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Executive Summary 
This document reports the work conducted in NANCY with a focus on the design and development of novel 
task offloading and user-centric data caching mechanisms for B5G infrastructures. Concretely, this 
deliverable presents the activities conducted in Task 4.1: “Computational Offloading & User-centric 
Caching Functionalities”.  

The state-of-the-art for these technologies is given in Section 2, along with an explanation of the project-
developed proposals that allow to fill the identified gaps in these fields. In order to achieve these advances, 
Section 3 presents the NANCY's offloading and caching architecture and provides a thorough definition of 
its constituent building blocks. Following this conceptual explanation, Section 4 discusses the integration 
of these assets in the various NANCY testbeds and demonstrators. Section 5 summarizes the key findings 
and facts, closing the document. 

Therefore, this document provides an overall vision, from their design phase until their integration plans, 
of the different components and building blocks composing the NANCY computation offloading and data-
caching schemes. 
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1. Introduction 
Future 6G Networks are envisioned to behave as a unique system shared by different stakeholders. 
Virtualized and physical infrastructure will be prepared to host any kind of applications and services, 
changing the role from consumer to providers. By optimizing both resource and power efficiency, while 
keeping service and user requirements, shared infrastructures will bring CAPital and OPerational 
EXpenditure (CAPEX and OPEX) reduction at the time of advanced service provisioning. Led by 
virtualization means, especially in lightweight forms, agile resource handling, reallocation and migration 
are key enablers for these novel scenarios. Service provisioning will seamlessly leverage a wide range of 
infrastructure capabilities, self-adapting and self-configuring their components to enhance their KPIs 
performance thanks to intelligent resource and task management. The user-centric nature of 6G is 
envisioned to drive network service composition, shifting the traditional VNF-centric towards a more 
advanced view oriented to provide the best experience to customers. 

In these dynamic scenarios, the nature and aims of the provided services vary depending on the field of 
application, e.g., the vertical under consideration. Considering the network performance and the 
capabilities of processing devices within the fog-edge-core-cloud continuum, as well as the Quality of 
Service (QoS) requirements of the provided service, computation tasks should be properly adapted or 
instantiated along this seamless chain. Besides, power and computational consumption are of special 
importance in constrained devices such as battery-supplied devices. In this regard, task offloading 
becomes a key enabler in 6G networks to address this challenge. Task offloading allows dynamic service 
handling by leveraging the possibility and flexibility of selecting the best node in which to execute a given 
task. In this sense, as mentioned above, the decision process driving these mechanisms depends on the 
nature of the service and its requirements, but also the characteristics of the available resources in the 
infrastructure. Following the user-centric nature of 6G networks, service consumers are the principal 
beneficiaries of task offloading in terms of improved experience. From the perspective of computational 
nodes, resource-constrained devices are beneficiaries of task offloading in terms of power consumption, 
while cloud nodes leverage task offloading to reduce network load and reduce end-to-end latencies.  

Besides, to release the full potential of task offloading procedures, user-centric caching mechanisms 
should be considered as a highly valuable supporting scheme to reduce data access and local decision 
latencies. Indeed, caching mechanisms are crucial to provide contextualized information in a very short 
time, while reducing network usage hence releasing priceless network resources that may be used to 
transport big data for complex aggregation and analysis, for example, in the cloud. Caching mechanisms 
need to be designed carefully and adapted to each of the verticals and applications given that memory 
and storage are appreciated resources, especially in fog and edge computing. Therefore, a high caching hit 
rate is required to optimize these resources at the time of improving the end-user’s experience in terms 
of low latency service delivery. 

In order to achieve effective task offloading and caching mechanisms, specialized AI engines are meant to 
take into consideration the peculiarities of data, services nature, requesters, and available resources. 
“What”, “where” and “when” to offload and cache are the three main rationales that these engines aim 
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to solve. For instance, in low latency scenarios, proximity to the end-user is one of the main considerations; 
while for other capabilities, like intensive computation, affinity decisions should be considered to enable 
flexible orchestration placement for load balancing purposes.  

1.1 Purpose of the Document 
This document presents the NANCY’s vision on advanced task offloading and user-centric caching in 
complex network environments where multiple stakeholders and domains are involved. Therefore, this 
deliverable mostly reports the activities conducted in Task 4.1: “Computational Offloading & User-centric 
Caching Functionalities”. Along the following pages, the state-of-the-art of these technologies is provided 
together with a description of the proposals developed in the project that permit advancement in these 
fields. To this end, the NANCY’s offloading and caching architecture is presented, and its building blocks 
are comprehensively defined. After this conceptual description, the instantiation of such components in 
the different NANCY’s demonstrators and testbeds is discussed. The document is closed by summarising 
the most important facts and findings. 

 

1.2  Relation to other Tasks and Deliverables 
Although the work reported in this deliverable is mostly carried under the umbrella of T4.1 “Computational 
offloading and user-centric caching functionalities” it has direct links with the activities conducted in other 
WPs as well as other WP4’s tasks. It has a direct connection with T4.2 “Resource elasticity enabling 
techniques” as certain elastic techniques developed in this task are being coupled with the offloading 
schemes addressed in T4.1. Besides, the data-caching mechanisms developed in this task will be exploited 
in T4.3 “Trustworthy grant/cell-free cooperative access mechanisms” to support the effective handling of 
user data in his/her registration or login process. Considering other WPs, as depicted in NANCY’s Pert 
diagram, T4.1 has direct interactions with WP2, WP3, and WP6. Considering WP2, D2.1 “NANCY 
Requirements Analysis” provides the key NANCY requirements regarding the Key Performance Indicators 
(KPIs) to be considered during the service provisioning, which are materialized in T4.1 in the form of a well-
defined Service Level Agreement (SLA) model. Regarding WP3, D3.1 “NANCY Architecture Design” defines 
the general NANCY architecture in which the offloading and user-centric data caching mechanisms 
developed in T4.1 should be accommodated. Finally, regarding WP6, D6.1 “Β-RAN and 5G End-to-end 
Facilities Setup” presents the implementation plan that should be followed to integrate NANCY’s 
offloading and caching schemes in the different demonstrators and testbeds of the project. 
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1.3 Structure of the Document 
The rest of the document is structured as follows: 

• Section 2 – State of Art Overview presents the state-of-art associated with service level 
agreement management, orchestration of offloading and caching, decision making, Blockchain-
based transaction management, and resource handling at the edge. 

• Section 3 – NANCY Offloading and User-centric Caching introduces the offloading and user-
caching processes that are developed in the context of NANCY and documents the associated 
components. 

• Section 4 - Offloading and Caching in NANCY Demonstrators and Testbeds describes the plans 
for the integration of offloading and caching mechanisms in NANCY’s demonstrators and testbeds. 

• Section 5 – Conclusion and Outlook summarizes and concludes the deliverable. 
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2. State of the Art Overview 

 2.1. SLA-based management 
The Service Level Agreement (SLA) is a formal contract between the Service Provider (SP) (e.g., an 
Operator) and the customer (e.g., an End User (EU), another operator, etc.) where the high-level indicators 
and capabilities to be met are established, defined as Service Level Objectives (SLOs). It is a widely adopted 
method for agreeing on specific operational terms, such as the services to be used, their performance in 
terms of QoS, their availability, and any other relevant parameters that the provider commits to meet 
during the service provision.  

As mentioned before, an SLA defines the precise metrics to measure service performance, which entails 
the tools to collect the relevant data [1]. These metrics may include network availability, bandwidth, 
latency, traffic management, computational efficiency and other Key Performance Indicators (KPIs). Some 
works stress the importance of defining network availability levels and specifying the minimum amount of 
bandwidth guaranteed for each user or service [2]. It is also necessary to define traffic management 
policies to prioritize certain types of traffic during network congestion as well as to specify maximum 
acceptable latency levels for different types of services. This should be done to ensure suitable 
performance, for example, thanks to the configuration of network slices [3]. In [4], it is stated that bit rate, 
jitter, packet loss rate and delay experienced by IP packets are the most useful parameters to describe 
how the network processes IP traffic, and therefore, the SLA should include them. 

At the same time, an SLA permits the definition of a clear and hierarchical process for addressing any issue 
that arises during the provisioning of the service, guaranteeing efficient and faster problem resolution. 
SLAs not only cover the responsibilities of both the SP and the customer for the maintenance of the 
infrastructure and costs [5] but they may also include penalties and compensation in case of not meeting 
the agreed service levels [6]. To this end, network orchestrators make use of well-defined SLA schemes to 
drive their governance and manage network resources efficiently. When the orchestrator receives an SLA, 
it serves as an informational block for making well-informed decisions on network resource allocation and 
traffic management. The orchestrator analyzes the KPIs described in the SLA and translates them into 
concrete enforcement actions to optimize service and network performance. For example, the 
orchestrator can dynamically adjust bandwidth allocation to meet required service levels or prioritize 
specific types of traffic to ensure that critical applications receive special treatment during network 
congestion. Tightly coupled with SLA enforcement, orchestrators also monitor the system performance in 
real time to identify potential SLA breaches and take necessary actions to correct these breaches; this is 
crucial to keep the lawful status of the system. Traffic rerouting or applying service elasticity techniques, 
e.g., resource scaling or service migration, are typical countermeasures for keeping SLA assurance [7]. 

However, there are still some issues that need further research such as the SLA lifecycle management, 
which faces important challenges originated by the lack of a de facto standard for SLA definition or well-
defined SLA-centric workflows. In this line, there are still gaps to be filled related to the diversity of 
protocols and processes in a complex network, the difficulties of modifying and negotiating SLAs between 
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different administrative domains, the lack of well-defined service specifications and the need to clearly 
define the terms of the agreement to avoid confusion. SLA monitoring is also necessary to verify 
compliance with the agreement and ensure availability of services, as well as to monitor the connection 
and delivery of traffic [1]. 

Beyond SoTA 

In NANCY, an SLA-centric workflow is proposed to ensure proper fulfilment of the requirements agreed in 
such SLA. A specific SLA model is used to shape the cooperation between different parties inside the 6G 
infrastructure. NANCY adopts a user-centric approach, hence from the user’s perspective, the SLA 
management is shaped in different ways, as a proactive or reactive process. Regarding the former, the UE 
directly requests the home operator a certain service with an associated SLA presenting a set of well-
defined KPIs.  As a first step, the home operator attempts to handle the service request, providing all the 
needed resources. In the case that the home operator cannot comply with the SLA terms, it accesses an 
inter-domain marketplace to find a suitable external operator able to provide the requested service 
fulfilling its associated SLA. Regarding the proactive process, once a service is running, NANCY’s monitoring 
and decision engine blocks in the serving operator may detect that the SLA terms cannot be guaranteed 
in the near future. Therefore, an alert is raised to the network orchestrator, which will look for a solution 
both internally, by reallocating the service and supporting resources, or in the inter-domain environment, 
where the marketplace module registers and finds the best provider to move the service and its SLA 
provisioning. Thereby, real-time monitoring guarantees compliance with the SLA by tracking each 
requirement based on data collected from the infrastructure. The collected data is deeply analyzed by AI-
based decision engines to identify patterns, such as network anomalies or predictions regarding resource 
usage or mobility transitions. Besides, in inter-domain transactions, the role of the smart pricing module 
is crucial to find the most convenient price for the user considering the information published in the 
marketplace. Once the price of the service and its (re)allocation is set, the smart pricing module shares 
this information with the Digital Agreement Creator (DAC), which creates the final agreement between 
the parties involved. This digital contract is forwarded to the user and provider for its signing and further 
incorporation into the blockchain, prior to its final enforcement in the network by the orchestrator. This 
process, which will be comprehensively explained in the following sections of this document, increases the 
reliability of the system by providing transparency and integrity in resource-sharing agreements. 

 

2.2. Offloading and caching orchestration 
Resource offloading refers to the process of transferring resource-intensive tasks from one device to 
another, typically to enhance performance, save energy, or overcome hardware limitations or temporal 
events in the hosting system. To materialize this concept, different underlying technologies should be well 
orchestrated for their effective cooperation, e.g., Software Defined Networking (SDN), Network Function 
Virtualization (NFV), or network slicing, among many others. In the context of cloud-native network slicing, 
efficient resource offloading orchestration is crucial for optimizing network performance and meeting user 
requirements. Work in [8] introduces a fog-cloud container offloading system, treating the process as a 
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multi-dimensional Markov Decision Process (MDP). They utilize a deep Q-Learning algorithm to generate 
efficient offloading plans, minimizing network delays and computation costs. Wang et al. [9] extend this 
approach to microservice coordination in edge-cloud environments, formulating the coordination process 
as an MDP model. They employ Q-Learning to find optimal solutions for service offloading while 
considering long-term performance metrics such as overall offloading delays and costs. 

Various approaches have been explored for workload offloading in cloud environments. Authors of [10] 
propose a multi-component application placement algorithm to minimize application running costs across 
distributed edge servers. Work in [11] addresses the placement of AI functions using mixed-integer linear 
programming in federated learning settings. Reinforcement Learning (RL) methods, as demonstrated by 
Solozabal et al. [12], show superior performance in unknown environments compared to heuristic 
methods, although most existing RL works focus on centralized approaches, as seen in the work in [13]. 
Goudarzi et al. [14] explore distributed learning approaches for optimizing application placement in 
Fog/Edge servers. 

However, existing works often overlook the complexities of multiple Mobile Edge Computing (MEC) 
systems with different orchestrators and fail to address standardization challenges related to the ETSI MEC 
architecture [15]. Work in [16]focuses on service placement load balancing in ETSI MEC architecture but 
neglects cross-orchestrator communication. Torres-Pérez et al. [17] propose a novel approach for MEC 
applications placement in highly distributed environments, aiming to minimize the number of active edge 
nodes while meeting user requirements. In this respect, efficient statistical multiplexing among slices is 
highly desirable in network slicing, primarily due to infrastructure costs and the dynamic traffic loads of 
each service [18]. While a slice is initially assigned a portion of distributed resources, it may be pre-empted 
by other concurrent slices if they remain unused. Without coordination, orchestrating agents for parallel 
slices might independently allocate more resources than their allocated shares based on their local 
observations, resulting in potential conflicts between slices. Thus, the main challenge lies in effectively 
managing resource allocation among concurrent slices to prevent inter-slice conflicts. 

Beyond SoTA 

NANCY goes beyond SoTA by designing a communication framework for future sixth-generation (6G) 
resource allocation, surpassing existing limitations. Referred to as the Standalone Explainable Protocol 
(STEP), this novel multi-agent deep reinforcement learning (MADRL) framework dynamically adapts 
communication messages to evolving system conditions, fostering the emergence of an on-the-fly protocol. 
This protocol facilitates conflict mitigation and minimizes resource contention among network slices while 
fostering offloading. STEP integrates concepts from Information Bottleneck (IB) theory with deep Q-
network (DQN) learning principles. By incorporating a stochastic bottleneck layer inspired by variational 
autoencoders (VAEs), STEP imposes an information-theoretic constraint on emergent inter-agent 
communication. This ensures efficient exchange of concise and meaningful information among agents, 
preventing resource wastage and enhancing overall system performance. 
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2.3. Decision making 
Decision-making in telecommunication networks refers to the set of processes used to manage and 
optimise the network performance, reliability and efficiency. Such techniques leverage the premises of 
optimisation theory in order to find the right balance between trade-offs such as latency-energy 
consumption [19]. In practice, several decision-making methods consider computation and data offloading 
scenarios, where a set of services or a collection of data is dynamically transferred between the UEs, the 
Cloud and the Edge of the network [20], [91], [22], [23]. In such cases, several constraints are in place such 
as the computational capacities of the involved devices, the network latency, the network throughput or 
the energy consumption, thus, researchers develop methodologies to optimise the service/data 
placement to maximise specific performance goals. With the advent of contemporary ML techniques, 
Deep reinforcement learning (DRL) has shown great promise in achieving significant improvements over 
the standard optimisation algorithms, while also increasing the automation levels within the network [24], 
[25]. Since the DRL approach is considered the current state of the art in decision-making scenarios, there 
are several models, techniques and architectures which are tailored to specific network types and 
application scenarios [26].  

