UEs, where each UE establishes a separate PDU session. However,
we consider that in the backhaul, traffic from all UEs is aggregated into a single backhaul PDU
session, which we refer to as a backhaul flow.

III. Backhaul flows, fi ∈ F, originate at non-donor IAB nodes. Each backhaul flow carries a time-
varying traffic load, λi(t), generated by all the UEs in RRC_CONNECTED state. Each backhaul
flow is mapped to a pre-provisioned IAB backhaul path defined between an IAB and an IAB
donor. For each flow, the source is fixed, i.e. si however any donor dk could be used as
destination, as long as a backhaul path exists. The reason is that all donor nodes provide access
to the wired network where the CU resides.

IV. The Sub6 backhaul, shown in red in Figure 14, and the mm-wave backhaul, shown in blue in
Figure 14, provide a set of backhaul paths between IAB nodes and IAB donors. Due to different
propagation characteristics in the Sub6 and mm-wave bands, different paths may be available
in the Sub6 and mm-wave backhaul networks. The BAP protocol in IAB uses source-based
forwarding. Hence, each flow fi is bound to use a single path, where paths are pre-provisioned.
In particular, we consider that a set of k ≤ Kmax paths are pre-provisioned for each flow in the
Sub6 and the mm-wave backhaul networks, where Ps

ni,dk indicates the n-th pre-provisioned
path for flow fi between si and dk. Thus, a given backhaul flow could be routed across a total
of 2Kmax paths considering both networks but can only use a single path at a given time.

V. Finally, a flow-path mapping engine is defined as a control plane entity that periodically
obtains the state of the network, e.g., through reading load counters in the IAB nodes. Based
on the obtained information, the flow-path mapping engine updates the mappings between
backhaul flows and backhaul paths in each IAB node. The PHaul agent resides in the flow-path
mapping engine. Notice that various backhaul flows can traverse the same backhaul node and
compete for the capacity of a given Sub6 or mm-wave backhaul link. In this case, we assume
that backhaul nodes assign capacity to each flow traversing a backhaul link using a max-min
fairness criteria.

Based on the described network model we can define the set of paths available to flow fi as Pi
selected ,

with Pi
selected ≤ 2Kmax. Periodically, the flow-path mapping engine samples the traffic matrix from each

backhaul flow and updates the per-flow path allocations. The goal of PHaul is to, based on the current
traffic matrix {λi(t)}, assign for each flow fi a single path Popt

si,di ∈ Pi
selected, to optimize a given traffic

engineering criteria JTE. The execution time of the PHaul agent is the key factor to determine how often
path allocations can be adapted to the varying traffic matrices. Regarding the traffic engineering
criteria, we consider JTE to be a varying objective function defined by the operator of the IAB network
as a function of the effective data rates, ϕi(t), allocated to each backhaul flow, where the effective data
rate represents the actual rate that can be served from that flow, as compared to the overall flow
demand represented by λi(t). In the case of the evaluation presented later, we considered the following
engineering criteria:

I. Throughput efficiency: The goal is to maximize the proportion of load that can be carried by
the network. This traffic engineering criterion would be appropriate in networks where
demand is expected to be heterogeneous across IAB nodes.

0 ≤ 𝐽𝐽𝑇𝑇𝑇𝑇 = ∑ 𝜙𝜙𝑖𝑖(𝑡𝑡)𝑖𝑖
∑ λ𝑖𝑖(𝑡𝑡)𝑖𝑖

 ≤ 1 (1)

II. Fairness: The goal is to maximize throughput fairness across the |F| flows. This traffic
engineering criterion would be appropriate when demand across IAB nodes is expected to be
uniform.

D4.2 – Resource Elasticity Techniques

42

0 ≤ 𝐽𝐽𝑇𝑇𝑇𝑇 = (∑ 𝜙𝜙𝑖𝑖(𝑡𝑡))𝑖𝑖 2

|𝐹𝐹|∑ 𝜙𝜙𝑖𝑖(𝑡𝑡)2𝑖𝑖
 ≤ 1 (2)

Although not considered in the introduced evaluation, a weighted criteria combining fairness and
throughput efficiency according to a weight, will allow the operator to decide on the criteria according
to its business goals or Service Level Agreement (SLA).

Once the network model is defined, let us introduce the design principles of PHaul’s DRL Agent. The
goal of this agent is to periodically collect traffic demands for all the flows and make a path allocation
decision to optimize the traffic engineering criteria. One possible implementation could consider
jointly allocating all the flows |F| in each DRL action, but this would lead to an action space of size |A|
= (2Kmax)|F|, which wouldn’t be feasible for practical networks. Therefore, in PHaul we considered a
reduction in the action by which consists of the allocation of a path for a single flow, instead of a joint
allocation for the |F| flows. The agent, which performs on a digital twin of the IAB backhaul network,
observes the resulting reward of the applied action over the digital twin, and continues sampling the
reduced action space until an allocation for all the flows is obtained, which can then be programmed
over the real network. The rationale behind this design approach is the following:

1. The topology and link characteristics of the Sub6 enhanced IAB network are expected to be
stable and can therefore be easily reproduced by a digital twin (e.g. a network simulator). If
the topology changes significantly, e.g. due to link failure, then the digital twin can be
correspondingly updated.

5 The traffic demands can also be considered stable for periods of several seconds and can
therefore be modelled in the digital twin. This is the time budget available to perform an
allocation decision.

6 Reducing the action space, i.e. allocating a path for only one flow at each action, simplifies
training and leads to better convergence properties of the DRL agent.

7 The repeated application of the simplified agent over the digital twin should allow to sample
the larger action space leading to well-performing allocations.

Figure 15 describes the high-level operation of PHaul. First, we distinguish the two modules that
compose PHaul, namely: i) the path computation heuristic, and ii) the path allocation agent.

Figure 15: PHaul agent design

The path computation heuristic operates offline, and its goal is to examine the topology of the physical
network to derive a set of up to Kmax paths for each backhaul flow through both the Sub6 and the mm-

D4.2 – Resource Elasticity Techniques

43

wave backhaul networks. We refer to this set of potential paths as Pi
selected. The obtained set of paths

is only recomputed when the topology of the physical network changes. We considered and evaluated
different heuristics, such as finding the shortest path, finding the path with the least common last hop
(i.e., to avoid a bottleneck in the IAB donors) and finding the path with the least common IAB nodes
(i.e., avoid bottlenecks in all the IAB links). As evaluated in (Pueyo, Camps-Mur, & Catalan-Cid),
combining the latter strategy with PHaul resulted in an increased effective capacity in the network by
considering the path allocations of previous flows and minimizing the number of joint links across
them. Therefore, this strategy will be used as the default path computation heuristic hereinafter.

Regarding the path allocation agent, the algorithm in Figure 16 depicts the operation of the PHaul
agent according to the following variables:

1. NetDTwin is a digital twin of the wireless backhaul network, which allows to perform flow
allocations and to compute the resulting per-flow effective data rates, ϕi(n), and the resulting
rewards r(n), (see Figure 15).

8 The set of paths available to a flow fi is defined as a vector of size 2Kmax, with the following
components Pi

selected={Pi,1
sub6, Pi,1

mmwave, …, Pi,Kmax
sub6, Pi,Kmax

mmwave }.
9 The allocation vector Γi, i ≤ |F|, where |F}| is the number of flows, and the i-th component of

this vector contains the index within Pi
selected representing the path allocated to flow fi.