In DRL, one or multiple agents are trained to make decisions by interacting with their environment. DRL 
leverages the agent’s knowledge and combines it with Deep Neural Networks (DNNs) to maximise a 
cumulative reward which represents the agent’s goals. Under this premise, the agent takes actions which 
lead to changes in the environment’s states and then, gets a reward based on how well these changes 
contribute to its objectives. Generally, DRL algorithms are distinguished between model-based, model-
free, on-policy and off-policy. Model-based algorithms construct an internal representation of the 
environment (i.e., a model) which is used by the agent to predict the next state of the environment and 
thus, to estimate its reward. In contrast, in model-free DRL, the agent is unaware of the reward which will 
be obtained after performing a certain action. For this reason, model-free DRL encourages exploration and 
utilises the trial-and-error learning approach. On-policy techniques utilise a policy that governs the agent’s 
behaviour and focus on evaluating and improving the same policy to select the optimal actions. On the 
other hand, off-policy DRL does not utilise a single policy to govern both the agent’s behaviour and actions, 
instead, it allows the agent to learn from actions that were not chosen by the current policy. In the context 
of the decision-making process for telecommunication networks, most existing works fall into the category 
of model-free algorithms. Below, we discuss the most common approaches, models and use cases that 
stem from on-policy and off-policy model-free DRL methods. 

The utilization of DRL for decision-making is also a very common approach in the latest innovations in 
communications. For example, the H2020 Predict-6G project [27] is utilised to resolve the traffic admission 
problems, while the H2020 6G BRAINS project [28] focuses on DRL resource allocation solution for the 
massive device-to-device connections in a highly dynamic cell-free network. Additionally, as shown in the 
H2020 5G-CLARITY [29] project, DRL can be successfully utilised for task offloading and resource 
reservation in B5G networks. Another focus of the 5G-CLARITY project was to examine the placement of 
Service Function Chains (SFCs) with DRL, for flexible service support and efficient resource utilization, so 
that the solution met Quality of Service demands, prevented congestion of edge resources, and enhanced 
the service acceptance ratio. DRL was also successfully deployed in the H2020 AI@EDGE [30] project in 
both improving the autonomous vehicle decision making among human drivers, to minimise traffic jams, 



D4.1 – Computational Offloading and User-centric Caching 
 

 

 
20 

 

while also optimising video analytics to dynamically optimise resource allocation by deciding the 
placement, migration, or horizontal scaling of serverless functions. 

Model-free on-policy algorithms  
Advantage Actor-Critic (AAC) is a synchronous DRL technique which employs multiple agents to update a 
central model. In terms of data offloading, AAC techniques have shown great potential in Internet of Things 
(IoT) ecosystems. In [31], the researchers develop a custom AAC model to cache IoT-collected data to the 
Edge. The conducted experiments show that AAC can maximise the long-term energy savings of the IoT 
devices, without any prior knowledge of the data popularity profiles. Proactive Edge caching is explored in 
[32], where a novel Proximal Policy Optimisation (PPO) DRL algorithm is proposed to enable Edge servers 
to perform data prefetch on each UE request. This model opens the pathway for collaboration between 
multiple servers which are in different areas, and it reduces the Edge-UE communication overhead. PPO 
DRL methods are also applied in [34] and [35], within the context of IoT-Edge networks to offload data 
from the IoT devices to the Edge. In such cases, DRL manages to optimise the energy efficiency and the 
IoT-Edge communication cost. A federated on-policy DRL approach is proposed in [33], tailored for data 
caching in vehicular networks. In this case, Roadside Units (RSUs) assume the role of Edge servers, which 
are trained in a distributed way to prefetch popular content in advance, while also taking into account 
each vehicle’s position and moving direction. 
 
Model-free off-policy algorithms 
Q-Learning and more specifically Deep Q-Learning (DQL), which is a model-free and off-policy DRL 
technique frequently used for decision-making in telecommunication networks and, specifically, for data 
offloading and data caching functionalities. Previous work in [36] showcases the efficiency of DQL in 
proactive data offloading to the edge of the network. In this manuscript, authors employ DQL to decrease 
the energy consumption and increase the Quality of Experience (QoE) of the UEs. Cooperative edge 
caching is considered in [37], where a multi-agent DRL mechanism enables the data offloading from the 
Cloud to the Edge so as to relieve the network backhaul. Cooperation can also be achieved through a 
distributed training environment as previous work in [38] demonstrates. In this work, authors deploy a 
federated Duelling DQL network to improve the overall caching performance of the Edge. This ecosystem 
supports multiple Edge servers, with each one of them serving a distinct group of tenants. Federated DDQL 
is leveraged in [39] to support a cooperative proactive data caching technique in vehicular networks. In 
this work, multiple RSUs are located along the side of the road and serve incoming vehicle requests. The 
goal of the Federated DDQL is to reduce the response time and transmission delay of Road Side Units 
(RSUs) for data requests made by the vehicles. 

Beyond SoTA 

NANCY employs DRL to enhance and automate the decision-making operations (related to computation 
offloading and data caching) and more specifically, it leverages the Double Duelling Deep Q-Learning 
paradigm (DDDQL). The issue with the standard DQL is that it tends to be overoptimistic with its Q-value 
estimations. To solve this issue, the Double Deep Q-Learning (DDQL) is often employed. DDQL utilises two 
identical DNNs, one for predicting the Q-values and one for evaluating the predictions of the first one. In 
this way, the second network, which is usually referred to as the “target network”, discourages the 
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predictor (which is known as “Q-network”) from generating erroneous predictions about each state’s Q-
values. This technique improves the network’s convergence rate and significantly reduces its loss function. 
The “Duelling” part of the DDDQL comes into play by introducing a DNN split (both in target and Q 
networks) in the last layer of the model. By doing so, we separate the model output into two parts: The 
first part is referred to as “value”, and the second part is referred to as “advantage”. The “value” gives us 
information regarding the Q-value of the current state, while the “advantage” provides a quantitative 
evaluation of the action that led to this Q-value. This separation achieves two objectives: First, it allows 
the agent to focus on states where it's advantageous to act and differentiates the representation of the 
“state” and the “action” within the model itself. Secondly, the decoupling between the Q-values and the 
action advantages has the potential to increase the effectiveness of the agent’s exploration. This has more 
impact in environments with complex dynamics (as in a UE-Edge-Cloud ecosystem) and can lead to a faster 
convergence rate and better stability of the learning process.  

This DDDQL approach empowers NANCY’s decision-making engines with the following benefits: 

1) By incorporating robust and efficient data caching and computation offloading functionalities. 

2) By increasing the applicability of the envisioned caching and offloading operations to different 

network types, topologies and devices. 

3) By optimising the resource utilisation of network assets (through computation offloading), 

increasing the network throughput and reducing latency (through data caching). 

For the reasons stated above, NANCY develops and implements two different DDDQL architectures for 
decision-making (one using a self-attention DNN and one using a dense DNN), and it performs several 
design-space exploration activities by changing their hyperparameters and modifying their characteristics. 

 

2.4. Blockchain-based transaction management and accounting  
Taking the blockchain as the central technology to achieve great levels of trustworthiness and 
transparency in NANCY’s transactions, a complementary set of building blocks closely cooperate with each 
other to reach the desired automation and flexibility in resource and service management activities. These 
are the NANCY’s marketplace, smart pricing module and Digital Agreement Creator (DAC). All of them are 
analysed in the following, one by one: 

Blockchain 

The NANCY Blockchain is based on Hyperledger Fabric [53] an enterprise-grade blockchain platform. In 
such a platform, data is stored in a distributed ledger that is maintained by each participating node, 
ensuring redundancy and resilience. Chaincodes, also known as smart contracts, form the backbone of 
Hyperledger Fabric's functionalities. They are located at the business logic layer, executing transactions 
and updating the ledger's state. A chaincode is essentially a decentralized application that encapsulates 
the rules governing how assets are managed within the blockchain network. These facilitate automated 
transactions upon meeting predefined conditions. Moreover, in Hyperledger Fabric, each ledger is treated 
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as an independent subnetwork. This ensures data isolation and confidentiality, allowing organizations to 
transact securely without revealing sensitive information to unauthorized parties.  Through these 
mechanisms, Hyperledger Fabric provides a robust foundation for secure, scalable, and privacy-preserving 
enterprise blockchain applications. Its modular architecture, pluggable consensus protocols, and 
customizable endorsement policies empower organizations to tailor blockchain solutions to their specific 
requirements, ushering in a new era of trust and efficiency in digital transactions. 

As explained previously, an SLA acts as a formal agreement between a Service Provider (SP) and a user, 
which includes the SLOs that need to be met. Once a customer request triggers a service-launching process, 
e.g., a function offloading, the SLA must be converted into chaincode and deployed onto the blockchain 
by the responsible entity. Throughout this process, it is crucial to certify the trustworthiness of each 
entity's resources. Chaincodes are pivotal in this scenario, as they can either store this information directly 
or implement a scheme where data is stored off-chain with an on-chain integrity-checking process. In this 
line, the wallet entity plays a key role in enabling a secure connection and simplifying the process. It 
contains cryptographic materials necessary for securely connecting with the blockchain and acts as a 
"proxy" entity. When an entity needs to interact with the blockchain, it contacts the wallet to forward the 
requests, thus maintaining security and integrity throughout the transaction process. 

Beyond SoTA 

NANCY proposes several improvements over traditional blockchain implementation in three different 
domains: (i) PQC-enabled wallet and blockchain: NANCY proposes the use of physical PQC cards for the 
UE, for which an adaptor is being developed and will be integrated with the wallet. This will make it 
possible to use PQC materials (keys) and signature generation for secure interactions with NANCY’s 
blockchain. To support PQC signature verification smart contracts are envisioned to be integrated into 
NANCY’s blockchain. This module verifies the signed chaincode from the wallets at the blockchain’s end. 
The registration to the blockchain using post-quantum cryptography material is an improvement over the 
state of the art that can help prevent malicious use of (previous non-quantum) crypto keys, e.g., stealing 
confidential product data or financial records, or manipulating service prices. In this case, both the end 
users (users of the blockchain) and the blockchain owner/provider benefit from this enhancement. (ii) 
Integrated blockchain-based marketplace and smart pricing components: NANCY proposes the integration 
of a marketplace and a smart pricing component on top of the NANCY’s blockchain. The objectives of such 
a system are (1) to maintain trust for the marketplace and smart pricing components, (2) to maintain price 
fairness and (3) to keep indelible track of the agreement reached by all parties. This latest point, more 
specifically, refers to the ability of the system to negotiate a price between the service provider and the 
end user for a given resource with the conditions expressed in a publicly available SLA that is added to the 
NANCY’s blockchain as a chaincode. By collecting performance (and other) KPIs, the system should be able 
to track down any deviations from the SLA, allowing NANCY to keep the accountability and reputation of 
the provider (operator). (iii) Self Sovereign Identity (SSI)-enabled wallet: Digital privacy prevents the 
illegitimate use of users' personal data and automatically improves the blockchain owner's reputation. On 
Web3, protecting a user from having unnecessary information shared with third parties without their 
consent or knowledge is of fundamental importance. In the case of NANCY, the system is equipped with 
decentralized identification features. A Decentralized Identifier (DID) [54] is decoupled from a formal 
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identity and allows the user to fully control it. DIDs can be generated and used based on the user and 
service requirements independently from other, third-party identity providers. What this means is that, 
once the user is authenticated and granted specific verifiable credentials, it is able to present those to a 
service provider to obtain a given resource, with no need to reveal its identity or any other credential. In 
this case, both the end users (users of the blockchain) and the blockchain owner/provider benefit from 
this enhancement. 

Marketplace 

There are various studies that address the concept of telecommunication marketplaces [40], [41] where a 
marketplace serves as an intermediary between providers and customers. For providers, it extends the 
market reach without additional marketing costs and allows fair competition with larger providers. 
However, for customers, the marketplace provides a single location for comparison with transparency 
about availability and price. In the telecommunications ecosystem, marketplaces already facilitate the 
exchange of various telecom services and products between operators or end users [42]. However, these 
marketplaces are constantly evolving driven by technological advancements and changing consumer 
demands. On the one side, in recent years, the rapid growth of bandwidth and latency reduction demands 
as well as the network intelligence improvement have increased the pressure on mobile operators that 
sometimes experience a shortage of resources and require offloading of some tasks to other available 
resources. In this sense, telecommunication resources marketplaces are required with updated 
information about the availability status of existing resources at any time to correctly offload essential 
tasks while guaranteeing network correct operation [43]. On the other side, with the increasing threat of 
cyberattacks and data breaches, security has become a priority, so in this sense, Blockchain has started to 
be considered as a secure technology to backbone telecommunications marketplaces as it provides 
transparency, integrity and availability by design [44]. 

Beyond SoTA  

A blockchain-based marketplace for telecommunications resources will be considered for making the 
offloading tasks easier through updated information about available resources as well as updated prices 
for fair competition at any time. This marketplace will be a central piece of the NANCY’s inter-domain 
environment together with the rest of the building blocks presented in this section, namely, the smart 
pricing and DAC modules which will closely work together with the NANCY’s blockchain. In this way, 6G 
networks will enhance their operation by avoiding bottlenecks while guaranteeing transparency, 
trustworthiness and fairness. 

Smart pricing 

In recent years, several innovative smart pricing policies have emerged within mobile content 
marketplaces and blockchain networks. S. Hosny et al. [45] introduced a mobile marketplace that enabled 
users to purchase digital content via smartphones, featuring a dynamic pricing model based on content 
popularity, quality, and demand. This model offered a superior user experience by providing convenient 
and accessible content anytime, anywhere. Work in [46] developed a social welfare maximization auction 
mechanism for edge computing in mobile blockchain networks. This mechanism optimized resource 
allocation by considering users' heterogeneous demands and computing resources, adjusting auction 
parameters accordingly, and showcasing increased performance in simulations compared to existing state-



D4.1 – Computational Offloading and User-centric Caching 
 

 

 
24 

 

of-the-art mechanisms. Authors of [47] proposed an optimal pricing mechanism for data markets in 
blockchain-enhanced IoT networks, using a combinatorial double auction model to ensure fair 
compensation for data owners and efficient transactions, achieving high revenue for sellers and low cost 
for buyers. 

Numerous studies have integrated economic and market factors into pricing algorithms. Authors of [48] 
and [49] explored strategic pricing in the telecom industry, where operators optimize prices to maximize 
profits, taking into account client preferences and competition dynamics. These studies examined 
scenarios in which pricing decisions are influenced by owners, renters, or regulators aiming to maximize 
profit or promote social welfare. Kumar et al. [50] focused on external factors such as demand-supply 
evaluations, network traffic, latency, end-user figures, and subscriber growth rates. They employed 
models like the Shapley value, bargaining games, and dynamic pricing to maximize revenue and distribute 
costs among stakeholders, demonstrating the importance of these external factors in shaping effective 
pricing policies. 

These advanced methodologies underscore the evolving landscape of smart pricing policies, highlighting 
the need for strategic and adaptive solutions in diverse technological contexts. Researchers continue to 
explore auction techniques and game-theoretical models to maximize social welfare and optimize 
resource distribution, particularly in blockchain and IoT environments. The integration of external 
economic factors and advanced algorithmic approaches remains crucial in developing effective pricing 
strategies. 

Beyond SoTA 

NANCY’s smart pricing module aims to provide several enhancements to existing state-of-the-art solutions, 
particularly by integrating dynamic pricing mechanisms within a Blockchain-RAN network (B-RAN). This 
integration is unique as it is one of the few, if not the only, such mechanisms designed to work seamlessly 
with task offloading processes to ensure efficient allocation of tasks to available providers and 
infrastructure within the network. By addressing the commercial and financial aspects, NANCY aims to 
create a unified network where providers can cooperate effectively, ensuring financial sustainability and 
operational efficiency. Technically, NANCY’s integration of the smart pricing module within its general 
architecture is distinctive. By incorporating the module into blockchain mechanisms and smart contracts, 
NANCY ensures fast price calculations and a tamper-proof system, minimizing errors and enhancing 
reliability. This integration leverages the strengths of blockchain technology to provide a robust and secure 
pricing mechanism. In terms of implementation, NANCY is exploring an arsenal of novel tools through 
continuous experimentation. After a thorough review of relevant literature and prior works, it is evident 
that the most effective approach for optimizing bidding strategies, similar to those used in current state-
of-the-art solutions, involves Stackelberg Games or Reverse Auction theory. Traditional theories like 
Bertrand and Cournot have inherent limitations, such as reliance on a scarcity of bidders or a focus on 
quantity rather than price. NANCY proposes using Reverse Auction theory implemented by Reinforcement 
Learning (RL) agents for two main reasons. First, RL offers excellent scalability, suitable for the complex 
dynamics of 5G and B-RAN networks with numerous users and MNOs. Second, the flexible nature of RL 
algorithms allows for continuous adjustments based on evolving datasets, providing significant 
adaptability to new situations. This approach ensures that NANCY’s smart pricing module remains effective 
and responsive to changing network conditions and demands. 
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Digital Agreement Creator 

Digital Agreement Creators (DACs) have become quintessential tools in the evolving landscape of business 
and legal technology [51]. Leveraging cutting-edge advancements in AI, blockchain, natural language 
processing (NLP), and cloud computing, these platforms are transforming how contracts are drafted, 
reviewed, and executed. On the other hand, in the rapidly evolving digital landscape, the advent of 5G 
technology has promised and delivered significant leaps in connectivity, speed, and latency. One area 
poised for transformation with the widespread adoption of 5G is digital contract creation. Therefore, one 
of the most profound impacts of 5G on digital contract creators is the enhancement of real-time 
collaboration capabilities. 5G's high bandwidth and low latency allow multiple stakeholders to work on 
contract creation, review, and editing simultaneously from various locations with virtually no delays and 
lags.  In this line, this improved network performance offered by 5G significantly enhances the 
performance of AI and ML algorithms used in DACs. These technologies depend on vast amounts of data 
and computational power to learn from historical contracts, predict risks, and suggest language 
modifications. With 5G, AI-driven platforms can process larger datasets faster and run more sophisticated 
models, resulting in higher accuracy and more nuanced contract generation.  