Figure 16: PHaul path allocation algorithm

Based on the previous variables, the action space, state space and rewards used by the PHaul agent
are defined as follows:

D4.2 – Resource Elasticity Techniques

44

A. Action Space: It is defined as an integer 0 ≤ a ≤ Kmax |F|, where |F| is the number of flows and Kmax
is the number of paths available per flow in the Sub6 and mm-wave networks. Each action a
comprehends a single flow allocation to one path in Pi

selected.
B. State space: The environment state in PHaul is modeled as a vector containing the collection of

input and effective data-rates for each flow, as well as the current path allocated to each flow (line
20 in Figure 16). Note that PHaul can return to a same action, as the effect will differ depending
on the allocation of the other flows. Therefore, the current allocation is part of the state space.

C. Reward: The PHaul reward is modelled after the traffic engineering criteria defined by the network
operator, as defined in formulas (1) and (2). As aforementioned, a weighted combination of both
formulas is also possible through g as shown in formula (3).

𝑟𝑟(𝑛𝑛) = (1 + 𝛾𝛾)𝑡𝑡ℎ𝑟𝑟(𝑛𝑛) + (1 − 𝛾𝛾)𝑓𝑓𝑎𝑎𝑖𝑖𝑟𝑟(𝑛𝑛) (3)

Given that we cannot know a priory how far from 1 both 𝑡𝑡ℎ𝑟𝑟(𝑛𝑛) and 𝑓𝑓𝑎𝑎𝑖𝑖𝑟𝑟(𝑛𝑛) will be in a practical
network, we redefine the reward as:

−2 ≤ 𝑟𝑟(𝑛𝑛) = (1 + 𝛾𝛾)𝑡𝑡ℎ𝑟𝑟(𝑛𝑛) + (1 − 𝛾𝛾)𝑓𝑓𝑎𝑎𝑖𝑖𝑟𝑟(𝑛𝑛) ≥ 2 (4)

𝐽𝐽(𝑛𝑛) = (𝐽𝐽(𝑛𝑛)−𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚)−(𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚−𝐽𝐽(𝑛𝑛))
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚−𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚

 (5)

Where thr(n) and fair(n) are computed according to equation (5) and are constantly updated based
on the rewards obtained in each interaction with the network digital twin (line 3 in Figure 16). Note
that normalizing the reward to the maximum and minimum throughput or fairness values obtained
throughout the Nsteps iterations with the network digital twin is helpful for the agent to understand
if the actions being applied across the different iterations are pushing the reward in the right
direction

D. Termination condition: The PHaul agent terminates after executing N steps iterations over the
network digital twin, or as soon as an allocation is found that results in an optimal reward (line 18).
In practice, Nsteps is a hyper-parameter between |F| and (2Kmax)|F|, that allows to trade-off accuracy
and inference time.

E. Selected DRL algorithm: In this work, we base our implementation on the Proximal Policy
Optimization (PPO) [10] algorithm, which achieves state-of-the-art performance across a wide-
range of challenging tasks and outperforms several other DRL algorithms [44].

4.1.2. Performance Evaluation

To evaluate PHaul we have developed a flow-level simulation model in Python, connected to
OpenAI's Gym environment, which is used to implement the PHaul path allocation agent based on
PPO. The developed simulator can be understood as the network digital twin component, i.e. it
allows to generate random backhaul topologies and traffic matrices, to allocate a backhaul flow
through a given path, and to estimate the effective capacity, obtained by a flow under a given set of
flow allocations.

To model representative IAB backhaul topologies, we developed a random topology generator after
the exemplary IAB network reported in [45], which covers a suburban area in Chicago, US. We generate
IAB topologies in the following way. First, we start with a first layer of 3 donor nodes. Then, for each
donor node we generate n IAB child nodes, with n being a uniform random variable between 1 and 3.
We repeat this process for each layer of IAB nodes until the target number of nodes in the topology is
reached. All IAB nodes have a wireless link to their parent node. Still, we also allow for nodes to have
multiple parents using a random parameter, edge selection prob, that adds an additional link between
an IAB node and the IAB node located next to its parent in the upper layer. This parameter allows us
to control the presence of multiple paths from a given IAB node to the wired network. Notice, that

D4.2 – Resource Elasticity Techniques

45

while being random, this topology generation process reflects the topology formation process in a real
IAB network that would start with a fixed number of donor nodes, and then progressively grow to
expand the network footprint. Following our network model in Figure 14, the same IAB nodes are
available in the Sub6 and mm-wave topologies, but the exact links between nodes may differ in each
topology. In particular, we set edge selection prob to 0.4 in the mm-wave topology and to 0.6 in the
Sub6 topology to reflect the fact that Sub6 links have wider coverage. Following this approach, we
consider scenarios with a total number of IAB nodes (including donor nodes) varying from 20 to 60,
which result in mean hop counts of 3.08 for the case of 20 nodes and 5.12 for the case of 60 nodes.

We model backhaul links as interference-free with capacities that are stable during the execution of
the agent. In the case of the mm-wave backhaul, we assume a 30 GHz deployment with an 800 MHz
carrier bandwidth, resulting in backhaul downlink per-link capacities in suburban environments that
we select randomly between 800 Mbps and 1 Gbps. For the case of Sub6 links we consider an
interference-free 80 MHz link with capacities that we select randomly between 200 and 300 Mbps.
Regarding the input traffic matrix, we model the load offered by each backhaul flow in the following
way. First, we use a random parameter, node_active_probability, to determine if there are active UEs
in that node. In case there are active UEs, we model the resulting backhaul traffic as a uniform random
variable between λmin and λmax, where we consider two scenarios with a growing flow size in Mbps,
namely: i) λmin =250, λmax=500, and ii) λmin =500, λmax=750.

To achieve statistically significant results, every time we report a performance figure for a given
network configuration, we consider at least 10 random topologies for that network configuration, and
for each of those topologies, we average the results of 250 randomized input traffic matrixes. Unless
otherwise stated, the PHaul path allocation agent is trained for each specific topology considered. The
metrics reported in this section correspond to average values that are depicted with their
corresponding 95% confidence interval, which is however too small to be clearly seen in the figures.

PHaul is compared to three alternative path allocation agents, namely: i) brute force, ii) subset-sum,
and iii) random. Brute force is optimal in terms of the objective function since it explores all available
(2Kmax)|F| flow allocations, but it leads to large execution times, and it can only be used for network
configurations with a limited number of flows and paths. The subset-sum path allocation agent is a
greedy heuristic based on the subset-sum problem. It orders the backhaul flows in decreasing order of
their traffic demand and allocates each flow sequentially trying to maximize the objective function (up
to 2Kmax|F| steps). Finally, the random allocation simply selects for each flow one of the available paths
through the mm-wave and Sub6 backhaul networks using a uniform random variable (|F| steps).

We have released as open source our implementation of PHaul, the implementation of the IAB
network digital twin, and all the supporting evaluation environments in [46].

Training evaluation

We evaluate in this section the training phase of the PHaul path allocation agent. We want to
understand how PHaul's performance depends on our training hyper-parameters, namely Nsteps, and
the parameter training_steps, which determines the overall number of steps considered in the training
phase of PPO. As performance metrics, we look separately at efficiency obtained with γ = 1 in, and
then at fairness, obtained with γ = −1.