One of the hallmarks of 5G technology is its ability to facilitate edge computing [52], which allows data 
processing closer to the data source rather than relying solely on centralized cloud servers. This 
decentralization can be highly beneficial for digital agreement management, especially for contracts 
involving IoT devices and other smart applications. For example, a supply chain contract could leverage 
edge computing to autonomously monitor compliance with contract terms in real time, responding 
instantly to any discrepancies. Platforms that incorporate edge computing as part of their framework can 
offer enhanced reliability, lower latency, and increased data security, transforming how contracts are 
monitored and enforced. Besides, 5G technology enhances blockchain's potential in enforcing smart 
contracts, which are self-executing contracts with the terms directly written into code. These smart 
contracts can benefit from 5G’s enhanced connectivity, enabling more timely and reliable data feeds 
required for their execution. Industries using blockchain for real-time, automated contractual agreements 
will find that 5G allows for almost instantaneous data validation and transaction processing. This 
significantly reduces latency and increases the efficiency of smart contracts in sectors such as finance, 
healthcare, and logistics.  

In summary, the integration of 5G networks into digital contract creation tools marks a significant 
milestone. By enhancing real-time collaboration, enabling immersive AR/VR experiences, boosting AI 
capabilities, facilitating edge computing, and improving security and compliance, 5G is set to revolutionize 
how contracts are created, managed, and executed. As DACs continue to evolve alongside 5G technology, 
businesses will find themselves better equipped to handle complex negotiations, streamline their 
workflows, and adapt quickly to changing legal landscapes. 

Beyond SoTA 

The rise of DACs, underpinned by blockchain technology, is revolutionizing the way agreements are formed 
and executed. By automating and securing transactions through smart contracts, these digital solutions 
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enhance transparency, reduce costs, and minimize the risk of fraud, paving the way for more efficient and 
trustworthy digital economies. In addition, NANCY’s DAC, due to its internal orchestrator for creating ad-
hoc containers, responsible for the actual creation/deployment of the smart contracts, differentiates from 
the current SoTA with the advantage of being more flexible in smart contract creation. This provides great 
flexibility when it comes to handling heterogeneous service provisioning requests such as those envisioned 
in task offloading scenarios.  Together, these advancements are propelling us toward more interconnected 
and intelligent infrastructures, in which different stakeholders can share their resources and offload 
processing functions to improve user experience. 

2.5. Resource handling at the edge 
In the rapidly evolving 5G infrastructure, NFV has now turned into a conventional paradigm. NFV 
effectively decouples the execution of network functions from dedicated hardware, as it provides the 
ability to run them on standardized, commercial off-the-shelf infrastructure [55]. Specifically, thanks to 
virtualization, network functions abstract hardware limitations and thus, are deployable or offloaded 
across all different parts of the network. This shift brings great flexibility to the 5G networks, which can 
now orchestrate the lifecycle of VNFs at different domains of the network, where the edge, given its 
distributed nature, allows service proximity to the users. Therefore, virtualization technologies at the edge 
of the network are key enablers for achieving efficient and flexible task offloading. 

The virtualization technologies sitting behind the implementation of VNFs are either VMs, containers, or 
sometimes a hybrid approach that combines both [56]. Besides the advantages provided by these 
technologies, each of them also presents some limitations. In detail, VMs are realized with hypervisors, 
which can either sit directly on top of the hardware without requiring an underlying operating system 
(Type-1) or are deployed on top of an operating system (Type-2) and take advantage of its capabilities. In 
the context of NFV, the VMs are commonly implemented with some Type-2 hypervisor, like Linux 
Qemu/KVM or VMware vSphere [56]. VMs offer a more traditional approach to implement virtualization, 
by emulating the physical hardware to host multiple Operating Systems on a single physical server. Each 
VM runs its own dedicated OS and is both isolated and independent of others [57]. In this context, the key 
benefit of using VMs is that they guarantee strong isolation and security. However, this solution comes 
with a relatively high overhead, due to the necessity of emulating or virtualizing a hardware platform, 
which therefore impacts both performance and scalability [56]. On the other hand, containers are a 
modern solution to virtualize network functions in the 5G ecosystem [57]. There is currently a tendency 
to move towards the containerized, or also cloud-native approach because it is a very lightweight 
alternative to classic, hypervisor-based virtualization. By using containers, applications and their 
dependencies are encapsulated in the form of micro-services, which can be flexibly moved across 
environments. Moreover, virtualization with containers maintains a close-to-native performance. 
However, containers are only isolated at the OS level, and they share the same kernel, which introduces 
challenges in terms of security. 

Regardless of the technology used to offload applications to edge or cloud nodes, a crucial issue is how to 
assign the nodes' resources to the virtual environments hosting the offloaded applications. In this regard, 
it is very important to find the correct trade-offs that allow for avoiding resource over-provisioning and 
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bad performance due to under-dimensioned resources. The problem of optimizing resource allocation to 
maximize the utility of real-time applications has been previously considered in the literature. For example, 
the QoS-Aware Resource Allocation Model (Q-RAM) by Rajkumar and others [58] modelled the execution 
of multiple real-time applications on a single node. Each application is allocated to multiple resources and 
is characterized by multiple QoS dimensions that also depend on the resource-specific allocation. Although 
this model did not consider distributed or multi-core systems (one single worker node with one single CPU 
core was modelled), it resulted in being fairly generic and quite difficult to solve. Hence, simplified models 
(with one single QoS dimension and/or one single resource) were initially solved. The work was then 
extended to solve the optimization problem in more complex cases [59], even considering discrete CPU 
allocations [60]. Even if support for multi-core systems was later added [61], Q-RAM did not consider 
distributed systems. Methods for guaranteeing the timing constraints of real-time applications running on 
single nodes are generally based on the so-called Compositional Scheduling Framework (CFS) [62] [63] [64] 
[65], which can result in resource over-allocation. By specializing in resource allocation algorithms for a 
class of applications, it is possible to improve performance (at the cost of generality). For example, NFV 
has been considered [66]. By specializing in resource allocation algorithms for a class of applications, it is 
possible to improve performance at the cost of generality. For example, NFV has been considered in the 
work presented in [66]. Besides, Struhar et al. [67] targeted the allocation of containers on Linux, under 
SCHED_DEADLINE, but without considering mixed edge-cloud applications. Only the edge of the network 
is considered. Casini et al. [68] considered the local load balancing of real-time applications running on 
multicore embedded systems. However, edge-cloud is distributed. Struhar et al. [67] targeted the 
allocation of containers on Linux, under SCHED_DEADLINE, but without considering mixed edge-cloud 
applications. Only the edge of the network is considered. In turn, Casini et al. [68] considered the local 
load balancing of real-time applications running on multicore embedded systems.  

Beyond SoTA 

NANCY develops a novel technology to achieve virtualization, as an alternative to a VM or a container-
based approach, aimed at VNF deployments at the network edge. This technology supports the ARMv8 
architecture, which is a very popular choice for edge equipment suited for low-power consumption 
applications, without sacrificing performance. At its basis, the proposed virtualization technology 
resembles usual VM deployments, although it achieves bare-metal execution latency as well as stricter, 
hardware-enforced security guarantees. The ARMv8 architecture features a hardware technology known 
as ARM Trustzone. This technology allows the creation of secure enclaves within a device's processor, 
ensuring isolated execution environments for sensitive data and critical operations. Also, it has proven [69] 
to be suitable in mixed-critical scenarios, because it allows the concurrent execution of critical and non-
critical activities on the same hardware platform. In the context of NANCY, VOSySmonitor [69] is employed 
at the ARMv8 edge servers, which is a software that creates on top of ARM Trustzone an environment 
capable of simultaneously managing and running whole, individual, bare-metal operating systems. In 
NANCY, the different operating systems that are deployed on the same hardware, and which either feature 
critical or non-critical characteristics, are called compartments. In most platforms, the non-critical 
compartments usually have access to most parts of the hardware and thus can be viewed as the “rich” 
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ones. On the other hand, the critical compartments have a limited view of the hardware and are suitable 
for specific real-time applications.  

As for the novel virtualization technology, NANCY designs it with the purpose of opening up the critical 
compartments to host offloaded VNFs, which will be deployed in a bare-metal fashion. Specifically, NANCY 
allows the exploitation of the ARM Trustzone hardware-enforced isolation, for the purpose of isolating the 
bare-metal, critical VNFs, from a pre-deployed resource-rich compartment. Each bare-metal VNF operates 
within its own compartment, with VOSySmonitor managing these compartments and orchestrating the 
allocation of primary resources such as CPU and memory to each of them. However, the big challenge 
behind this virtualization idea is that VOSySmonitor has to accommodate the level of abstraction that is 
required on the bare-metal compartments, to run the VNFs. In general, the VNFs interface with a generic 
view of the hardware, via specific virtual devices. Therefore, it should still be possible for the VNFs to be 
transparent in terms of the virtual devices and behave as if they are in a system with an underlying 
Hypervisor. NANCY meets the needs for deploying the abstracted VNFs with a software solution called 
cross-compartment virtio-loopback. This technology is a hypervisor-less virtualization technology, where 
the rich compartment behaves as the hypervisor and addresses the hardware requests, while on the non-
rich compartments, the VNFs are deployed with all the views of the generic hardware. So, at the edge level, 
the resources become abstracted thanks to the cross-compartment virtio-loopback; thanks to it the para-
virtualized resources are exposed to the VNFs that will access them with no limitation. The technical details 
of the cross-compartment will be further elaborated in the upcoming sections. More specifically, how 
NANCY achieves to provide a bare-metal, lightweight, edge-targeted virtualization solution based on it. 
Besides, considering data caching, compartments also permit to safely store information only accessible 
by authorized processes. This technology will be employed for this regard under the scope of the activities 
in T4.3: Trustworthy grant/cell-free cooperative access mechanisms; therefore, the developments in this 
regard will be reported in the corresponding deliverable D4.3. 

Again, independent of the technology used to offload applications to edge or cloud nodes, the 
orchestration of virtualized software workloads to meet real-time requirements, e.g., bandwidth, and 
latency is crucial. To this end, NANCY also proposes new allocation algorithms for optimizing the QoS-to-
cost ratio of edge-cloud distributed applications considering the SCHED_DEADLINE scheduler of Linux, 
which allows providing real-time guarantees and timing isolation between services that are allocated on 
the same node and cores. This provides substantial benefits in avoiding the underutilization of 
computational resources while still guaranteeing the required QoS even in the presence of contention for 
the computational resources. This is a key objective in massively distributed systems with task offloading 
demands such as those considered in NANCY.  

While previous work addressed methods to maximize the QoS of real-time applications or proposed 
methods to guarantee the real-time constraints for single-node systems, none of them proposed 
allocation methods that jointly considered the usage of a scheduler with sound theoretical properties such 
as SCHED_DEADLINE, which allows providing guarantees on the CPU bandwidth and the CPU worst-case 
latency, while also considering distributed applications in the edge/cloud and focusing on optimizing a 
QoS-to-cost ratio. 
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3. NANCY Offloading and User-centric Caching 

3.1 NANCY extended orchestration 
In a previous document (D3.1), a series of baseline architectures defining the main NANCY’s building blocks 
and their interactions were presented [70]. In the case of the NANCY’s general architecture presented in 
D3.1, a functional and deployment view of its building blocks has been produced to contemplate new 
needed functionalities originated with the evolution of the project and represent them all together in a 
clear way (Figure 1). 

 

Figure 1. Functional and Deployment view of the NANCY Architecture. 

Its structure is fully maintained, with two main operational domains: The inter-operator and the intra-
operator domains. Considering the former, it refers to the domain that leverages the multi-stakeholder 
approach of the 6G networks to share and optimize resource usage while reducing the operating costs of 
infrastructure management. It is composed of the NANCY’s marketplace, the smart pricing block, and the 
DAC that closely collaborate to handle and manage the pool of resources offered by the different operators. 
These elements are crucial to enable the cross-domain and cross-operator vision of NANCY. Besides, the 
presence of the NANCY blockchain in this domain ensures transparency, robustness and trust in all the 
transactions among multiple stakeholders such as operators, users, etc., as all of them will be recorded on 
it. 

In turn, the rest of building blocks in the architecture belong to the intra-operator domain, which refers to 
the part of NANCY that is managed inside each operator; in this case, the different segments forming the 
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network infrastructure, namely, UE and IoT devices, radio access, edge, backhaul transport, and core, are 
comprehensively monitored and managed by the Telemetry system. Taking into consideration the nature 
of both offloading and caching functionalities, monitoring in real-time the status of the infrastructure is 
crucial. This kind of exhaustive monitoring is represented by the individual and specialized monitoring 
tools, in which the key data to be under control is obtained. These are the O-RAN, Transport, Compute, 
and Mobile Core monitoring tools in the diagram. Besides, although a high level of automation is highly 
desirable, the Visualization of the gathered data in a comprehensive way becomes necessary to allow 
human-in-the-loop solutions. Thus, the Telemetry block is also important to dynamically improve and 
expand the creation of the datasets used to train the AI-based engines. 

As can be seen, the principal consumer of the data generated by the Telemetry system is the Analytics and 
AI components. In these blocks is where the NANCY’s main intelligence resides. Analytics engines are the 
first elements consuming the data monitored and extracted from the network infrastructure. With these 
data, this block continuously checks the SLA compliance and the resources allocated for its 
accomplishment. Pattern-based analysis is considered in this block as well for making different kinds of 
predictions. Accordingly, AI-based predictions regarding the future status of the systems considering both 
computation and network resources are obtained by the AI engines in the AI block. In the case of detecting 
that the SLA compliance is at risk, an alert is generated towards the Enforcement block, which will send a 
detailed alert to the Service Orchestrator to keep the SLA in fulfilment. Therefore, the Analytics and AI 
blocks process monitored data to determine the level of performance, security, available resources (non-
allocated resources), underutilized resources (allocated but not used), and establish predictive behaviour.  

In this line, upon the arrival of a service request or during the execution of a running service, NANCY’s 
decision engines and analytics procedures continuously check if the SLA associated with such a service can 
be fulfilled by the operator serving it. In the case of inferring a possible SLA violation, an automatic and 
well-defined process (detailed in Section 3.3) is launched to solve the issue before it happens. Thereby, 
when the resources in the serving infrastructure are not enough to deal with the situation, an alternative 
solution is sought in the inter-operator domain, a process launched by the local Service Orchestrator 
through the Business Support System (BSS). At this point, the Marketplace and the smart pricing blocks 
autonomously look for the most adequate solution for the customer, which will involve the migration of 
the provided service and its state towards a different operator with available resources to accommodate 
the service while fulfilling the SLA terms. Therefore, a new digital contract between the former and the 
new service provider should be prepared and signed by both parties. This will be done in the form of a 
smart contract that will be produced and registered in the blockchain by the DAC for transparency and 
robustness purposes. Once this process is completed, the orchestrator in the new service provider will be 
informed about the new service to be onboarded together with its associate SLA, and the resource and 
service allocation and enforcement process will be launched through the different domain controllers 
(blue boxes in the architecture). On the other hand, the orchestrator in the former service provider will 
support the migration of the service and its associated data before liberating the previously occupied 
resources, again through the domain controllers implied in the service provisioning. This workflow will be 
exhaustively detailed in Section 3.3. 
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In this Section, starting from this NANCY architecture depicted in Figure 1, the focus is on delving into the 
specifications of the different modules and components that participate in the orchestration process of 
NANCY’s offloading and caching mechanisms. Firstly, it is important to mention that both mechanisms are 
considered specific cases of orchestration, in which the concrete characteristics of the use case and 
scenario under consideration determine which decision modules participate and, therefore, what kind of 
data is monitored to feed these intelligent engines. Accordingly, the orchestration and enforcement of the 
needed actions will be applied to the different domains, namely, UE, RAN, MEC, and cloud, in different 
ways, depending on the scenario conditions and infrastructure characteristics. This flexibility is highly 
relevant to attending and handling a variety of requests in multi-stakeholder environments such as those 
envisioned for B5G systems. 

In this line, offloading and caching mechanisms are key procedures to accomplish the KPI requirements, 
and consequently the SLAs, especially considering specific conditions or situations in the infrastructure 
such as high load or volume of traffic, data or user-centric services, mobility of the UE, resource-
constrained devices, latency in critical applications, etc. A series of building blocks and processes implied 
on NANCY’s offloading and caching processes have been identified: SLA-based management, 
Orchestration, Decision engines, Blockchain, Marketplace, Smart pricing, and Edge-resource management. 
The coordination among them is driven by automation loops that establish flexible flows to exchange data 
and commands. In the following, the role and interactions of these components involved in the offloading 
and user-centric caching processes within the NANCY’s architecture are thoroughly described.  

3.2 Offloading and user-centric caching building blocks 

3.2.1 SLA-based management 
Having a separate business model from the technical KPIs facilitates the dynamic nature of the service 
provisioning proposed in NANCY. Once the digital agreement has been signed by the parts and 
incorporated into the blockchain, while the SLA terms should be kept constant, the business part may 
change during the service life cycle. For instance, when the current service operator is not able to provide 
the signed SLA terms, the marketplace comes into play to provide seamless collaboration between 
infrastructure and service providers to accomplish the SLA in an optimal way. The incorporation of a new 
service provider is simplified as it is only needed to sign again the business part of the contract, linking it 
to the conditions established in the static SLA stored in the blockchain. 
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Figure 2. Digital contract (SLA + Business models) structure 

 

Figure 2 depicts the digital agreement model, which has been grouped into different categories and 
information elements, subsequently described: 

Static part (SLA model): 

• SLA ID: It uniquely represents the static part of the contract (SLA). 

• Service ID: It uniquely represents the provided service. 

• Availability: Metrics specifying the percentage of time that the service or its components should 
be available: 
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o Overall Availability: Considering the service chain delivery, the percentage of time that the 
service should be available. 

o Component Availability: For each of the resources provided by the different stakeholders, 
the percentage of availability during the service delivery. 

• Reliability: Specifies the robustness to failures of the system: 

o Failure Rate: Maximum percentage of failures during the service provisioning 

o Mean Time to Repair: Time to recover defective components/resources and include 
reestablishment of the service provisioning. 

o Time Between Failures: Average minimum time elapsed between errors. 

o Down time: Percentage of time that the service is allowed to be inoperative. 

• Security: Covers security aspects of the service: 

o Data Protection: Model representing several security capabilities required by the service 
(e.g., physical layer protection, confidentiality, authentication, etc.). 

o Compliance Rate: % of time related to the fulfilment of the security capabilities indicated 
previously. 

o Access Attributes: Which attributes are required to access the requested service. 

• Capacity:  

o Compute: Defines the behaviour of the physical and virtual resources associated with the 
service: 

 Resource Allocation: Refers to CPU, GPU, memory, storage and network required 
by the service. Each of them has its own measurement unit. 

 Resource Usage: Minimum percentage of resource utilisation. 

 Scalability: Boolean parameter indicating the capability to scale up or down 
certain allocated resources. 

o Network: Focused on measuring different metrics of the data plane: 

 Response Time: Maximum allowance time elapsed since the service request is 
sent until the SLA has been enforced, hence the service is operative. 

 Throughput: Required bandwidth for uplink and downlink to keep a proper degree 
of data rate for service consistency. 

 Latency: Maximum round time trip for every packet of the service connection. 

Dynamic part (Business model): 
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• General: contains information related to non-technical elements of the service model. 

o Purpose: Joined flags that contain bits representing the Service/Slice ID, Modes (e.g. 
Follow the UE, Scalable), and Behaviour (e.g., offloading). 

o Stakeholders: List of stakeholders participating in the agreement, with associated 
resources/components and the price for each of them. OP_ID, Rx and Px are the operator 
identifier, resource identifier, and price function associated, respectively. 

o Effective Date: Timestamp from which the SLA is operative. 

o Duration: Expiration time of the SLA. 

o Total Price: Summatory of the Px for every Rx in case of being fixed it will be a static integer. 

• SLA: Links the business and technical parts of the digital contract. 
o SLA ID: couples this part of the contract with a specific SLA. 

More details about the utilisation of this digital contract by different components identified in the 
offloading and data caching processes are provided in the following sections. 

3.2.2 Orchestration 
As mentioned above, we consider both offloading and caching mechanisms as specific processes in which 
an adequate overall system orchestration is needed. Therefore, NANCY envisions to provide an end-to-
end platform for the provisioning and lifecycle management of generic services both within a single 
operator’s realm, but also across multiple operators. To do so, NANCY advocates the need for an 
orchestration platform that can manage resources and overlay services across multiple heterogeneous 
domains within an operator’s ecosystem as shown in Figure 3.  
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Figure 3. High-level overview of the NANCY Orchestration platform. 

The NANCY orchestration platform resides in the “Orchestration” layer shown on the left-hand side of 
Figure 3. This layer interacts with: 

• Northbound stakeholders or systems are as follows: 
o The “Operator” oversees a certain domain through the Service Orchestrator’s (SO) north-

bound API (NBI) and possibly a portal where important operations of the SO NBI are supervised. 
o The “Business” layer of the NANCY architecture through the SO north-bound API (NBI). In this 

layer, a Business Support System (BSS) consumes services from the NANCY orchestrators and 
maps these services to products and their billing operations. These products are sold to NANCY 
stakeholders either within the operator’s domain or advertised towards the NANCY inter-
operator marketplace (to be consumed by 3rd party operators) as shown at the top part in 
Figure 3. 

• Southbound controllers in the “Controllers” layer (i.e., the blue boxes in Figure 3) of the NANCY 
architecture are as follows: 
o A set of compute controllers which expose compute services from the underlying 

infrastructure, either by means of virtual machines (i.e., Infrastructure-as-a-Service) or 
containers (i.e., Platform-as-a-Service). These controllers may span across the IoT-to-Edge-to-
Core cloud continuum. 

o A set of Transport Network (TN) controllers which manage connectivity services in the 
fronthaul, midhaul, and backhaul network segments. 

o A set of Near-Real-Time (RT) RAN Intelligent Controllers (RIC) which manage either O-RAN-
based or legacy radio access networks (RAN). 
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Internal layout of the NANCY Orchestration platform  

Within the “Orchestration” layer, NANCY introduces different orchestration entities for managing the 
underlying complexity of resources as shown by the green boxes in Figure 3. These orchestration entities 
are presented in a bottom-up fashion below: 

Third-party Orchestration Entities (see Figure 3):  

• A Service Management and Orchestration (SMO) automates radio resource management in O-
RAN-based domains. The SMO specifications are defined by the O-RAN alliance [71]. Among others, 
the SMO employs a Non-Real Time RAN Intelligent Controller (Non-RT RIC) that interacts with the 
Near-RT RIC at the “Controllers” layer and the underlying O-RU, O-DU, and O-CU elements in the 
O-RAN domain as shown in Figure 3. 

• A Network Functions Virtualization Orchestrator (NFVO) provides standardized APIs, such as the 
ETSI NFV SOL005 [72][73], for managing network functions (NFs) across the operator’s network. 
These NFs mainly include, but are not limited to, the functions of the 5G core (5GC). In modern 
times, such functions are software-based, thus the NFVO can manage the underlying compute 
controllers to deploy these NFs either as virtual machines, i.e., vNFs, or containers, i.e., cFNs. 

NANCY aims to leverage existing, standardized systems for SMO, e.g., The Aether Linux Foundation project 
[74] or similar, and for NFVO, e.g., the ETSI OSM [75] platform, thus it focuses on the design and 
development of high-level orchestration entities. 

NANCY Orchestration Entities (see Figure 3): 

• A Resource Orchestrator acts as the operator’s Operations Support System (OSS). This platform 
interfaces with 3rd party orchestration components, such as the SMO and the NFVO, to manage 
compute and network resources within an operator’s network in an end-to-end fashion. The 
mission of the OSS is to hide these resources behind resource-as-a-service services, thus exposing 
these resources to the upper layer, i.e., the Service Orchestrator described next, in a secure way. 

• A Service Orchestrator (SO) manages end-to-end services within an operator’s environment. To 
provision these services, the SO first consumes resources-as-a-service from the underlying 
Resource Orchestrator (RO) and then instantiates the service instances atop these resources, 
while providing lifecycle management APIs to the operator (and/or BSS) for managing the runtime 
behaviour of these instances. 

 
NANCY promotes RO and SO solutions that are based on open and standardized interfaces too. Such 
interfaces will be based on ETSI [76] and 3GPP [77] specifications as well as the industry-grade open APIs 
introduced by TMForum (TMF) [78]. Specific NANCY partners, i.e., I2CAT and UBITECH, are in charge of the 
design and development of these components and their interfaces. 
Additional details about the exact integration of the NANCY Orchestration platform with the rest of the 
NANCY ecosystem are provided in the NANCY D6.1 “Β-RAN and 5G End-to-end Facilities Setup” [79]. 

In the rest of this section, we describe the basic operations of the NANCY orchestrators. 
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NANCY Service Orchestrator Operations 

A summary of the NANCY Service Orchestrator’s operations is provided in Table 1. The SO uses these 
operations to provide end-to-end services to an Operator or an overlay BSS. An end-to-end service (or 
slice) can be seen as a collection of sub-services (or sub-slices), each devoted to a specific domain. That 
said, an end-to-end service might comprise of (i) end-user service components residing in one or more 
compute clusters (compute slices), (ii) a 5G slice that comprises of (O-)RAN and 5GC (User Plane Function 
(UPF)) slices, and (iii) connectivity services that link the RAN, 5GC, and compute resources together. 

Depending on the API used for provisioning end-to-end services, the data model for describing these end-
to-end services might be different. For example, an ETSI OSM-based end-to-end slice might be seen as a 
collection of network service (NS) instances, while a TMF-based end-to-end service might be seen as a 
collection of service specifications, one for the end-user service, one for 5G, and another for the compute 
resources of the service. 
 

Table 1. Summary of the NANCY service orchestration operations. 

Orchestration Operation Description Relevant APIs 
Service onboarding An operator uses standardized means to 

describe a service to the NANCY SO (i.e., 
using service descriptors). This 
description is uploaded onto the SO’s 
service catalogue, where the operator 
can pick the service for 
order/provisioning. 

ETSI OSM NBI featuring 
ETSI NFV SOL005 [80] 
  
TMF633 Service Catalog 
Management [81] 
  
 

Service ordering/provisioning An operator browses the service 
catalogue of the NANCY SO, picks items 
from this catalogue, and composes 
service orders to initiate the service 
provisioning process. 

ETSI OSM NBI featuring 
ETSI NFV SOL005 [80] 
  
TMF641 Service Ordering 
Management [82] 

Service lifecycle management Once a service order is completed, a 
service instance is available on a given 
domain. The operator uses a runtime 
API to manage the characteristics of this 
service. 

ETSI OSM NBI featuring 
ETSI NFV SOL005 [80] 
  
TMF 638 Service Inventory 
Management API [83] 

SLA management An operator relates a given service with 
certain quality of service (QoS) criteria 
or a service-level agreement (SLA). 

TMF657 Service Quality 
Management API [84] 
 TMF 623 SLA 
Management API [85] 

Party and party role 
management 

An operator models the parties 
(individuals or organizations) that 
interact with his/her platform as well as 
the roles (e.g., service provider, 
infrastructure provider, etc.) of these 
parties in the operator’s environment. 
  

TMF632 Party 
Management API [86] 
  
TMF669 Party Role 
Management API [87] 
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A party can also be a system, thus the 
NANCY SO can use this API to describe 
its affiliation with a specific NANCY RO 
instance or to peer with another SO 
east-west. 

Service artefacts management After a service is described using the 
service onboarding operation above, 
links to the service artefacts are 
provided for the SO to know from which 
software repository and/or registry to 
pull the service artefacts (e.g., container 
images, service manifests, etc.). 
  
This is the link between the NANCY 
orchestrators and the NANCY CI/CD 
platform. 

Popular software registry 
platforms, such as jFrog 
[93], GitLab [94], GitHub 
[95], Harbor [96], etc. 

NANCY Resource Orchestrator Operations 

The RO uses the same service-level APIs as the SO (see Table 1) to describe/order/manage resource-level 
services. However, the RO uses additional operations to describe/order/manage resources. A summary of 
these additional NANCY Resource Orchestrator operations is provided in Table 2. 

Table 2. Summary of the NANCY resource orchestration operations. 

Orchestration Operation Description Relevant APIs 
Resource onboarding An operator uses standardized means to 

describe a resource to the NANCY RO 
(i.e., using resource descriptors). This 
description is uploaded onto the RO’s 
resource catalogue, where the operator 
can pick the resource for 
order/provisioning. 

ETSI OSM NBI featuring 
ETSI NFV SOL005 [80] 
  
TMF634 Resource Catalog 
Management [88] 

Resource 
ordering/provisioning 

An operator browses the resource 
catalogue of the NANCY RO, picks items 
from this catalogue, and composes 
resource orders to initiate the resource 
provisioning process. 
  
Depending on the type of resource to be 
provisioned, the RO makes a connection 
of this resource with the respective 
controller in charge of managing this 
resource, thus delegating resource 
provisioning towards (i) the SMO for O-
RAN-based resources, (ii) a TN 
controller for TN resources, and (iii) a 

ETSI OSM NBI featuring 
ETSI NFV SOL005 [80] 
  
TMF652 Resource 
Ordering Management 
[89] 
  
Kubernetes API [91]  
OpenStack API [92] 
  
LF Aether project [74] (or a 
similar platform as an 
SMO) 
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compute controller for compute 
resources. 

Resource lifecycle 
management 

Once a resource order is completed, a 
resource instance is available on a given 
domain. The operator uses a runtime 
API to manage the characteristics of this 
resource. 

ETSI OSM NBI featuring 
ETSI NFV SOL005 [80] 
  
TMF 639 Resource 
Inventory Management 
API [90]. 

 

Note that some of the relevant APIs (e.g., the Aether project acting as SMO) introduced in Table 2 are 
indicative as we are still in the process of investigating different options. 

3.2.3 Decision engines 
In this subsection, we elaborate on the characteristics of the AI models implemented for supporting the 
decision-making processes related to offloading and caching in the NANCY ecosystem. As mentioned in 
section 2.3, NANCY leverages the Double Duelling Deep Q-Learning paradigm (DDDQL) paradigm for 
decision making. 

High-level overview of the AI-based decision-making engine 

Figure 4 presents an overview of the DDDQL training framework. It contains an environment, which is 
formulated by the training dataset, that encapsulates all the possible states an agent can occupy. States 
are discrete time-dependent conditions, composed of several features such as network latency, 
throughput, Edge storage capacity, Cloud processing capacity etc. The number of features for each state 
depends on the dataset used for the training process. We should note that the training DDDQL framework 
for the NANCY project is designed with a major focus on interoperability and thus, users can easily change 
the training dataset (along with the number and type of features) without requiring any manual adaptation 
of the framework itself. 

The general overview of the training process is considered as follows: An agent collects information about 
the current state of the environment. To accomplish this, the agent accesses the dataset and acquires the 
values of the corresponding features that represent its state. Subsequently, the agent takes an action upon 
the environment, e.g., “to offload a service to the Edge of the network”, and this decision forwards the 
agent into the next state. This transition will generate a reward based on its contribution to the agent’s 
goals, e.g., increasing the throughput of the targeted service. Then the NANCY framework collects the 
information related to the agent’s initial state, action, next state and reward and stores it in an experience 
buffer, which is a First-In-First-Out (FIFO) queue that temporarily stores the experience of the agent in 
order to enable the model to learn from its past behaviour. Afterwards, the model training process 
commences, during which the experience buffer is sampled to create a training batch and the DDDQL 
network is trained accordingly. This whole process continues until a predefined number of epochs passes. 
Below, we discuss the details of the DDDQL models, the training process, the decision-making operation, 
the datasets used and the application of the decision-making engine to the NANCY ecosystem. 
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Figure 4. NANCY's training framework for DDDQL. 