Figure 17 depicts in the upper row the impact of Nsteps while fixing training_steps to 105, and in the
lower row, the impact of training_steps while fixing Nsteps to 300. In these experiments, we consider an
IAB network size of 50 nodes and vary the node_active_probability parameter between 0.4 and 1,

D4.2 – Resource Elasticity Techniques

46

while considering a random backhaul flow rate between 500 and 750 Mbps. We depict experiments
for Kmax=1 and Kmax=3 paths in the Sub6 and mm-wave networks.

Figure 17: Training evaluation

We can see how, both for efficiency and fairness, performance is low when Nsteps and training_steps
are small, and smoothly increases when these parameters grow. Notice though that Nsteps will have an
impact on the execution time of a trained agent, while training_steps only affects the overall training
time, which is not a critical parameter. Looking at the knee exhibited by the training curves, we can
see that this is independent of the node_active_probability parameter, which means that regardless
of the level of activity in the network the PHaul agent training performance is maintained. The number
of paths Kmax does not impact either the position of the knee in the training curves. Based on these
results the training of PHaul agent can be simplified by setting a fixed value of Nsteps and training_steps,
regardless of the number of paths or the number of active flows, which relaxes the requirements to
train the PHaul network digital twin in real networks. Hereafter we consider Nsteps= 300 and
training_steps=20000.

We observe on the left part of Figure 17 how efficiency decreases when increasing
node_active_probability. This is expected because a higher node_active_probability means more load
being injected into the wireless backhaul, which is saturated in all cases. The impact of
node_active_probability is however not so clear when looking at fairness (right part of Figure 17). The
reason is that regardless of the number of backhaul flows active in the network, PHaul is able to
allocate the bottleneck bandwidth across these flows in a fair way when considering this objective.
Looking at the impact of varying the number of paths Kmax, as expected, we observe that considering
more paths leads to higher network efficiency as flows can be better balanced through the network.
Notice though, that the potential gain achieved by increasing Kmax depends on the path diversity
available in the IAB topology, which is limited in our scenarios that mostly consist of tree-like topologies
with limited multi-path opportunities.

D4.2 – Resource Elasticity Techniques

47

Inference time

The main goal of PHaul is to periodically read the traffic matrix from the physical network to then
update the mapping between backhaul flows and pre-provisioned backhaul paths. The frequency of
these updates is thus limited by the execution time of the path allocation agent. Figure 18 depicts the
average execution time of the PHaul, subset-sum and random agents, when increasing the IAB network
between 20 and 60 nodes.

Figure 18: Inference time evaluation (Platform: Intel Xeon E5-2618L v4 CPU)

As expected, the execution times of PHaul are larger than those of subset-sum and random. However,
PHaul keeps an execution time below 10 seconds which slightly increases with the network size. A 10-
second interval to reconfigure the forwarding in the backhaul is a reasonable value to observe
significant changes in the traffic matrix (i.e., UEs transitioning from idle to connected status, or vice
versa). It is also relevant to observe how the execution time of PHaul is fairly independent of the
network size. The reason is that the execution time of PHaul is dominated by the Nsteps parameter,
which defines the number of interactions with the network digital twin. It is thus possible to reduce
execution time in PHaul by reducing Nsteps, at the cost of losing accuracy in terms of the objective
function, as depicted in Figure 17. Regarding the number of paths Kmax, we can see that they only have
a marginal impact on the execution time of PHaul. The reason is that increasing it translates into an
increase in the size of the action space, which may impact convergence time in the training phase, but
it results in a minor impact with respect to the time required to decide what action to choose in the
inference phase. This is not the same for subset-sum, which is clearly affected by the number of paths,
as it needs to evaluate 2Kmax candidate path allocations for each flow. Finally, the execution time of
the random agent is negligible, as it only involves computing a random number.

Comparison against competing heuristics

Figure 19 depicts a comparison with the brute force allocation, which illustrates how far PHaul
performance is from the optimal allocation. Due to the high computational requirements of the brute
force agent, we are only able to carry out this benchmark with a limited network size of 20 IAB nodes
and with Kmax = 1. To have a meaningful comparison, we need to ensure that the network is saturated,
for which we configure node_active_probability=1 and use flow load between 500 and 750 Mbps. We
can see in Figure 19 that both the efficiency and fairness achieved by PHaul lie very close to the brute
force agent, which validates the performance of PHaul in the considered scenario. The performance
gap between PHaul and brute force is however expected to increase if larger topologies are
considered.

D4.2 – Resource Elasticity Techniques

48

Figure 19: Comparison with Brute Force

Next, we evaluate the performance of the PHaul, the subset-sum and the random path allocation
agents, when increasing the size of the IAB network from 20 to 60 nodes, including 3 IAB donor nodes.
We do not consider the brute force agent in this section because of its excessive computational time.

Figure 20 depicts the results for the efficiency objective under different network and load conditions.
We can see how for all network configurations the PHaul agent outperforms subset-sum, which in turn
outperforms the random agent. A maximum gain of 17% is observed for PHaul when compared to
subset-sum, and of 36% when compared to random. All agents benefit from considering a larger
number of paths, but this gain is more evident when the flow data rates are higher. Note that subset-
sum is a well- bin-packing heuristic that sorts backhaul flows in decreasing order of size and greedily
starts allocating them one at a time. The reason why PHaul is able to outperform subset-sum is that in
the training process PHaul is able to learn a representation of the topology of the IAB network, which
it can then correlate with a given traffic matrix distribution to derive non-trivial allocations that result
in good performance. For all the agents, efficiency decreases as network size increases, and the
decrease is higher for higher flow data rates. The reason for this behavior is that introducing new IAB
nodes results in a higher offered load, regulated by the parameter ￼node active probability￼. This
effect dominates over any increase in cross-section bandwidth that may result from the additional
backhaul links contributed by the new IAB nodes.

D4.2 – Resource Elasticity Techniques

49

Figure 20: Comparison with other heuristics – Efficiency

Figure 21 depicts the results in terms of fairness. Unlike efficiency, fairness exhibits a rather flat
behavior when the size of the IAB network grows. In our network model, each IAB node allocates per-
flow capacities in a bottleneck link using a water-filling algorithm. Therefore, the means that the
different agents use to improve fairness is to select the paths for each flow such that all flows in the
network achieve a similar effective capacity. We can see how PHaul is the best agent in achieving a fair
allocation, resulting in a close to perfect fairness for all considered network settings, and for both 1
and 3 available paths. A maximum gain of 13% is observed in terms of fairness for PHaul when
compared to subset-sum, and of 20% when compared to random. The reason for the good
performance of PHaul, is that in the training phase PHaul is able to learn correlations between a given
traffic matrix and the set of available paths that result in a good fairness metric.

Figure 21: Comparison with other heuristics – Fairness

D4.2 – Resource Elasticity Techniques

50

Broken links

Given the nature of the IAB wireless backhaul, transitory broken links can occur due to link blockage
at mm-wave frequencies, or due to unplanned interference at Sub6 frequencies. The goal of this
section is to evaluate how resilient is PHaul to these events since it is not realistic to assume that PHaul
can be retrained every time a link breaks. The resulting topology upon a link break will differ from the
topology that PHaul has been trained on, and hence a performance degradation can be expected. The
goal of this section is to quantify this degradation.