DDDQL model architecture 

The models implemented for the decision-making process fall into the category of DDDQL and thus, they 
share some similar characteristics. First, the AI models utilise the Q-Learning (QL) algorithm, which is a 
model-free off-policy DRL approach that calculates the “Q-values” for each state. Q-values are used to 
analyse the expected value of an action/state, and they can be leveraged to look into future actions/states 
to evaluate their rewards as well. As a result, Q-values represent both “how good a state/action is” (given 
a certain goal) and “how good are the future states/actions”. This gives the Q-learning the capacity to not 
only check for the near-future state rewards but also allows for long-term planning by checking the 
consecutive state rewards an action may lead to. Q-learning utilises the current state information, the next 
state information, the action and the reward to predict the Q-values of a state. We share more details on 
how this operation works during the training process, in the subsection named “DDDQL model training” 
below. 

The DNN models used for the DDDQL framework are illustrated in Figure 5. The first model utilises 4 layers 
of 1-dimensional convolutions, accompanied by pooling and normalization layers to expand the 
dimensionality of the input data. Input data contain state information related to several network 
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parameters at a given timeslot, such as network latency, network throughput, RAM available to the Edge, 
computational unit availability on the Cloud, storage capacity of a UE etc. Such data are convoluted with 
several filters to explore patterns that emerge between them. The pooling layers and normalisation layers 
are utilised to increase the convergence rate of the training process and to minimise gradient explosion 
issues. After expanding the dimensionality of the input data to 128 dimensions, a self-attention layer is 
leveraged to find the best spatial representation for this information. Self-attention is a layer that employs 
dot-product operations, followed by a SoftMax function in order to project the input data into a spatial 
coordinate system which maximises the distance between individual data points. This results in a lower 
mean square error (MSE) and in a clearer data representation format. We should also note that due to the 
several 1-D convolutional layers, the risk of gradient vanishing increases. To alleviate this risk, we utilise a 
residual connection from the output of layer 2 towards the input of the self-attention layer. Residual 
connections add older values, i.e., outputs of upper DNN layers, with new values obtained by lower DNN 
layers to preserve information throughout the model. Finally, the self-attention output is split into the 
“advantage” and “value” components, as described above. 

The second model, which is referred to as the “dense model” utilises a different approach. It is composed 
of four dense feedforward layers which expand the input data dimensionality immediately to 128 
dimensions. In this architecture, every neuron of a dense layer is directly connected with every neuron in 
the next layer and thus, a dense layer essentially performs several linear transformations to the input data. 
Dense layers can learn complex data patterns and can be used to aggressively increase the dimensionality 
of data. Contrary to the convolutional layers, dense networks can quickly make high-level associations 
between input data and layer weights. This can lead the network to generalise better, even with a lower 
amount of training data. In this architecture, we also employ residual connections to lessen the gradient 
vanishing, and we split the output into “advantage” and “value”, similar to the self-attention model. 
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Figure 5. DNN models used for the DDDQL decision-making engine of NANCY. 

DDDQL model training 

Figure 6 depicts the training process of the DDDQL model. We should note that for a given decision engine 
we select: (i) either the Self-attention model as both “Target-NET” and “Q-NET”; or (ii) the Dense model 
as both “Target-NET” and “Q-NET”. A performance evaluation of these choices can be found in “DDDQL 
application to the decision-making engine of the NANCY ecosystem” below. 

During the training process, the experience buffer is sampled to obtain the current and next state 
information of the agent’s experiences. Data related to actions taken by the agent in the past, and their 
corresponding rewards are also recalled during this phase. Then, the “next states” data are fed into the 
Target-NET for inference. Inference is the process of utilising a trained DNN to predict an output, given an 
input sequence. In this sense, during the inference process, no back-propagation takes place and thus, the 
model is not trained. The Target-NET’s “value” and “advantage” are added together and are later used to 
calculate the Q-value of the sampled batch. We follow a similar approach for the Q-NET model, which is 
also used for inference with the “next state” data. Its “value” and “advantage” are added together and 
through an argmax operation, the action with the maximum advantage is selected.  
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Generally, in DQL the Q-Values are calculated using the following Bellman equation (1): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑆𝑆,𝐴𝐴) = 𝑁𝑁(𝑆𝑆,𝐴𝐴)  +  𝛼𝛼 ∗ 𝑟𝑟(𝑆𝑆,𝐴𝐴)  +   𝛾𝛾(𝑚𝑚𝑚𝑚𝑚𝑚)
𝑎𝑎

𝑁𝑁 �𝑆𝑆′,𝐴𝐴′�           (1) 

Where New Q(S,A) represents the next Q-Value of the next state S and next action A. Likewise, Q(S,A) 
refers to the current Q-Value of the state S and action A. Learning rate α is leveraged to weight the rewards 
r(S,A) which the agent obtains by selecting the action A in the state S, and a discount rate γ is used to 

control and determine the importance of future rewards. The (𝑚𝑚𝑚𝑚𝑚𝑚)
𝑎𝑎

𝑁𝑁 �𝑆𝑆′,𝐴𝐴′� term is the maximum 

expected future reward of the agent. 

For the DDDQL, the Bellman’s equation is transformed in the following way (2): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑆𝑆,𝐴𝐴) = 𝑁𝑁1(𝑆𝑆,𝐴𝐴) + 𝛼𝛼 �𝑟𝑟(𝑆𝑆,𝐴𝐴) + 𝛾𝛾𝑁𝑁2 �𝑆𝑆′, (𝑚𝑚𝑚𝑚𝑚𝑚)
𝑎𝑎

𝑁𝑁1 �𝑆𝑆′,𝐴𝐴′�� − 𝑁𝑁1(𝑆𝑆,𝐴𝐴)�           (2) 

The main difference in the updated equation is the introduction of two Q-Vales, namely the 𝑸𝑸𝑸𝑸 and the 
𝑸𝑸𝑸𝑸. The value of the 𝑸𝑸𝑸𝑸 is obtained by Q-NET, while the value of the 𝑸𝑸𝑸𝑸 is obtained by the Target-NET.  

After the Q-Value calculation which is referred to as 𝑵𝑵𝑵𝑵𝑵𝑵𝑸𝑸(𝑺𝑺,𝑨𝑨), using the DDDQL Bellman’s equation 
and the outputs of the Q-NET and Target-NET, the model training process kicks in. For this purpose, we 
utilise the “current state” information, sampled by the experience buffer. The “current state” data are 
packed into a training mini batch and they are fed into the Q-NET. The Q-NET initiates a forward pass of 
the training batch and then, it utilises the 𝑵𝑵𝑵𝑵𝑵𝑵𝑸𝑸(𝑺𝑺,𝑨𝑨) as validation data in order to complete the back-
propagation process. In this sense, the Q-NET is trained using ground truth data that stem from the Target-
NET. This process allows the Target-NET to lower the overoptimistic Q-Value predictions made by the Q-
NET, during the DDDQL decision-making process. Within periodic time intervals, a weight transfer 
operation takes place and updates the weights of Target-NET with the weights of Q-NET. This happens 
because the Target-NET is not trained (note that only the Q-NET is trained) and thus, the model should 
update itself with the newly acquired knowledge. The exact frequency at which this operation takes place 
is a hyperparameter of the DDDQL process and significantly affects the model convergence rate. We 
discuss this aspect in the subsection “DDDQL application to the decision-making engine of the NANCY 
ecosystem” below. 
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Figure 6. DDDQL model training process. 

DDDQL decision-making 

Figure 7 illustrates the decision-making process which is invoked when the model is required to perform 
an action that corresponds to a computational or data-offloading decision. Initially, current state 
information is fed to the system. Such information is then transferred to the Q-NET, which performs an 
inference operation. For the decision-making process, only the “advantage” is selected, and the “value” is 
discarded. An argmax function selects the action with the higher advantage and then forwards the result 
to the “exploration strategy” module. This module sets the strategy which the agent follows during the 
training process. An agent can either choose “random state exploration” (by performing random actions 
within a state) or choose “max advantage exploration” (by choosing the actions with the maximum 
advantage). “Random state exploration” is useful for the agent to discover new states, actions and rewards 
which are not dictated by DDDQL policy. As a result, for each training epoch, some random actions are 
foreseen in order to enhance the agent’s experience. On the other hand, if the “max advantage” 
exploration is selected, the agent follows the DDDQL policy and selects actions that lead to the maximum 
rewards. Finally, a reward is calculated and attributed to the agent after considering the “current state” 
information, the “next state” information and the action taken. Such data is also saved to the agent’s 
experience replay buffer and is used for the training process, as described above. 
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Figure 7. The decision-making process of the DDDQL. 

DDDQL application to the decision-making engine of the NANCY ecosystem 

DDDQL models are trained for either computation offloading, or for data offloading tasks. The details of 
each application scenario are depicted in Table 3 and are described below. 

Computational offloading operations involve two distinct use cases: (i) the computational offloading of a 
service from the UEs to the Edge of the network; and (ii) the computational offloading of a service from 
the Cloud to the Edge of the network. NANCY addresses both scenarios by training the developed “self-
attention” and “Dense” networks for each corresponding task. To achieve this, the reward functions are 
modified for each model in order to optimise a different use case, with different application constraints. 
This results in 4 models in total for the computational offloading operations: 2 “self-attention” and 2 
“dense”. For each model architecture, 2 model types are trained: 1 static and 1 adaptive. The terms static 
and adaptive refer to the reward types used by the agents. A static reward is calculated using a 
mathematical function that optimises a given problem. This function does not change over the course of 
the training process and thus, the agents converge quickly to the optimal policy. On the other hand, an 
adaptive reward scheme utilises several mathematical functions each one of which optimises a different 
problem. As a result, the way that the reward is calculated changes over the training course and thus, the 
agent converges slowly but the trained model accurately resembles the real-world conditions of a 
telecommunications network. Below we provide two examples of static and adaptive training for the 
DDDQL decision-engines. 

Static training scenario: The model tries to optimise the Edge resource utilisation at any given time with 
respect to the network latency, by migrating services from the Cloud to the Edge of the network. The 
agent’s rewards are analogous to the amount of computation resource utilisation of the Edge (the more, 
the better) and to the average communication latency between the UEs and the Edge (the less, the better). 
Nonetheless, the model should stop the service migration to the Edge, when the Edge is near its full 
computational capacity. The reward function for this scenario can be written as follows (3): 

𝑅𝑅(𝑆𝑆,𝐴𝐴) = 𝛼𝛼 ∗
(𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑚𝑚𝑎𝑎𝑚𝑚)

(𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
− 𝛽𝛽 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑁𝑁𝐿𝐿𝐿𝐿𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎            (3) 
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Adaptive training scenario: The model tries again to optimise the same problem, but as the services 
migrate to Edge, several constraints of the problem change. For example, if the Edge’s resource utilization 
is almost 0%, then any service should be automatically transferred to the Edge. Otherwise, a priority 
hierarchy should be established among services, which changes according to the network latency and 
bandwidth. In this sense, multiple optimisation problems are formulated, each one for a specific network 
state. The reward function for this scenario can be written as follows (4): 

𝑅𝑅(𝑆𝑆,𝐴𝐴) = ∞                                             ,  𝑖𝑖𝑖𝑖   0% ≤ 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 20% 

𝑅𝑅(𝑆𝑆,𝐴𝐴) = 2𝛼𝛼 ∗
(𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑚𝑚𝑎𝑎𝑚𝑚)

(𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
− 𝛽𝛽 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑁𝑁𝐿𝐿𝐿𝐿𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎           ,  𝑖𝑖𝑖𝑖   20% < 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 60% 

𝑅𝑅(𝑆𝑆,𝐴𝐴) = 𝛼𝛼 ∗
(𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑚𝑚𝑎𝑎𝑚𝑚)

(𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
− 𝛽𝛽 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑁𝑁𝐿𝐿𝐿𝐿𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎            ,  𝑖𝑖𝑖𝑖   60% < 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 90%              (4) 

𝑅𝑅(𝑆𝑆,𝐴𝐴) = −∞                                           ,  𝑖𝑖𝑖𝑖   90% < 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 100% 

For the data offloading functionalities, NANCY foresees two scenarios, similar to the computation 
offloading: (i) the proactive data offloading of a file, or a set of files from the UEs to the Edge of the 
network; and (ii) the proactive data offloading of a of a file, or a set of files from the Cloud to the Edge of 
the network. Again, NANCY trains two model architectures, namely the “self-attention” and “Dense” 
networks for this scenario. This results in 4 models: 2 “self-attention” and 2 “dense”. For each model 
architecture, NANCY provides a static and adaptive version of it, similar to the methodology followed for 
the computational offloading DDDQL models. 

Table 3. DDDQL models for NANCY’s decision-making engine. 

Computation offloading 
DDDQL application scenarios UE-Edge computation 

offloading 
Cloud-Edge computation 
offloading 

Model architectures Self-attention Dense 
Number of trained models 2: (1 adaptive and 2 static) 2: (1 adaptive and 2 static) 

Data offloading 
DDDQL application scenarios UE-Edge data offloading Cloud-Edge data offloading 
Model architectures Self-attention Dense 
Number of trained models 2: (1 adaptive and 2 static) 2: (1 adaptive and 2 static) 

 

The models described above were trained using the Materna-Workload dataset [97]. Materna is a 
collection of real-world workload traces from various computer networks. The dataset contains 
information from telecommunication systems with various computing, memory and storage requirements 
and thus, it provides valuable data for the training process. Materna contains 5,329,729 data samples in 
total, which are adequate to train large DNN models, and 13 features as depicted in Table 4. 
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Table 4. Materna-Workload features and data types. 

Features Data types 
Timestamp                               Date-time 
CPU cores                               Integer (scalar) 
CPU capacity provisioned Double (MHZ) 
CPU usage Double (MHZ) 
CPU usage Double (%) 
Memory capacity provisioned Integer (KB) 
Memory usage Integer (KB) 
Memory usage Double (%) 
Disk read throughput Integer (KB/s) 
Disk write throughput Integer (KB/s) 
Disk size Double (GB) 
Network received throughput Double (KB/s) 
Network transmitted throughput Double (KB/s) 

 

Before the deployment of the decision-making engine to the NANCY’s Use Cases, real-world data 
stemming from NANCY’s testbeds will be used to re-train and fine tune the DDDQL models. For this reason, 
the consortium will leverage the Transfer Learning (TL) technique illustrated in Figure 8. In TL, a model 
trained for a specific task is re-purposed for a similar task. TL enables the utilisation of pre-existing 
knowledge, i.e., a trained model, to produce a new model capable of performing well in a different 
scenario. Under this premise, data collected from the project’s testbeds will formulate the training dataset. 
Then, a feature selection mechanism will choose the data features which are most appropriate for the re-
training operation. During feature selection, subsets of the training dataset’s features (variables and 
values) are selected according to their predicted contribution to the model’s performance. In the sequel, 
the upper Q-NET’s and Target-NET’s layers will be frozen. Frozen layers do not utilise back-propagation 
and thus, their weights are not updated, even when data passes through them. Since the upper layers of 
a DNN model tend to learn general features, their existing knowledge will also be applicable to the new 
task. Afterwards, the re-training process will take place for a predefined number of epochs, to train the 
lower layers of the models that capture task-specific features. When this process is completed, the fine-
tuning process will follow. During the fine-tuning, all the models’ layers are unfrozen, and the learning rate 
is set to a very low value. This will enable the models to retrain all their layers, by leveraging the back-
propagation operation to nudge their weights towards the right direction for convergence. The output of 
this process will be the final DDDQL models that will be used in the decision-making engine during the 
NANCY deployment scenarios. 
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Figure 8. Transfer Learning workflow. 