Figure 22 depicts the results of an experiment where we consider a network of 40 IAB nodes, with a
flow load between 500 and 750 Mbps and node_active_probability=0.4. We increase the number of
simultaneous broken links from 1 to 5, which we consider representative of this network size. For each
point in the x-axis we consider 10 different topologies and 250 random samples with different traffic
matrixes. In each sample, we randomly remove x links from the network but ensure that end-to-end
connectivity for all backhaul flows remains possible. Figure 22 compares the performance in terms of
efficiency and fairness, considering the ideal performance where PHaul is retrained every time that a
link is removed from the topology (shown in blue), versus the performance to be expected in practice
when PHaul has only been trained for the full topology but continues to perform inferences when links
are removed (shown in brown).

Figure 22: Broken links evaluation

Based on the results, the overall efficiency reduces as the number of broken links increases, because
the network has less capacity, but the efficiency loss because of having PHaul operate over a network
with broken links is only around 5%. In the case of fairness, we observe that the loss in fairness is even
smaller, being around 2%. We note that the tree-like structure of IAB backhaul networks tends to result
in backup paths that are like the original ones, which helps explain the good performance of PHaul
observed in this experiment.

Untrained topologies and impact of sub6

Having seen in the previous section that PHaul is reliable to small changes in the topology, in this
section we deepen our evaluation in two directions. First, we evaluate the performance of PHaul on
topologies that differ significantly from the topology that PHaul has been trained on. Second, we
evaluate the performance of PHaul with and without Sub6 connectivity, to quantify the gains that
adding Sub6 spectrum provides on efficiency and fairness metrics.

To evaluate PHaul with untrained topologies, we consider again 10 topologies for each considered
network size, but we trained PHaul with only one of the 10 topologies. All topologies share the same
number of IAB nodes and the same number of donor nodes, which is what makes PHaul applicable
across them. Topologies though, differ in the number of layers and in the links connecting IAB nodes.
To evaluate the gains provided by Sub6 spectrum, we run each topology under two configurations: i)

D4.2 – Resource Elasticity Techniques

51

a first configuration where both mm-wave and Sub6 spectrum are available, and ii) a second
configuration where only mm-wave links are available.

Figure 23 depicts for a growing network size the performance in terms of efficiency and fairness. For
this experiment, we assume a flow load between 500 and 750 Mbps and node_active_probability=0.4.
We consider the following four configurations: i) Sub6 enhanced IAB where PHaul is trained specifically
for each topology (blue lines), ii) Sub6 enhanced IAB where PHaul is only trained for one topology
(brown lines), iii) mm-wave only IAB where PHaul is trained for each topology (green lines), and iv)
mm-wave only IAB where PHaul is only trained for one topology (red lines).

Figure 23: Untrained topologies and sub6 evaluation

Looking at the impact on efficiency, we can see how using untrained topologies results in a slight
degradation of about 9% in efficiency. Removing Sub6 spectrum, but retraining PHaul every time,
results in an efficiency loss of around 25%, which justifies the gains provided by Sub6 spectrum, since,
using PHaul, a Sub6 enhanced IAB network with untrained topologies is still more efficient that a
perfectly trained mm-wave only IAB network. Finally, removing Sub6 spectrum and using untrained
topologies results in an overall degradation slightly above 30%. In the case of fairness, we can see that
the trend is maintained, but interestingly, removing Sub6 spectrum results in a degradation of around
4%, whereas using untrained topologies result in a higher degradation of around 7%. The reason is that
when removing Sub6 spectrum the overall network capacity reduces, but PHaul is still able to allocate
the available capacity across flows in a fair way. Fairness is however impacted when PHaul runs over
untrained topologies, although the impact is small. Finally, removing Sub6 spectrum and using
untrained topologies results in the worst case in a degradation of around 15%.

These results quantify the benefits of adding Sub6 spectrum to the IAB backhaul, as proposed in
NANCY, and validate that PHaul has a graceful degradation when used over topologies that differ
significantly from the topologies that have been used for training, which validate the application of
PHaul in practical networks.

4.3 Elastic Resource Scaling

4.3.1 Scaling for Disruption-Free Service

Scaling within a network slice while maintaining disruption-free service for NANCY B-RAN services is
critical to ensuring that various key services, such as localization, data analytics, and many others,
maintain seamless performance even as conditions like network load, number of requests, service
demands, etc. fluctuate. The decision to adjust a slice must also ensure that when resources are shared
among multiple services, key performance metrics, such as latency or throughput, as listed in Section
3.3, are not compromised, and ongoing services are not interrupted. For example, in an URLLC slice,
user location data is critical for decision-making processes for autonomous vehicles. If the system
cannot accurately locate a vehicle in real-time, it could lead to catastrophic outcomes, such as collisions

D4.2 – Resource Elasticity Techniques

52

or failure to navigate safely in dynamic traffic conditions. Therefore, scaling within a network slice
(vertical scaling) is essential for ensuring that resource allocation can be dynamically adjusted in real-
time without affecting the reliability of these high-priority services.

To achieve elastic resource adjustments within a designed slice for multiple services, Deep
Reinforcement Learning (DRL) has been identified as the most promising approach for real-time
decision-making in dynamic network environments [13]. As mentioned in Section 2.2,by formulating
the scaling problem as a Markov Decision Process (MDP), DRL enables flexible, dynamic resource
management by modeling the environment with states (e.g., current resource usage), actions (e.g.,
scaling up or down), and rewards (e.g., improved performance). A model-free, online learning method
allows agents to learn optimal policies through trial and error, continuously updating their decisions
based on real-time feedback from the network. This ensures that as conditions such as network load
fluctuate, the DRL agent can dynamically adjust resources without requiring prior knowledge of
transition dynamics. This adaptive approach makes DRL highly effective for maintaining optimal
performance in complex 5G networks while managing multiple services within the slice.

4.3.2 Intra-slice Resource Elasticity in NANCY

The intra-slice resource elasticity in NANCY's system involves the dynamic management of resources
within a Kubernetes-based system. The system is designed to ensure efficient and elastic resource
allocation by handling fluctuating traffic loads, e.g., requests to perform localization service, which is
developed in D3.2 as one of the common network functionalities. More specifically, the system
operates by hosting containers (pods) on virtual machines (VMs), and managing the execution of these
pods as they handle service requests. These service requests utilize HTTP as the protocol and are
further routed through the Ingress controller, which directs them to the appropriate services. These
services then distribute the requests to the relevant pods based on internal routing and load-balancing
mechanisms. By continuously adjusting resources based on demand, the system ensures seamless
performance under varying conditions, optimizing both resource utilization and service reliability.
Moreover, this is shown in Figure 24, which provides a high-level overview of the system used for
implementing elasticity, along with the five steps required to set up and dynamically allocate
resources, which can be seen at the bottom of the figure.

The core of this elastic system lies in the resource elasticity technique, which continuously monitors
resource usage and adjusts resource allocation dynamically to meet service demands. This guarantees
that the system can handle fluctuations in traffic load by scaling resources as needed without causing
service disruption. To support real-time monitoring, Prometheus is configured to collect key
performance metrics at one-second intervals, such as the limitation and utilization of the CPU. This
high-frequency monitoring enables the resource elasticity mechanism to respond swiftly to changes in
demand, ensuring optimal performance and resource utilization across the slice.

D4.2 – Resource Elasticity Techniques

53

Figure 24: Overview of elastic scaling with Kubernetes-based system.

In Figure 24, Steps 1 to 5 sum up the resource elasticity process mentioned above. More specifically,
in order to enable seamless resource scaling, which is shown in Step 5, the InPlacePodVerticalScaling
feature gate 22 is activated, allowing for dynamic resource adjustments without requiring container
restarts. This step is crucial as it ensures continuous operation and minimizes disruption when scaling
resources up or down in response to fluctuating demands. Moreover, real-time resource management
is facilitated through communication with the Kubernetes cluster using the Python Kubernetes API 23,
enabling precise control over resource allocation. Commands such as "patching" are used to modify
resources, allowing for the addition or removal of CPU and memory allocations as needed. This ensures
efficient resource management while maintaining uninterrupted service continuity.

The code below demonstrates how the Python Kubernetes API is used to achieve real-time resource
adjustments, further highlighting the implementation of Step 5 for maintaining operational efficiency
and flexibility within the system:

1. def patch_pod(pod_name, cpu_request, cpu_limit, memory_request,
2. memory_limit, container_name, namespace="default"):
3. config.load_incluster_config()
4. api_instance = client.CoreV1Api()
5. patch = {
6. "spec": {
7. "containers": [
8. {
9. "name": container_name,
10. "resources": {

22 “InPlacePodVerticalScaling,” [Online]. Available: https://kubernetes.io/docs/tasks/configure-pod-
container/resize-container-resources
23 “Python Kubernetes API,” [Online]. Available: https://github.com/kubernetes-client/python

https://kubernetes.io/docs/tasks/configure-pod-container/resize-container-resources
https://kubernetes.io/docs/tasks/configure-pod-container/resize-container-resources
https://github.com/kubernetes-client/python

D4.2 – Resource Elasticity Techniques

54

11. "requests": {"cpu": cpu_request,
12. "memory": memory_request},
13. "limits": {"cpu": cpu_limit,
14. "memory": memory_limit}
15. }
16. }
17.]
18. }
19. }
20. try:
21. api_instance.patch_namespaced_pod(
22. name=pod_name,
23. namespace=namespace,
24. body=patch,
25.)
26. except Exception as e:
27. print(f"Error: {e}")

4.3.2.1 Integrating Resource Elasticity with the Slice Manager API
To enable MADRL-based resource elasticity through the Slice Manager API, telemetry must first be
configured as a resource within the system for monitoring purposes, as shown in Figure 25. Telemetry
continuously tracks the overall health and performance of the cluster and its services. Once deployed,
specific Prometheus instance details are registered with the telemetry resource, allowing it to gather
real-time metrics from these instances. This provides real-time access to performance data, which can
be used to dynamically manage resources and optimize the cluster's operation. In the following steps,
a new slice of computation resources, referred to as compute chunks is created to handle specific
workloads. Based on the telemetry data, the resources of existing chunks can be adjusted to meet
demand.

D4.2 – Resource Elasticity Techniques

55

Figure 25: Overview of resource requests through the Slice Manager API for elastic scaling.

4.3.2.2 Integrating Resource Elasticity with Maestro
Maestro’s APIs provide robust capabilities for implementing resource elasticity across various
scenarios. For intra-slice scaling, the Service Inventory API (TMF 638) can be utilized to dynamically
adjust compute, memory, and storage resources for active service instances. This ensures that
individual services within a slice can scale vertically to handle fluctuating workloads without disruption.
Additionally, for inter-slice resource management, Maestro's TMF 641 Service Order Management API
enables the orchestrator to allocate or redistribute resources between slices to optimize overall
network performance while adhering to SLA requirements. These functionalities allow Maestro to
maintain a seamless balance between resource efficiency and service quality, demonstrating its
adaptability in both localized and distributed scaling scenarios.

These APIs facilitate communication between the operational support systems (OSS) and business
support systems (BSS) within the telecommunications industry. Key features of these APIs are
standardization, modularity, ecosystem interoperability, enhanced agility, improved data sharing, etc.
The detail of the steps is summarized as follows:

• The first step uses the Service Ordering API, which allows for the creation and provisioning of
a service with resource specifications for a target infrastructure.

• Upon successful service creation, an organized collection of resources, assets, services and
configurations, known as the service inventory, is deployed alongside. This inventory is crucial
for managing and tracking the components involved in service delivery.

• For the dynamic adjustment of resources, the Service Inventory API can be updated with the
PATCH command. This allows changes to be made to the inventory in real-time based on
current needs.

• The Management cluster within the Maestro architecture continuously monitors real-time
metrics. Based on these metrics, resource allocation for services can be dynamically adjusted
to align with network demand, ensuring optimal performance and resource utilization.

D4.2 – Resource Elasticity Techniques

56

Moreover, the decision for resource allocation to each service is determined by MADRL, and it is
detailed in the next section.

4.3.3 Computational Resource Elasticity with Multi-Agent Deep Reinforcement Learning

To develop an effective slicing resource management solution, we decided to employ a MADRL
framework to handle the dynamic allocation of processing power. In this context, the processing power
specifically refers to the allocation of CPU resources for different services within the network slice.
More specifically, each service within the slice is assigned an independent DRL agent, which is
responsible for making real-time decisions about how many CPUs should be allocated to maintain
optimal performance. These agents operate independently, yet they jointly make decisions to
maximize the performance of the entire system. More specifically, we employ standard MADRL
algorithms such as DQN and PPO with a shared reward.

Before analyzing in detail how state and action spaces are characterized, it is appropriate to conduct
an analysis on the theoretical foundations of the discipline known as Markov Games and one of its
major declinations, namely Multi-Agent Reinforcement Learning. After an introduction on these
aspects, a state-of-the-art review on MADRL techniques for computational resource management is
presented, so to motivate the proposed approach to tackle resource elasticity problems, and
particularly the ones in the scope of NANCY.

4.3.3.1 State Space Definition
As seen in the introduction about Markov Games and MARL, the state space is the information that
agents use to make the decision, which is based on several key metrics gathered by Prometheus that
accurately capture the current of the system and allow for real-time decision-making by the agents.
The information included in the state space is summarized in Table 5: Information in the state space.

Table 5: Information in the state space.

Information Description
Limit The upper resource boundary allocated to each service.
Usage The current CPU usage of the service.
Available The remaining resources available within the slice.
Utilization Percentage The percentage of allocated resources being utilized by the service.
Other Utilizations The average resource utilization of other services managed by the multi-

agent system within the slice.

This information, also known as state variables, provides a comprehensive snapshot of resource
allocation and usage, enabling each agent to make informed decisions about how to adjust CPU
resources.