DDDQL simulation results 

Table 5 depicts the hyperparameters of the DDDQL models, used for the in-lab evaluation process. The 
batch size, which refers to the number of samples used for a DNN training epoch, is equal to the experience 
buffer size for adaptive reward models, and half the experience buffer size for the static reward models. 
Adaptive reward models require more time to converge and thus, they benefit from using more samples 
for the DNN training, while the static reward DNNs can achieve good results even with a lower number of 
samples. Each DDDQL model is trained for 1,000 epochs and each epoch consists of 2,500,000 steps. The 
model replace rate represents the amount of DDDQL steps required to transfer the weights of the Q-NET 
to the target net, and it is set to 70. Gamma encapsulates the importance of future rewards for an agent. 
The higher the gamma (maximum is 1), the less important future rewards are for the agent’s decision 
making. Lower gamma values complicate and slow the training process since the agent is looking far into 
the future to optimise its policy. For this reason, static reward models can afford a lower gamma, but 
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adaptive reward models utilise higher gamma values. Epsilon designates the exploration strategy of the 
agent. More specifically, the value of epsilon represents the probability of an agent choosing random 
exploration over maximum advantage exploration. In our experiments, epsilon’s initial value is 1, and for 
each step, it is reduced by 0.001 until it reaches 0.01. This means that for each training step, there is a 
small but measurable probability (between 1%-0.1%) for the agent to choose random exploration. That 
helps the agent to acquire new experiences, outside of the ones dictated by the current policy. 

Table 5. DDDQL model hyperparameters. 

Hyperparameter Attention 1 Attention 2 Dense 1 Dense 2 
DNN architecture Self- attention Self- attention Dense Dense 
Reward type Static Adaptive Static Adaptive 
Experience buffer size 128 128 128 128 
Batch size 64 128 64 128 
Environment steps 2,500,000 2,500,000 2,500,000 2,500,000 
DDDQL epochs 1,000 1,000 1,000 1,000 
Model replace rate (in steps) 70 70 70 70 
Gamma 0.85 0.9 0.85 0.9 
Initial epsilon 1 1 1 1 
Epsilon decay 0.001 0.001 0.001 0.001 
Minimum epsilon 0.01 0.01 0.01 0.01 
DNN Loss function MSE MSE MSE MSE 
DNN Optimiser Adam Adam Adam Adam 
DNN learning rate 0.001 0.001 0.001 0.001 
DNN dropout rate 0.2 0.2 0.2 0.2 

 

Figure 9 illustrates the DNN model loss over the training epochs, for the implemented models. The loss is 
obtained after performing in-lab simulations for 1,000 training epochs. The static self-attention DNNs 
achieve the best loss (1.29), followed by the adaptive self-attention (2.04) and by the dense models (dense-
static achieves 18.67 and dense-adaptive achieves 37.8). It is expected the static models to perform a bit 
better since their reward function increases their convergence rate compared to the adaptive models. On 
the other hand, adaptive models are expected to allocate resources more efficiently (via the data 
offloading and computation offloading operations) in real-world networks. Further, for most models, the 
loss converges after 600 or 800 training epochs since the agents require several traversals of the 
environment in order to fine tune their models. 
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Figure 9. DNN model training loss. 

Figure 10 demonstrates the cumulative rewards of the DDDQL decision-making engine over the training 
epochs. In all cases, the reward increases along with the training epochs thus, the agents learn to optimise 
their decision-making process. In this scenario, the best reward is achieved by the adaptive self-attention 
model (15.3), followed by the static self-adaptive model (11.13). The adaptive dense model obtains a 
cumulative reward of 8.88, while the static dense model obtains 6.55. It is evident that adaptive reward 
models outperform their static counterparts in terms of agent reward. For this reason, such models are 
expected to have a significant impact on the network’s performance when computation and data 
offloading operations are considered. 
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Figure 10. DDDQL agent reward. 

Using the DDDQL framework described above, the decision-making engine of NANCY can decide “what to 
offload”, as well as “where to offload” a file, a service, or some chunk of data. Below we describe the 
functionalities of each operation: 

• “What to offload” refers to the specific data file (when data offloading is considered) or the 
specific service (when computation offloading is considered) which is offloaded. This operation 
decides the data stream(s), the file(s) and the service(s) which will be selected for the offloading 
process. 

• “Where to offload” refers to the physical place, namely, UE, edge node or cloud, to which the 
offloaded element will migrate. 

Table 6 below depicts the inputs and the outputs for each operation. For each decision, the DDDQL 
framework is invoked and is fed with the required data. When data offloading is considered, the decision-
making engine requires as input the current state of the nodes, the data files to be offloaded (file names 
and sizes), along with the list of available nodes. When computation offloading is considered, the input 
describes the current state of the nodes, the computational and storage requirements of the services and 
the list of the available nodes. In all cases, the models generate a decision on which data/service(s) should 
be offloaded and where. 
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Table 6. The inputs and outputs of the decision-making engine, in terms of “what to offload” and “where to offload” 
choices. 

Data offloading 
DDDQL framework input DDDQL framework output 

Current state of UE and Edge nodes: <CPU utilization, 
storage capacity, RAM utilization etc.> 
Data files to be offloaded: <File_1, MB; File_2, MB etc.> 
Edge nodes available: <Edge_1, Edge2, UE_1, UE_2 etc.> 

What to offload: Data files to be offloaded. E.g. <File_1, 
File_2> 
Where to offload: List of nodes where the offloading will 
take place E.g. < Edge2, UE_1 etc.> 

Computation offloading 
DDDQL framework input DDDQL framework output 

Current state of UE and Edge nodes: <CPU utilization, 
storage capacity, RAM utilization etc.> 
Service requirements: <Service_1: CPU, storage and RAM 
requirements; Service_2: CPU, storage and RAM 
requirements, etc.> 
Edge nodes available: <Edge_1, Edg2, UE_1, UE_2 etc.> 

What to offload: List of services to be offloaded. E.g. 
<File_1, File_2> 
Where to offload: List of nodes where the offloading will 
take place E.g. < Edge2, UE_1 etc.> 

 

3.2.4 Blockchain 
The NANCY Blockchain is based on Hyperledger Fabric 2.2. Its core elements are the ledger and the smart 
contracts. The ledger contains data about the current and historical state of different NANCY items, 
ranging from PQC public keys to DID material, among others. A smart contract defines the executable logic 
that generates new facts that are added to the ledger. Essentially, a smart contract is an application, and 
the many (or few) smart contracts on the NANCY Blockchain lay out the business model that governs all 
the interactions between the transacting parties, for example, the digital contracts between users and 
service providers. In this line, a smart contract can implement governance rules for diverse business 
objects, so that they can be automatically enforced when the smart contract is executed, while at the same 
time being more efficient than a manual human business process.  
  
Hyperledger Fabric [98] users often use the terms smart contract and chaincode interchangeably. In 
general, a smart contract defines the transaction logic that controls the lifecycle of a business object 
contained in the world state. It is then packaged into a chaincode which is then deployed to a blockchain 
network. We can consider smart contracts as governing transactions, whereas chaincode governs how 
smart contracts are packaged for deployment. In other words, a smart contract is a domain-specific 
program which relates to specific business processes, whereas a chaincode is a technical container of a 
group of related smart contracts. In addition to this, only administrators deploy chaincode, and deploying 
a chaincode to a network makes all its smart contracts available to the organizations in that network. 
A smart contract programmatically accesses two distinct pieces of the ledger – a blockchain, which 
immutably records the history of all transactions, and a world state that holds a cache of the current value 
of these states since it is the current value of an object that is usually required. Smart contracts primarily 
put, get and delete states in the world state, and can also query the immutable blockchain record of 
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transactions. At the heart of a smart contract is a set of transaction definitions. They are programmed in 
either JavaScript, Go, or Java. 
 

 
Figure 11. Issuing a new asset to the world state and returning an asset stored in the world state. 

 
Associated with every chaincode is an endorsement policy that applies to all of the smart contracts defined 
within it [98]. An endorsement policy indicates which organizations in a blockchain network must sign a 
transaction generated by a given smart contract in order to declare that transaction as valid. It should be 
kept in mind, however, that all transactions, whether valid or invalid, are added to a distributed ledger, 
but only valid transactions update the world state. This ability of Fabric to enforce endorsement policies 
is reminiscent of the true world, where transactions must be validated by trusted organizations in a 
network (e.g. a bank or a public servant representing a regional authority).  
In NANCY, the blockchain is used for various purposes, such as to store PQC public keys of, for example, 
UE wallets as well as storing DID-related data [99], and digital contracts containing providers, prices and 
SLA terms, which is particularly relevant for this report. 
In a generic example, a service requester (e.g., a UE) would request a particular service, with an associated 
set of expected KPIs (e.g., latency, throughput, others…) represented in a static SLA (see section 3.2.1), 
from the NANCY network. This request would be handled by its domain orchestrator which may not be 
able to fulfil the demanded KPIs with its available resources, so it should forward this request to the inter-
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operator domain, concretely to the NANCY Marketplace. The NANCY Marketplace is a chaincode capable 
of providing lists of providers, prices, services, conditions and expected KPIs, similar to an online store. 
One must note that such providers (e.g., operators) must have previously registered themselves on the 
blockchain/Marketplace. It is precisely this type of organization the one that would have an endorser 
profile (see above). The Marketplace would also be able to receive pricing data from the smart pricing 
component, which is able to interact with the NANCY Blockchain, and eventually deliver sufficient data to 
the DAC for creating a digital contract (chosen provider, chosen service and KPIs, necessary conditions, 
price, etc.). This digital contract would be sent to the service provider and requester, who should sign it 
before it is added to the ledger and other enforcement and monitoring actions start. The Blockchain here 
acts as a central point of service request, bidding and registration, while other components of the system 
deal with service handling, enforcement and monitoring.  

3.2.5 Marketplace 
As mentioned in the previous section, the marketplace is a NANCY component based on blockchain which 
gathers all the information about the different stakeholders involved in NANCY, i.e., different operators, 
in a secure and transparent way. The blockchain-based marketplace can be considered secure because 
information recorded on the blockchain can never be removed, in this way, any modification to the existing 
information could be always traced and any uncontrolled changes would be detected. In addition, the 
blockchain-based marketplace can be considered transparent, as all the stakeholders will always have 
access to the same information. The marketplace includes two main components. 

On the one hand, it includes a smart contract that allows the following functionalities: (i) It will store all 
the information related to the different operators and their available resources, providing required 
information to the smart pricing component to identify the most suitable price at a given time and also 
feeding the DAC with the required details about an operator required resources; (ii) it will also store the 
historical list of all the digital agreements signed in the NANCY environment, enhancing their security level. 

In this sense, the marketplace allows the following functionalities: 

• Register a new operator defining the specific details about it. 

• Update any of the details of an already registered operator. 

• Remove a registered operator. 

• Apply filters by any property to obtain the list of operators fulfilling a specific condition. 

• Retrieve any information about a given operator. 

On the other hand, it includes a Blockchain monitor for enhanced usability and to allow human-in-the-
loop solutions. It is based on the reception of Blockchain events every time any information of the 
marketplace is created or updated. This business logic is crucial to have a secure and trustable 
environment enabling resource sharing among stakeholders, therefore enabling cross-domain task 
offloading and data caching. 
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3.2.6 Smart pricing 
The smart pricing module is a NANCY component developed by Eight Bells to cover both the user’s as well 
as the provider’s needs in certain offloading scenarios. In the scenario where a user ventures beyond the 
coverage area of their service provider, they might employ an alternative provider within range to manage 
the transfer of data or a given service itself. When faced with such situations, it is necessary to form a 
payment arrangement between the user's original provider and the alternative provider, following the 
parameters outlined in the SLA that was previously agreed upon with the user.  
In areas with several capable data offloading providers, a Smart Pricing Policy coordinates an auction 
among these providers. Only providers who can fulfil the technical conditions specified in the service SLA 
are qualified to participate. These providers submit bids specifying the highest and lowest costs they are 
capable of incurring for the service. The successful bidder from this highly competitive auction will 
thereafter establish a new digital contract with the original supplier keeping the original technical terms 
in its fixed SLA part (see section 3.2.1). 

The smart pricing module is essential in this procedure. The network receives data about qualifying 
providers and the ranges of their bids from the marketplace. The module employs a reverse auction theory 
that relies on reinforcement learning to ascertain the winning bid. The low complexity of the RL method 
enables the smart pricing module to function within a blockchain framework, guaranteeing the 
transparency and security of the auction. Subsequently, the proposal from the provider who emerged as 
the winner is processed within the marketplace to complete the necessary procedures and officially sign 
a new digital contract (just the business part, as the SLA terms remain unaltered). 

After conducting a comprehensive analysis of the pertinent literature and prior research, it is evident that 
the most efficient method for enhancing bidding methods, comparable to those employed by the smart 
pricing module, is to utilize either Stackelberg games or reverse auction theory [100] [101] [102] [103]. 
Stackelberg games are particularly effective in instances when cost considerations are of utmost 
importance, notwithstanding the vast study conducted in the literature. Stackelberg games are frequently 
employed in scenarios when there exists only a small number of dominating players in an industry, 
referred to as oligopolies. These players prioritize cost reduction over fairness promotion and network 
expansion. Unlike Stackelberg Games, the reverse auction theory we employ has not undergone thorough 
investigation or practical application to meet the specific problem our approach tries to resolve. This 
preference is emphasized by the intrinsic limitations of other theories, such as Bertrand's, which depends 
on a shortage of bidders, and Cournot's, which largely emphasizes quantity rather than price 
considerations. Nevertheless, it is imperative to acknowledge that these favoured approaches do possess 
their constraints. Conversely, our ecosystem benefits from the reverse auction technique since it 
encourages participation from a broader range of participants, including smaller and individual MNOs. This 
inclusivity fosters a fair and just allocation of network resources. Moreover, it fosters the growth of a more 
extensive and robust network by incentivizing a diverse array of participants, thus mitigating the 
disadvantages of an oligopoly where a limited number of dominant companies could wield influence. The 
reverse auction theory advocates for sustainability and competitiveness by giving priority to fairness and 
network expansion, aligning with our long-term objectives. 
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Our smart pricing module utilises the reverse auction theory, implemented by deep reinforcement 
learning (DRL) agents, as an alternative to standard game theory methodologies. This approach is 
preferred for two primary reasons. DRL exhibits exceptional scalability, making it very compatible with the 
requirements of 5G dynamics within the context of the B-RAN. The rise in the number of possible 
participants, encompassing numerous users and Mobile Network Operators (MNOs), gives rise to a more 
intricate system, emphasizing the suitability of Deep Reinforcement Learning (DRL). Moreover, the 
adaptable characteristics of RL algorithms enable continuous modification in response to dynamic datasets, 
leading to a notable degree of flexibility when confronted with novel circumstances.  

In more detail, the RL algorithm we are currently experimenting with starts by evaluating the highest cost 
associated with each candidate provider, creating a hierarchical ranking based on cost allocation. The 
provider with the most economically beneficial proposal is given the top rank, and subsequent providers 
are positioned accordingly. The iterative bidding process then begins, with companies strategically 
adjusting their cost offerings to gain a competitive advantage. This iterative process allows providers to 
continuously refine their pricing strategies to compete for maximum gain. Each bidding round gives an 
opportunity for the providers to improve their cost proposals and enhance their competitive position. The 
bidding procedure involves infinite iterations but stops when the algorithm determines that players cannot 
improve their bids further. In the first round, each candidate provider bids their maximum, and rankings 
are assigned, with the highest rank going to the provider with the lowest bid. From the second round 
onwards, each provider checks their current rank and decides their next bid to improve their position. The 
SPP uses a decrement strategy to reduce the bids of low-rank providers. When the bidding reaches a state 
where no player can improve their position, the program stops and announces the winner with the winning 
bid.  

3.2.7 Digital Agreement Creator 
The Digital Contract Creator (DAC) is a component developed as an out-of-the-box solution for creating 
and deploying digital agreements in the form of smart contracts. DAC is a fully containerized component 
that has its own internal orchestrator which receives inputs from the marketplace concerning e.g., 
stakeholders (provider ID, consumer ID), service, price, conditions, etc. For each set/series of inputs 
received by the marketplace, the DAC orchestrator creates individual/separate ad-hoc containers based 
on the respective received set of inputs. 

During this initialization-creation process of the ad-hoc containers, the DAC orchestrator produces a 
unique identification number that passes as a kind of hash of the smart contract. The overall information 
(received inputs and hash number) is represented as a JSON file, and it is stored also into the DAC 
orchestrator before it passes to the ad-hoc container as a configuration file. 