4.3.3.2 Shared Reward Function and Utilization Reward

The shared reward function24 is defined as the signal that the agents use to understand how well they
perform, it has to be carefully designed to balance efficient resource utilization while maintaining low
response times. For example, the shared reward function rewards agents for keeping CPU usage within
predefined optimal ranges, and it penalizes both under-utilization and over-utilization. Moreover, the
reward function encourages agents to adapt their resource allocations dynamically based on current
demand while ensuring the overall performance and responsiveness of the system. Specifically, the

24 “Reward function,” [Online]. Available: https://github.com/sensorlab/agent-edge-
autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/train_mdqn.py#L370

https://github.com/sensorlab/agent-edge-autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/train_mdqn.py#L370
https://github.com/sensorlab/agent-edge-autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/train_mdqn.py#L370

D4.2 – Resource Elasticity Techniques

57

reward combines a utilization reward25, which adjusts based on the proximity of resource usage to
the optimal range, and a shared reward, which penalizes long response times. This design ensures that
agents prioritize both resource efficiency and service quality, driving the system towards optimal
performance under varying network conditions. Note that shared reward means that agents are also
rewarded for the actions of other agents and their own actions impact on the performance of other
agents. Such an approach is well-established in collaborative environments.

4.3.4 Resource Allocation with DQN

With the Deep Q-Network (DQN) algorithm [9], slice resource allocation is performed discretely. In our
implementation, the agent controls the service's resource allocation through an action space
consisting of three possible actions: increase, decrease, or maintain resources. The DQN algorithm uses
a deep neural network to approximate Q-values, which represent the expected rewards for each state-
action pair. The agent learns an optimal policy through the Q-learning algorithm by updating the Q-
values based on observed state-action-reward transitions during interactions with the environment.
As a model-free, off-policy algorithm, DQN benefits from experience replay, allowing the agent to learn
from past experiences while breaking correlations between consecutive transitions for more efficient
training. To further stabilize training, DQN employs a target network that provides fixed Q-value
targets, reducing the risk of policy oscillations. This makes DQN suitable for environments where
decisions can be mapped to a discrete action space.

4.3.5 Resource Allocation with PPO

In contrast, Proximal Policy Optimization (PPO) [10] is designed for continuous control tasks, offering
finer adjustments compared to discrete approaches like DQN. PPO outputs actions within a continuous
range (e.g., [-1, 1]), which can be scaled and applied to adjust resource allocation smoothly and
precisely. As a policy-gradient algorithm, PPO improves the policy by increasing the likelihood of
actions that yield higher rewards. To ensure stability, PPO employs a clipped surrogate objective,
which limits the size of policy updates, preventing large, destabilizing changes to the policy. This
objective closely approximates the true goal of maximizing expected rewards, while the clipping
mechanism constrains the amount by which the policy can change in each update, maintaining stable
and gradual improvements. Additionally, PPO enhances learning efficiency by reusing the same data
multiple times within a single optimization step, extracting more value from each collected experience.
This reduces the need for large amounts of data while accelerating the learning process, making it
particularly effective in dynamic environments where resources need to be adjusted rapidly. For intra-
slice scaling, PPO is advantageous because it allows for more granular adjustments of resources. By
selecting a specific range, i.e., the maximum allowable increase or decrease of resources, PPO can
allocate resources in a more precise manner compared to the DQN approach, which operates within a
discrete action space. This precision is essential for environments that require fine-tuned control of
resources to maintain optimal performance.

By utilizing both DQN and PPO in a multi-agent environment, the NANCY resource elasticity module
can adapt to a wide range of computing resource management scenarios, such as CPU resource
allocation, which will be discussed in the next section.

25 “Utilization reward,” [Online]. Available: https://github.com/sensorlab/agent-edge-
autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/envs.py#L104

https://github.com/sensorlab/agent-edge-autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/envs.py#L104
https://github.com/sensorlab/agent-edge-autoscaling/blob/51306c1e409ffdbe0d50ffc3bc02cdfaad6c20ec/src/envs.py#L104

D4.2 – Resource Elasticity Techniques

58

4.3.6 Results

4.3.6.1 Simulation Results
In this section, we demonstrate the performance of intra-slice scaling, by deploying a Localization
Prediction Service (Localization as a Service, or LaaS), which uses machine learning algorithms to
predict device locations based on available data inputs. The service is deployed in a hybrid edge-cloud
setup, consisting of a Microk8s cluster running on two Raspberry Pis and a virtual machine.
Prometheus Stack is employed to gather and visualize real-time performance metrics. To compare
performance, we implement a reactive rule-based scaling approach as a baseline method. More
specifically, it predefines thresholds for CPU utilization, which allows us to benchmark the MADRL
methods. For instance, when CPU utilization exceeds a specified threshold, the method allocates
additional resources. Whereas, when the CPU utilization falls below the threshold, the assigned
resources are reduced.

Figure 26: Dynamic Intra-Slice Scaling Methods for Response Time Optimization.

To evaluate the performance of the MADRL-based solutions, response time is considered as one of the
main metrics for evaluation, defined as the time interval between requesting a service to make an
inference and receiving the results. More specifically, these approaches are compared within a
designated time frame and use LaaS for evaluation. In addition, the cluster is subjected to 90 requests
per second, and the response time was measured at 5-second intervals. As shown in Figure 26 (on a
logarithmic scale), scaling is triggered at the 25-second mark. After fully scaling, the rule-based
algorithm has an average of 38.2 ms response time, while PPO had an average of 32.9 ms and DQN
had an average of 30.6 ms. Both MADRL methods show slight improvements to the baseline in
response times, with DQN providing a 20% improvement and PPO delivering a 14% improvement.

D4.2 – Resource Elasticity Techniques

59

Figure 27: Efficiency of Dynamic Intra-Slice Scaling Methods.

CPU Utilization is another performance metric for evaluating the effectiveness of the intra-slice scaling
algorithms. By using the same setup, Figure 27 illustrates the average CPU utilization of all services in
the cluster over time, demonstrating the effectiveness of the MADRL-based methods. As we can see
from the figure, PPO delivers a smoother and more consistent utilization pattern, while the other
methods exhibit more abrupt fluctuations in resource allocation. This is due to PPO having more fine-
grained resource adjustment than DQN as well as rule-based methods. This is further supported by
Figure 28, Figure 29 and Figure 30, where the CPU allocations and utilization are displayed as service
scale over the designated time frame. As depicted in Figure 30, PPO shows lees fluctuation of the CPU
allocations than the other two methods, which implies granular adjustments made by PPO result in a
more efficient scaling process, as evidenced by the steadier resource usage compared to the abrupt
changes seen in the discrete methods.

D4.2 – Resource Elasticity Techniques

60

Figure 28: Resource allocation and utilization of Dynamic Intra-Slice Scaling with DQN.

Figure 29: Resource allocation and utilization of Dynamic Intra-Slice Scaling with Rule-based.

Figure 30: Resource allocation and utilization of Dynamic Intra-Slice Scaling with PPO.
4.3.6.2 Demonstration
The localization service from D3.3 and the DRL-based scaling implementations were integrated into a
live demonstration to showcase real-time resource elasticity managed by DRL agents. During the
demonstration, system performance was analyzed both before and after resource elasticity was
applied. Without elasticity, inadequate scaling led to longer response times and a clear degradation in
performance. Once resource elasticity was introduced, the DRL agents dynamically adjusted resources

D4.2 – Resource Elasticity Techniques

61

according to network demands, significantly improving response times and overall system
performance. This dynamic scaling capability highlights the advantages of DRL in managing complex,
real-time resource allocation scenarios effectively.