These ad-hoc containers, which contain the latter JSON configuration files, are the ones that are 
responsible for creating the actual smart contracts and they do have the capacity to deploy them inside 
the Hyperledger Fabric Blockchain. Stakeholders initiate interactions with the smart contract by sending 
transactions from their wallets to the contract address. All these functionalities - actions, such as setting 
the parameters of the DAC orchestrator, creating the JSON configuration file, creating the ad-hoc smart 
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contract containers, checking its syntax validation and deploying to Hyperledger are exposed via 
respectively Software Oracles (Open APIs). 

3.2.8 Edge-resource management 
NANCY introduces an alternative virtualization technology at the edge of the network, exploiting the 
capability of the ARMv8 architecture to co-execute in an isolated manner multiple bare-metal 
compartments on the same hardware. The core technology of this virtualization solution is the cross-
compartment virtio-loopback, which enriches the edge servers with the ability to host VNFs at the 
individual, bare-metal compartments. The cross-compartment virtio-loopback creates the necessary level 
of abstraction for the edge resources so that the VNFs can interface with the abstracted resources to 
perform their functionalities. The cross-compartment virtio-loopback builds upon and extends the virtio-
loopback technology, which is an open-source hardware abstraction layer built for AGL. The virtio-
loopback provides a framework that aims to bridge the gap between virtualized and bare-metal 
deployments. Specifically, the solution allows software stacks that are typically suitable for virtual 
deployments to be deployed also in a bare-metal fashion.  

Specifically, the solution borrows some virtualization mechanisms from the virtualized world and brings 
them to the bare-metal world, by re-engineering some of the fundamental components of these 
mechanisms. As a result, the resources become abstracted also in the bare-metal environment, and a 
workload interfacing these abstracted (virtualized) resources can now be executed there. 

In its internals, the virtio-loopback is based on two main virtualization protocols that it brings to the bare-
metal world. From one side, the virtio protocol provides all the mechanics on how to expose virtual devices, 
e.g., block, net, GPU, console, etc., into a system. The virtual devices implemented with the virtio protocol 
follow some specific conventions that make interfacing with them through corresponding virtio drivers an 
easy task. On the other hand, the vhost-user protocol provides the mechanics on how to realize virtual 
devices, by interfacing with the actual underlying hardware. 

In the open-source community as well as in the industry, there is wide support for both virtio drivers and 
vhost-user devices implementations. By bringing these implementations into bare-metal environments, 
the virtio-loopback enables to reuse existing efforts while at the same time, providing homogeneity among 
the virtualized and the bare-metal deployments. The virtio-loopback itself introduces two novel 
architectural components, to connect the virtio drivers with the vhost-user device implementations in the 
same system. 
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Figure 12. Virtio-loopback architecture in a bare-metal system. 

Figure 12 demonstrates the overall virtio-loopback architecture deployed in a bare-metal system. 
Applications suited for virtualized deployments are able to interface with virtio devices, backed by usual 
virtio drivers. The novel components of virtio-loopback are the Transport and the Adapter, connecting the 
dots between the virtio drivers and the vhost-user devices. In detail, the virtio-loopback transport is a virtio 
transport which is similar to the virtio Memory-Mapped I/O (MMIO). While in the virtualized world, the 
role of the virtio transport is to invoke the hypervisor to carry out necessary actions, in the virtio-loopback 
case these actions are properly forwarded to the user-space virtio-loopback Adapter. As for the virtio-
loopback Adapter, its role is to translate the incoming virtio requests to requests that the vhost-user device 
can understand. In essence, the virtio-loopback Adapter implements the vhost-user front-end to talk with 
the vhost-user back-end device. 

The cross-compartment virtio-loopback extends the virtio-loopback solution, in a way it is ported across 
the bare-metal compartments of an ARMv8 edge server. The resource-rich, non-critical compartment 
provides the vhost-user device implementations that interface with the actual hardware. In this 
compartment, the virtio-loopback Adapter is ported unaltered. In the critical compartment, applications 
interfacing the virtio devices can be now supported. This way, VNFs can be hosted in this compartment 
and executed in an isolated and secure way. Regarding the virtio-loopback Transport, this component is 
split into two separate modules, following a client-server approach. Specifically, the client side generates 
virtio requests that the server side must serve. The whole architectural picture is depicted in Figure 13. 
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Figure 13. Cross-compartment virtio-loopback architecture. 

Besides the virtio-loopback components that are adjusted in the cross-compartment solution, additional 
technologies such as VOSySmonitor and the VOSySVirtualNet are employed. Regarding VOSySmonitor, as 
already detailed in section 2.5, it plays the role of the system partitioner that consolidates the critical and 
the non-critical compartments. Regarding VOSySVirtualNet, it provides a communication link between the 
two compartments. The cross-compartment virtio-loopback interfaces with the VOSySVirtualNet layer for 
the exchange of control-plane virtio requests between the compartments. The mechanics of 
VOSySVirtualNet are simple: It retains a small shared-memory area for placing cross-compartment 
requests, which allows both sides to understand well how to consume. More specifically, when a 
compartment wants to notify the other side, VOSySVirtualNet passes the control to VOSySmonitor by 
issuing an SMC instruction and then VOSySmonitor generates an interrupt for the compartment to be 
notified. The data path does not follow this mechanism, instead, all the virtio data is placed in a specific 
shared memory region for the vhost-user device to process them directly. In order to place the virtio data 
of the critical compartment in this region, a bounce-buffering mechanism available from Linux is employed, 
making the data bouncing back-and-forth to their original location. This way, the critical data is protected 
and is not directly processed by the non-critical compartment. 

Inter-compartment virtio-loopback technology demonstrates that it is feasible to deploy an abstract VNF 
that interacts with virtio devices in a critical compartment that is spawned on an ARMv8 architecture. In 
the context of computational offloading, the offloaded tasks with ultra-reliable and low-latency 
requirements can be deployed at the safety-critical bare-metal compartments of powerful ARM edge 
servers, enhancing the execution times and the security guarantees of the tasks. Considering data caching, 
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as aforementioned, the use of compartment-based technology in this regard will be fully exploited in T4.3 
so a detailed description of the related developments will be provided in D4.3 

Besides, thanks to the work done in WP3, this technology will be configured and deployed dynamically, 
according to the requests forwarded by the orchestrator. Deliverable D3.4 will give more details about 
how a compartment can be instantiated and properly wired to its Adapter instance upon the orchestrator's 
request. 

Resource Management of Linux nodes 

Another important aspect of NANCY is the efficient resource management of computational resources. 
When dealing with Linux nodes, which are widespread, the SCHED_DEADLINE scheduling class of Linux 
[104] is an interesting option since it allows guaranteeing real-time constraints (CPU bandwidth and CPU 
worst-case latency) for virtualized software workloads (threads, VMs, and containers) and to guarantee 
temporal isolation between applications co-located on the same edge nodes and cores. In this context, a 
problem with key importance to avoid resource underutilization and guarantee timing constraints is to 
properly allocate the application corresponding to incoming service requests (e.g., from mobile IoT) to the 
available edge resources, possibly leveraging the cloud if needed (i.e., if the locally available resources are 
not enough to serve the application without compromising the real-time constraints). Next, we present 
algorithms to address this problem with a focus on SCHED_DEADLINE, with the purpose of optimizing the 
QoS-to-cost ratio of the applications. 

System Model and Problem Definition 

We consider a radio-enabled IoT-to-Edge-to-Cloud continuum where both Edge and Cloud nodes 
cooperate to offer services to moving IoT nodes by means of radio connectivity such as 5G. This work is 
focused on computing resource management in Edge and Cloud nodes to handle dynamic service requests 
issued by IoT nodes. 

System definition. The system is composed of a dynamic set 𝒞𝒞 of Cloud nodes and a dynamic set ℰ of Edge 
nodes. A Cloud node is, in general, a virtual machine, while an Edge node can either be a whole computing 
(physical) platform or a virtual machine running on a shared cluster of Edge nodes (e.g., accessed under a 
rental/leasing scheme). Edge nodes are partitioned into 𝐿𝐿𝑑𝑑 domains, where ℰ𝑘𝑘 denotes the Edge nodes 
within the 𝑘𝑘-th domain. The Edge nodes within the same domain share the same capabilities in terms of 
radio connectivity (e.g., they are connected to the same radio station), meaning that they can all 
communicate with the same set of IoT nodes. As IoT nodes move within the environment covered by the 
system, they can change the domain to which they connect. Furthermore, the fact that the set of Cloud 
nodes and the set of Edge nodes are dynamic means that Cloud nodes and Edge nodes can be powered 
on or off depending on the current service request by IoT nodes. For each domain, an orchestrator node 
is considered to determine a suitable allocation for each service requested by the IoT nodes. An overview 
of the system architecture is presented in Figure 14. 

Workload model. Each node 𝑁𝑁𝑞𝑞 includes 𝑀𝑀𝑞𝑞 processor cores (either virtual or physical) and implements 
partitioned Earliest Deadline First (EDF) scheduling. A core of 𝑁𝑁𝑞𝑞  is denoted with 𝐿𝐿𝑘𝑘,𝑞𝑞 ∈ 𝐶𝐶𝑞𝑞 , where 𝐶𝐶𝑞𝑞 
denotes the set of cores in 𝑁𝑁𝑞𝑞. Both Cloud and Edge nodes run a dynamic set of applications composed of 
multiple tasks, each encapsulated within a reservation server (e.g., implemented by the SCHED_DEADLINE 
scheduler in Linux). Each application 𝜏𝜏𝑖𝑖 is modelled as a triplet (𝑁𝑁𝑖𝑖 ,𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖) and is served by 𝑚𝑚𝑖𝑖 reservation 
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servers, denoted with 𝑟𝑟𝑖𝑖, each allocated on a different core of the node, with the same budget 𝑁𝑁𝑖𝑖  and 
period 𝑃𝑃𝑖𝑖. The set of applications running on a node 𝑁𝑁𝑞𝑞 is denoted by 𝛤𝛤�𝑁𝑁𝑞𝑞�. The set of applications on 
each node is dynamic because applications can be activated or deactivated depending on the current 
service request by IoT nodes. The set of Edge and Cloud nodes is denoted with ℰ and 𝒞𝒞, respectively. Each 
node 𝑁𝑁𝑞𝑞 ∈ ℰ ∪ 𝒞𝒞 is characterized by a corresponding set of allocated reservation servers ℛ𝑞𝑞. Similarly, 
the set of reservations allocated to a core 𝐿𝐿𝑘𝑘,𝑞𝑞 of node 𝑁𝑁𝑞𝑞 is denoted with ℛ𝑘𝑘,𝑞𝑞. 

 

Figure 14 Offloading of computations from mobile nodes to the Edge/Cloud. 

Dynamic scaling. IoT nodes dynamically issue service activation and de-activation requests to the domain 
to which they are connected. Each service 𝑆𝑆𝑖𝑖 can be provided by the system with two quality-of-service 
(QoS) modes: 

• Standard: The service 𝑆𝑆𝑖𝑖 is entirely provided by an application 𝜏𝜏𝑖𝑖 running on an Edge node. This 
mode allows offering the service with the highest QoS as no extra latency is introduced due to the 
involvement of Cloud nodes. 

• Reduced: The service 𝑆𝑆𝑖𝑖 is cooperatively provided by both an Edge and a Cloud node, by means of 
two corresponding applications 𝜏𝜏𝑖𝑖𝐸𝐸 and 𝜏𝜏𝑖𝑖𝐶𝐶  running on the two nodes. 𝜏𝜏𝑖𝑖𝐸𝐸, running on an Edge node, 
serves the functionality to implement connectivity with the IoT node that requested the service 
and offloads the compute-intensive part of the service to 𝜏𝜏𝑗𝑗𝐶𝐶, which is instead running on a Cloud 
node. This mode offers the service with reduced QoS due to the extra latency introduced by the 
offloading process. 

Satisfying a service activation request implies finding first an Edge node to which a new application 𝜏𝜏𝑖𝑖 can 
be allocated to, passing an admission test. If the allocation succeeds, the service is provided with Standard 
QoS. Otherwise, three options are available: 

1. Offer the service with Standard QoS by powering on a new Edge node within the domain of 
interest (if available), which allows allocating 𝜏𝜏𝑖𝑖 to execute the service. 
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2. Offer the service with Reduced QoS by both finding an Edge node and a Cloud node to allocate 𝜏𝜏𝑖𝑖𝐸𝐸 
and 𝜏𝜏𝑖𝑖𝐶𝐶, passing two corresponding admission tests. 

3. Offer the service with Reduced QoS by finding an Edge node to allocate 𝜏𝜏𝑖𝑖𝐸𝐸 and powering on a new 
Cloud node to allocate 𝜏𝜏𝑖𝑖𝐶𝐶. 

Conversely, satisfying service de-activation requests implies de-allocating the corresponding 
application(s). These events may in turn trigger a re-allocation of applications to either reduce the number 
of nodes powered on or improve the QoS of some services. 

Service migration. Whenever an IoT node leaves the area covered by a domain 𝐷𝐷𝑎𝑎 (since it exits from its 
visibility range) and enters the one covered by a domain 𝐷𝐷𝑏𝑏, it disconnects from 𝐷𝐷𝑎𝑎 to connect to 𝐷𝐷𝑏𝑏. As a 
result, all services are activated by the IoT node on 𝐷𝐷𝑎𝑎 need to be migrated to 𝐷𝐷𝑏𝑏. Migration consists of (i) 
issuing a service de-activation request to 𝐷𝐷𝑎𝑎 and (ii) issuing a service activation (or re-activation) request 
to 𝐷𝐷𝑏𝑏. Note that the migration process can entail improving or reducing the QoS of a service. 

System cost and overall QoS. Powering on a new Cloud or Edge node has a monetary cost, e.g., charged 
by the Cloud/Edge providers. This work considers the instantaneous cost of the nodes that are powered 
on at any time by means of two parameters: 𝛾𝛾𝐶𝐶(𝑚𝑚), denoting the cost for each Cloud node with 𝑚𝑚 cores, 
and 𝛾𝛾𝐸𝐸(𝑚𝑚), denoting the cost for each Edge node with 𝑚𝑚 cores. The overall system cost is hence given by 
(5): 

𝛾𝛾tot = � 𝛾𝛾𝐸𝐸
𝑁𝑁𝑞𝑞∈ℰ

�𝑀𝑀𝑞𝑞� + � 𝛾𝛾𝐶𝐶
𝑁𝑁𝑞𝑞∈𝒞𝒞

�𝑀𝑀𝑞𝑞�.         (5) 

Cost is meant to be related to the overall QoS of the services activated by IoT nodes. Each service 𝑆𝑆𝑚𝑚 is 
weighted by an importance factor 𝛽𝛽𝑚𝑚 ∈ [0,1] and assigned a QoS value 𝑊𝑊Std, if running with Standard QoS, 
or 𝑊𝑊Red, if running with Reduced QoS. Given a set of services 𝒮𝒮 that are active at a certain time, the overall 
QoS at that time is defined as (6): 

𝑊𝑊tot = � 𝛽𝛽𝑚𝑚
𝑆𝑆𝑥𝑥∈𝒮𝒮

× 𝑊𝑊𝑚𝑚 ,         (6) 

where 𝑊𝑊𝑚𝑚 is either equal to 𝑊𝑊Std or 𝑊𝑊Red depending on the QoS of the service. 

Problem definition. The objective of this work is to design algorithms to handle dynamic scaling and 
service migration that aims at maximizing the QoS-cost ratio 𝑊𝑊tot/𝛾𝛾tot. 

QoS and reservation parameters. Resource reservation servers in Linux are implemented in the 
SCHED_DEADLINE scheduling class and provide a valuable means to collocate lightweight applications or 
network functions in the same processing cores to avoid underutilizing the computing platform while still 
providing the required temporal isolation. Reservation servers are realized using the Constant Bandwidth 
Server reservation algorithm [1] and work by reserving 𝑁𝑁𝑖𝑖  time units every period 𝑃𝑃𝑖𝑖. Reservations are 
scheduled according to the EDF scheduling algorithm. 

The budget and period parameters are equivalently mapped to two other parameters: the CPU bandwidth 
of the reservation 𝛼𝛼𝑖𝑖 = 𝑁𝑁𝑖𝑖/𝑃𝑃𝑖𝑖  and the worst-case service latency 𝛥𝛥𝑖𝑖 = 2 ⋅ (𝑃𝑃𝑖𝑖 − 𝑁𝑁𝑖𝑖) of the workloads 
running inside the reservation. 
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Therefore, different QoS modes also correspond to different bandwidth and latency values since they 
correspond to potentially different budget and period pairs. 