A video demonstration of the real-time resource elasticity managed by DRL agents has been uploaded
at the following link: https://youtu.be/mIydIkWhcoI

The source code will be available at the following repository: https://github.com/sensorlab/agent-
edge-autoscaling

https://youtu.be/mIydIkWhcoI
https://github.com/sensorlab/agent-edge-autoscaling
https://github.com/sensorlab/agent-edge-autoscaling
https://youtu.be/mIydIkWhcoI
https://youtu.be/LksiGDtevMQ

D4.2 – Resource Elasticity Techniques

62

5 Conclusion

The advancements presented in this deliverable highlight NANCY's commitment to achieving flexible
resource management and cost efficiency to satisfy the QoS/QoE for the applications and the users in
the dynamic network demands. By addressing the complexity of distributed resource scaling. This
deliverable underscores the role of elasticity in optimizing computational and network resources to
ensure high performance across diverse applications and scenarios.

Two orchestrators, Slice Manager and Maestro, enable these resource elasticity techniques through
advanced virtualization technologies that dynamically adjust resources based on demands through
APIs.

The development of resource elasticity techniques within the framework of NANCY has been
presented. Namely, SCHED_DEADLINE, PHaul, and MADRL-based computational scaling. Each
technique has its own purpose and function. For example, SCHED_DEADLINE ensures predictable CPU
bandwidth allocation for time-sensitive applications, maintaining low latency and stable performance
across high-demand periods. PHaul, a DRL-based path allocation mechanism, dynamically allocates
network resources across paths to meet latency, throughput, and bandwidth requirements, effectively
managing network load and enhancing resilience. Lastly, the MADRL-based computational resource
elasticity enables real-time scaling of CPU and memory within slices, allowing seamless adaptation to
fluctuating user demands while optimizing resource utilization. Moreover, these techniques have been
validated, exhibiting their feasibility in real-world scenarios. Implementation details, including code
snippets and open source repositories and a demo together with experimental results, are provided
to facilitate further development, integration, and adoption.

D4.2 – Resource Elasticity Techniques

63

Bibliography

[1] A. Kwan, J. Wong, H.-A. Jacobsen and V. Muthusamy, "Hyscale: Hybrid and network scaling of
dockerized microservices in cloud data centres," IEEE 39th International Conference on
Distributed Computing Systems, 2019, pp. 80-90.

[2] L. E. Zachrisson, "Markov games," Advances in game theory, 52, 1964, pp. 211-253.

[3] G. Chalkiadakis, E. Elkind and M. Wooldridge, “Computational aspects of cooperative game
theory”, Springer Nature, 2022.

[4] R. Song, Q. Wei, H. Zhang and F. L. Lewis, "Discrete-time non-zero-sum games with completely
unknown dynamics," IEEE Transactions on Cybernetics, vol. 51, no. 6, 2019, pp. 2929-2943.

[5] M. A. Amaral, L. Wardil, M. Perc and J. K. da Silva, "Evolutionary mixed games in structured
populations: Cooperation and the benefits of heterogeneity," Physical Review, vol. 93, no. 4, pp.
042304, 2016.

[6] C. Daskalakis, P. W. Goldberg and C. H. Papadimitriou, "The Complexity of Computing a Nash
Equilibrium," Communications of the ACM, vol. 52, no. 2, pp. 89-97, 2009.

[7] W. W. Cohen and H. Hirsh, "Markov games as a framework for multi-agent reinforcement
learning," Machine Learning Proceedings, 1994, pp. 157-163.

[8] D. Zeng, L. Gu, S. Pan, J. Cai and S. Guo, "Resource management at the network edge: A deep
reinforcement learning approach," IEEE Network, vol. 33, no. 3, pp. 26-33, 2019.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. Riedmiller,
"Playing Atari with Deep Reinforcement Learning," 2013.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, "Proximal policy optimization
algorithms," 2017.

[11] A. Alwarafy, M. Abdallah, B. S. Çiftler, A. Al-Fuqaha and M. Hamdi, "The frontiers of deep
reinforcement learning for resource management in future wireless HetNets: Techniques,
challenges, and research directions," IEEE Open Journal of the Communications Society, vol. 3,
pp. 322-365, 2022.

[12] W. Miao, Z. Zeng, M. Zhang, S. Quan, Z. Zhang, S. Li and Q. Sun, "Multi-agent reinforcement
learning for edge resource management with reconstructed environment," IEEE International
Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking, 2021, pp. 1729-
1736.

[13] N. Naderializadeh, J. Sydir, J. M. Simsek and H. Nikopour, "Resource management in wireless
networks via multi-agent deep reinforcement learning," IEEE Transactions on Wireless
Communications, vol. 20, no. 6, pp. 3507-3523, 2021.

D4.2 – Resource Elasticity Techniques

64

[14] Y. Nie, J. Zhao, F. Gao and F. R. Yu, "Semi-distributed resource management in UAV-aided MEC
systems: A multi-agent federated reinforcement learning approach," IEEE Transactions on
Vehicular Technology, vol. 70, no. 12, pp. 13162-13173, 2021.

[15] H. Qiu, W. Mao, A. Patke, C. Wang, H. Franke, Z. T. Kalbarczyk and R. K. Iyer, "Reinforcement
learning for resource management in multi-tenant serverless platforms," 2nd European
Workshop on Machine Learning and Systems, 2022, pp. 20-28.

[16] D. Wang, B. Li, B. Song, Y. Liu, K. Muhammad and X. Zhou, "Dual-driven resource management
for sustainable computing in the blockchain-supported digital twin IoT," IEEE Internet of Things
Journal, vol. 10, no. 8, pp. 6549-6560, 2022.

[17] X. Du, T. Wang, Q. Feng, C. Ye, T. Tao, L. Wang and M. Chen, "Multi-agent reinforcement learning
for dynamic resource management in 6G in-X subnetworks," IEEE Transactions on Wireless
Communications, vol. 22, no. 3, pp. 1900-1914, 2022.

[18] H. Wu, D. Qiu, L. Zhang and M. Sun, "Adaptive multi-agent reinforcement learning for flexible
resource management in a virtual power plant with dynamic participating multi-energy
buildings," Applied Energy, vol. 374, p. 123998, 2024.

[19] M. Ahmed, J. Liu, M. A. Mirza, W. U. Khan and F. N. Al-Wesabi, "MARL based resource allocation
scheme leveraging vehicular cloudlet in automotive-industry 5.0," Journal of King Saud
University-Computer and Information Sciences, vol. 35, no. 6, p. 101420, 2023.

[20] J. Rosenberger, M. Urlaub, F. Rauterberg, T. Lutz, A. Selig, M. Bühren and D. Schramm, "Deep
reinforcement learning multi-agent system for resource allocation in industrial internet of
things," Sensors, vol. 22, no. 11, p. 4099, 2022.

[21] H. Zhang, C. Lu, H. Tang, X. Wei, L. Liang, L. Cheng and Z. Han, "Mean-field-aided multiagent
reinforcement learning for resource allocation in vehicular networks," IEEE Internet of Things
Journal, vol. 10, no. 3, pp. 2667-2679, 2022.

[22] TMForum, “TMF633 Service Catalog Management API v4.0.0,” 2021, [Online]. Available:
https://www.tmforum.org/resources/standard/tmf633-service-catalog-api-user-guide-v4-0-0/

[23] TMForum, “TMF641 Service Ordering Management API v4.1.1,” 2021, [Online]. Available:
https://www.tmforum.org/resources/specifications/tmf641-service-ordering-management-api-
user-guide-v4-1-1/

[24] TMForum, “TMF638 Service Inventory Management API v4.0.1,” 2020, [Online]. Available:
https://www.tmforum.org/resources/specification/tmf638-service-inventory-api-user-guide-
v4-0-0/

[25] TMForum, “TMF634 Resource Catalog Management API v4.1.0,” 2021, [Online]. Available:
https://www.tmforum.org/resources/specification/tmf634-resource-catalog-management-api-
user-guide-v4-1-0/

[26] TMForum, “TMF652 Resource Ordering Management API v4.0.0,” 2020, [Online]. Available:
https://www.tmforum.org/resources/specification/tmf652-resource-order-management-api-
user-guide-v4-0-0/

D4.2 – Resource Elasticity Techniques

65

[27] TMForum, “TMF639 Resource Inventory Management API v4.0.0,” 2020, [Online]. Available:
https://www.tmforum.org/resources/specification/tmf639-resource-inventory-api-user-guide-
v4-0/

[28] TMForum, “TMF632 Party Management API v5.0.0,” 2023, [Online]. Available:
https://www.tmforum.org/resources/specifications/tmf632-party-management-api-rest-
specification-v5-0-0/

[29] TMForum, “TMF669 Party Role Management API v5.0.0,” 2023, [Online]. Available:
https://www.tmforum.org/resources/specifications/tmf669-party-role-management-api-user-
guide-v5-0-0/

[30] TMForum, “TMF674 Geographic Site Management API v4.0.1,” 2020, [Online]. Available:
https://www.tmforum.org/resources/specification/tmf674-geographic-site-management-api-
user-guide-v4-0/

[31] TMForum, “TMF673 Geographic Address Management API v4.0.0,” 2020, [Online]. Available:
https://www.tmforum.org/resources/specification/tmf673-geographic-address-management-
api-user-guide-v4-0-0

[32] C. Tranoris, "OpenSlice: An opensource OSS for delivering network slice as a service,"
arXiv:2102.03290, Feb. 2021.

[33] J. Lelli, C. Scordino, L. Abeni and D. Faggioli, "Deadline scheduling in the Linux kernel," Software:
Practice and Experience, vol. 46, no. 6, p. 821–839, 2016.

[34] L. Abeni and G. Buttazzo, "Integrating multimedia applications in hard real-time systems," 19th
IEEE Real-Time Systems Symposium, 1998, pp. 4-13.

[35] L. Abeni, A. Balsini and T. Cucinotta, "Container-based real-time scheduling in the linux kernel,"
ACM SIGBED Review, vol. 16, no. 3, pp. 33-38, 2019.

[36] T. Cucinotta, F. Checconi, L. Abeni and L. Palopoli, "Self-tuning schedulers for legacy real-time
applications," 5th European Conference on Computer Systems, 2010, p. 55–68.

[37] T. Cucinotta, F. Checconi, L. Abeni and L. Palopoli, "Adaptive real-time scheduling for legacy
multimedia applications," ACM Transactions on Embedded Computing Systems, vol. 11, no. 4,
2013.

[38] L. Abeni, T. Cucinotta and D. Casini, "Period Estimation for Linux-based Edge Computing
Virtualization with Strong Temporal Isolation," 3rd Real-time And intelliGent Edge computing
workshop, Hong Kong, 2024.

[39] C. L. Liu and J. W. Layland, "Scheduling algorithms for multiprogramming in a hard-real-time
environment," Journal of the ACM (JACM), vol. 20, no. 1, pp. 46-61, 1973.

[40] L. Abeni, A. Biondi and E. Bini, "Partitioning real-time workloads on multi-core virtual machines,"
Journal of Systems Architecture, vol. 131, p. 102733, 2022.

D4.2 – Resource Elasticity Techniques

66

[41] L. Abeni, A. Biondi and E. Bini, "Hierarchical Scheduling of Real-Time Tasks over Linux-based
Virtual Machines," Journal of Systems and Software, vol. 149, 2019.

[42] 3GPP, "Energy Efficiency; Solutions for Network Energy Saving," 2010.

[43] J. Pueyo, D. Camps-Mur and M. Catalan-Cid, "PHaul: A PPO-Based Forwarding Agent for Sub6
Enhanced Integrated Acess and Backhaul Networks," in Proc. IEEE Transactions on Network and
Service Management.

[44] W. Yuhui, H. Hao, W. Chao and T. Xiaoyang, "Truly Proximal Policy Optimization," 2019.

[45] M. Cudak, A. Ghosh and J. Andrews, "Integrated Accessand Backhaul: A Key Enabler for 5G
Millimeter-Wave Deployments," in IEEE Communications Magazine, vol. 59, no. 4, 2021, pp. 88-
94.

[46] Fundacio-i2CAT, “PHAUL, a Deep Reinforcement Learning Agent that produces the optimal flow
allocations for Integrated Access Backhaul networks,“ [Online]. Available:
https://github.com/Fundacio-i2CAT/PHaul

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Executive Summary
	1. Introduction
	1.1. Relation to Other Tasks and Deliverables
	1.2. Purpose of the Document
	1.3. Structure of the Document

	2. Background on resource scaling and MADRL-based scaling
	2.1 Definition of Resource Scaling
	2.2 Multi-agent Deep Reinforcement Learning (MADRL)-based Scaling
	2.2.1 Introduction to Markov Games and Multi-Agent Reinforcement Learning
	2.2.2 MADRL-based Solution for Resource Management

	3. Virtualization Platform
	3.1 Scaling With Slice Manager
	3.1.1. Introduction of Slice Manager
	3.1.2. Scaling API

	3.2 Scaling With Maestro
	3.2.1. Introduction of Maestro Orchestrator
	3.2.2. Internal Architecture, Technologies, and Baseline Assets
	3.2.3. Functionalities
	3.2.4. External APIs
	3.2.5. Maestro Architecture in NANCY
	3.2.6. Final Integration Endpoints
	3.2.7. Degrees of Freedom of the Slice Manager

	3.3. Metrics for Characterizing Trade-Offs

	4. Novel Resource Elasticity Mechanisms
	4.1 Scheduling for Time-Critical Tasks
	4.1.1 Period Estimation
	4.1.2 Vertical Scaling with SCHED_DEADLINE

	4.2 PHaul- a DRL-based Path Allocation for Sub6 Enhanced IAB Networks
	4.1.1. PHaul Design
	4.1.2. Performance Evaluation

	4.3 Elastic Resource Scaling
	4.3.1 Scaling for Disruption-Free Service
	4.3.2 Intra-slice Resource Elasticity in NANCY
	4.3.2.1 Integrating Resource Elasticity with the Slice Manager API
	4.3.2.2 Integrating Resource Elasticity with Maestro

	4.3.3 Computational Resource Elasticity with Multi-Agent Deep Reinforcement Learning
	4.3.3.1 State Space Definition
	4.3.3.2 Shared Reward Function and Utilization Reward

	4.3.4 Resource Allocation with DQN
	4.3.5 Resource Allocation with PPO
	4.3.6 Results
	4.3.6.1 Simulation Results
	4.3.6.2 Demonstration

	5 Conclusion
	Bibliography