Algorithms 

Admission test for Edge and Cloud 

When a service request 𝑆𝑆𝑖𝑖  is received, the domain-specific orchestrator node is in charge of finding a 
suitable allocation for the corresponding application, which allows satisfying an admission test required to 
satisfy the schedulability conditions. 

The incoming service request 𝑆𝑆𝑖𝑖 for 𝜏𝜏𝑖𝑖 is characterized by three tuples of reservation parameters. The first 
one, (𝑁𝑁𝑖𝑖,𝑃𝑃𝑖𝑖 ,𝑚𝑚𝑖𝑖), refers to the budget, period, and the number of cores required if the application 𝜏𝜏𝑖𝑖 runs 
at the edge in standard mode. The orchestrator then first tries to allocate in standard mode: if it cannot 
find a feasible solution in the current edge domain, then it tries to find a solution involving the degraded 
execution involving both the Edge and the Cloud. 

SCHED_DEADLINE reservations are based on the EDF schedulability theory [105], which is capable of 
providing the guaranteed bandwidth and worst-case service latency to the workloads they serve if the sum 
of the requested bandwidths of all the reservations served on each core is less than or equal to one. 

Since each application is composed of a triplet (𝑁𝑁𝑖𝑖,𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖), which maps to 𝑚𝑚𝑖𝑖 reservations with bandwidth 
𝛼𝛼𝑖𝑖 = 𝑁𝑁𝑖𝑖/𝑃𝑃𝑖𝑖, the application 𝜏𝜏𝑖𝑖 corresponding to the incoming service request 𝑆𝑆𝑖𝑖 can be feasibly allocated 
in a given domain 𝐷𝐷𝑘𝑘 if and only if (7): 

∃𝑁𝑁𝑞𝑞 ∈ 𝐷𝐷𝑘𝑘 ∣ ∀𝐿𝐿𝑘𝑘,𝑞𝑞 ∈ 𝐶𝐶𝑞𝑞′ � 𝛼𝛼𝑗𝑗
𝑐𝑐𝑗𝑗∈ℛ𝑘𝑘,𝑞𝑞

+ 𝛼𝛼𝑖𝑖 ≤ 1,         (7) 

with 𝐶𝐶𝑞𝑞′ being an arbitrary subset of 𝐶𝐶𝑞𝑞 such that �𝐶𝐶𝑞𝑞′� = 𝑚𝑚𝑖𝑖. Note that this holds assuming that the node 
was not overloaded before the additional service was requested. 

When a feasible allocation cannot be found on the edge domain, a split solution that includes both the 
edge and the cloud can be considered. Otherwise, horizontal scaling at the edge can be applied, paying a 
monetary cost. When an edge-cloud split solution is applied, 𝑆𝑆𝑖𝑖 is applied at a reduced QoS mode, which 
is characterized by two applications 𝜏𝜏𝑖𝑖𝐸𝐸  and 𝜏𝜏𝑖𝑖𝐶𝐶  with two sets of SCHED_DEADLINE parameters: 
�𝑁𝑁𝑖𝑖𝐸𝐸 ,𝑃𝑃𝑖𝑖𝐸𝐸 ,𝑚𝑚𝑖𝑖

𝐸𝐸� and �𝑁𝑁𝑖𝑖𝐶𝐶 ,𝑃𝑃𝑖𝑖𝐶𝐶 ,𝑚𝑚𝑖𝑖
𝐶𝐶�. The first set of parameters refers to the part of the application running 

on the edge 𝜏𝜏𝑖𝑖𝐸𝐸 with the purpose of coordinating the work occurring in the Cloud. Clearly, the parameters 
�𝑁𝑁𝑖𝑖𝐸𝐸 ,𝑃𝑃𝑖𝑖𝐸𝐸 ,𝑚𝑚𝑖𝑖

𝐸𝐸� are characterized by a much lower budget and possibly a lower number of required cores, 
as the actual computation occurs in the Cloud. This allows favoring the allocation at the edge: indeed, if 
(7) is not satisfied for a given domain 𝐷𝐷𝑘𝑘, it could be satisfied with the reduced QoS mode. Therefore, the 
admission of the service in the reduced QoS mode, is composed of two applications 𝜏𝜏𝑖𝑖𝐸𝐸 and 𝜏𝜏𝑖𝑖𝐶𝐶 , must pass 
two admission tests: (i) the admission test for 𝜏𝜏𝑖𝑖𝐸𝐸 at the Edge, reported in (7) applied using 𝛼𝛼𝑖𝑖𝐸𝐸 = 𝑁𝑁𝑖𝑖𝐸𝐸/𝑃𝑃𝑖𝑖𝐸𝐸 
instead of 𝛼𝛼𝑖𝑖; (ii) a similar admission test for 𝜏𝜏𝑖𝑖𝐶𝐶  in the Cloud, reported in (8): 

∃𝑁𝑁𝑞𝑞 ∈ 𝒞𝒞:∀𝐿𝐿𝑘𝑘,𝑞𝑞 ∈ 𝐶𝐶𝑞𝑞′ � 𝛼𝛼𝑗𝑗𝐶𝐶

𝑐𝑐𝑖𝑖∈ℛ𝑘𝑘,𝑞𝑞

+ 𝛼𝛼𝑖𝑖𝐶𝐶 ≤ 1,         (8) 

in which 𝛼𝛼𝑖𝑖𝐶𝐶 = 𝑁𝑁𝑖𝑖𝐶𝐶/𝑃𝑃𝑖𝑖𝐶𝐶. Clearly, the admission test in (8) may fail if the computing resources are not enough 
to accept the new application. In this case, it is either possible to turn on a cloud or edge node (at a financial 
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cost) or to try to reallocate the pre-existing workloads in already-used nodes to allow the allocation of new 
applications. Both options are discussed later in this section. 

Arrival of a new service request 

When a service request arrives, the orchestrator needs to find the most suitable allocation (either in 
standard or reduced QoS mode). 

Allocation on the Edge. The allocation produces first tries to allocate the application in standard mode 
considering the triplet (𝑁𝑁𝑖𝑖 ,𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖). To this end, the algorithm leverages the residual per-core reservation 
bandwidth as a metric, which is defined as (9): 

𝑈𝑈𝑘𝑘,𝑞𝑞 = 1 − � 𝛼𝛼𝑗𝑗
𝑐𝑐𝑗𝑗∈ℛ𝑘𝑘,𝑞𝑞

.         (9) 

First, the algorithm filters out all the nodes 𝑁𝑁𝑞𝑞 ∈ 𝐷𝐷𝑘𝑘 that do not satisfy (7), i.e., which are characterized by 
𝑈𝑈𝑘𝑘,𝑞𝑞 < 𝛼𝛼𝑖𝑖 for more than 𝑀𝑀𝑞𝑞 −𝑚𝑚𝑖𝑖 cores. The remaining nodes are denoted in a set 𝐷𝐷𝑘𝑘′ ⊆ 𝐷𝐷𝑘𝑘. If 𝐷𝐷𝑘𝑘′ ≠ ∅, 
the application can be allocated in standard QoS mode with at least one of the nodes in the current edge 
domain. However, there may be multiple choices for allocating 𝜏𝜏𝑖𝑖, both in terms of nodes and cores within 
the nodes. Different choices lead to a different system configuration, which may be more or less prone to 
host the allocation of future workloads. We first consider the order of nodes in 𝐷𝐷𝑘𝑘′ by which to perform 
node selection, and we propose the following heuristics: 

• Max-Max Residual Bandwidth (MMRB). 
max𝑁𝑁𝑞𝑞∈𝐷𝐷𝑘𝑘′ max𝑐𝑐𝑘𝑘,𝑞𝑞∈𝐶𝐶𝑞𝑞′ 𝑈𝑈𝑘𝑘,𝑞𝑞: this heuristic tries to select first the nodes with at least one residual 
reservation bandwidth 𝑈𝑈𝑘𝑘,𝑞𝑞 (among those in the set 𝐶𝐶𝑞𝑞′ of those satisfying the admission test), 
with the rationale of privileging nodes having cores with less load. 

• Min-Min Residual Bandwidth (mmRB). 
 min𝑁𝑁𝑞𝑞∈𝐷𝐷𝑘𝑘′ min𝑐𝑐𝑘𝑘,𝑞𝑞∈𝐶𝐶𝑞𝑞′ 𝑈𝑈𝑘𝑘,𝑞𝑞: this heuristic tries to select first the nodes with at least one residual 
reservation bandwidth 𝑈𝑈𝑘𝑘,𝑞𝑞 (among those in the set 𝐶𝐶𝑞𝑞′ of those satisfying the admission test), 
with the rationale of trying to fill the cores in a node. 

Once a node is selected, cores are ordered according to standard bin-packing heuristics: first-fit (FF), which 
considers cores in order of index; best-fit (BF), which considers cores ordered by 𝑈𝑈𝑘𝑘,𝑞𝑞; and worst-fit (WF), 
which considers cores ordered by 1 − 𝑈𝑈𝑘𝑘,𝑞𝑞.  

Mixed Edge-Cloud allocation with available nodes. If a service request cannot be served by using the 
standard QoS mode, there are two options: (a) Using the reduced QoS mode for the incoming service 
request, allocating two applications 𝜏𝜏𝑖𝑖𝐸𝐸 and 𝜏𝜏𝑖𝑖𝐶𝐶, one at the edge and one in the cloud, respectively, or (b) 
reallocating another, already allocated, service 𝑆𝑆𝑗𝑗, possibly involving reducing its QoS mode, to make room 
for 𝜏𝜏𝑖𝑖. Each option has its own advantages and disadvantages in comparison with the other one: (a) allows 
to not interfere with the execution of pre-allocated services, thus avoiding any reallocation delay; instead, 
(b) allows to achieve higher values of the QoS-per-cost ratio 𝑊𝑊tot/𝛾𝛾tot by moving a pre-existing service 
with a lower importance factor to a reduced QoS mode. Applying (a) is straightforward if 𝜏𝜏𝑖𝑖𝐸𝐸 and 𝜏𝜏𝑖𝑖𝐶𝐶  pass 
the corresponding admission tests. Instead, (b) requires applying a heuristic: Several proposals are 
reported below. First, it is worth noting that not all the reallocations of other services necessarily cause a 
degradation of their QoS mode. We propose three reallocation schemes: the intra-node reallocation, the 



D4.1 – Computational Offloading and User-centric Caching 
 

 

 
65 

 

intra-domain reallocation, and the edge-cloud split reallocation. The first two reallocation methods do not 
involve a reduction of the QoS of 𝑆𝑆𝑗𝑗 but are characterized by an increasing reallocation delay. Next, we 
present several heuristics to select the service 𝑆𝑆𝑗𝑗 to be reallocated, among those in a given node 𝑁𝑁𝑞𝑞 ∈ 𝐷𝐷𝑘𝑘. 
In their presentation, we use the parameter 𝜎𝜎𝑗𝑗, which is equal to 1 if the reallocation method does not 
cause QoS degradation (intra-node and intra-domain) and to �1 − 𝛽𝛽𝑗𝑗� otherwise (edge-cloud split). 

• Highest Bandwidth-Importance service (HBI). This heuristic reallocates the service characterized 
by the highest 𝛼𝛼𝑗𝑗 × 𝜎𝜎𝑗𝑗 product, meaning that the service which is reallocated has high bandwidth 
(i.e., it is helpful to perform the reallocation since it frees a large amount of computation capacity) 
and low importance factor (considered only if reallocation causes QoS reduction), thus improving 
the value of the optimization function 𝑊𝑊tot/𝛾𝛾tot. This heuristic considers the bandwidth required 
by a service on each core but not the number of cores. 

• Highest Core-Importance service (HCI). This heuristic reallocates the service characterized by the 
highest 𝑚𝑚𝑗𝑗 × 𝜎𝜎𝑗𝑗 product, meaning that the service which is reallocated occupies many cores and 
has a low importance factor (considered only if reallocation causes QoS reduction), thus improving 
the value of the optimization function. This heuristic considers the number of cores required by 
𝑆𝑆𝑖𝑖, but not its required bandwidth. 

• Highest Bandwidth-Core-Importance service (HBCI). This heuristic combines the previous two by 
considering the product between the bandwidth and the number of cores. However, there is no 
guarantee that the overall bandwidth 𝛼𝛼𝑖𝑖 × 𝑚𝑚𝑖𝑖  is distributed on enough cores to allow 
accommodating the incoming service request. 

• Highest Bandwidth-Importance, constrained to Cores, service (HBIcC). This heuristic extends the 
first one by selecting the service with the highest 𝛼𝛼𝑗𝑗 × 𝜎𝜎𝑗𝑗  that occupies at least 𝑚𝑚𝑗𝑗  cores. It 
overcomes the disadvantage of the first heuristic, but it is possible that no other reservation 
requires at least 𝑚𝑚𝑗𝑗 cores exist, leading to a failure of the heuristic. 

When a service 𝑆𝑆𝑗𝑗 is selected to be reallocated, first the algorithm checks if there exists another set of 
cores within the same node that allows to let both 𝑆𝑆𝑗𝑗 and 𝑆𝑆𝑖𝑖 pass the admission test. This is done by first 
trying to allocate 𝑆𝑆𝑖𝑖  and then 𝑆𝑆𝑗𝑗  using the algorithms previously discussed. This is called intra-node 
reallocation. If intra-node reallocation fails, 𝑆𝑆𝑖𝑖  is tentatively allocated on 𝑁𝑁𝑞𝑞  after removing 𝑆𝑆𝑗𝑗 . The 
procedure then succeeds if 𝑆𝑆𝑗𝑗 passes the admission test on another edge node in the same domain 𝐷𝐷𝑘𝑘. 
This is called intra-domain reallocation. The third variant consists instead in reducing the QoS of 𝑆𝑆𝑗𝑗 , 
checking if it is possible to allocate both 𝜏𝜏𝑗𝑗𝐸𝐸 and 𝜏𝜏𝑗𝑗𝐶𝐶  in such a way that both pass the admission test. This is 
called edge-cloud split reallocation. 

The previous heuristics assume that the node to search for a service to be reallocated is given. Again, 
several heuristics can be used to make this choice. To this end, we consider the following heuristics: 

• Highest residual overall bandwidth first (HRB). This heuristic selects first the node with the 
highest ∑ 𝑈𝑈𝑘𝑘,𝑞𝑞𝑁𝑁𝑞𝑞∈ℰ𝑘𝑘 , with the rationale of privileging nodes with the largest residual bandwidth. 

• Largest service first (LSF). This heuristic selects the node that has the largest 𝛼𝛼𝑖𝑖 × 𝑚𝑚𝑖𝑖, with the 
rationale that selecting that node would allow gaining a considerable amount of bandwidth, useful 
to allocate 𝑆𝑆𝑖𝑖. 
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Powering on edge or cloud nodes. Powering on a new edge or cloud node comes with a monetary cost, 
and hence with a negative effect on the objective function 𝑊𝑊tot/𝛾𝛾tot . Nevertheless, allocating a new 
service increases the objective function value. Therefore, choosing whether it is more convenient to 
perform a reallocation, power on a new edge node, or power on a new cloud node is based on the variation 
in the objective function. 

If a new edge node is powered on (i.e., rented) for serving 𝑆𝑆𝑖𝑖 , then the new objective function value 
becomes: 

𝑊𝑊tot + 𝛽𝛽𝑖𝑖 × 𝑊𝑊𝑖𝑖
𝑆𝑆𝑐𝑐𝑑𝑑

𝛾𝛾tot + 𝛾𝛾𝐸𝐸�𝑀𝑀𝑞𝑞�
         (10) 

If a new cloud node is rented for 𝑆𝑆𝑖𝑖, the new objective function value becomes: 

𝑊𝑊tot + 𝛽𝛽𝑖𝑖 × 𝑊𝑊𝑖𝑖
𝑐𝑐𝑐𝑐𝑑𝑑

𝛾𝛾tot + 𝛾𝛾𝐶𝐶�𝑀𝑀𝑞𝑞�
         (11) 

Clearly, powering on a new cloud node is a viable option only if the edge part of 𝑆𝑆𝑖𝑖 in reduced mode (i.e., 
𝜏𝜏𝑖𝑖𝐸𝐸) can be allocated at the edge (i.e., passes the admission test). 

Finally, reallocating a service 𝑆𝑆𝑗𝑗 in the same domain ℰ𝑘𝑘 to the cloud to allow the new service request 𝑆𝑆𝑖𝑖 to 
be served at the edge leads to the following tentative objective function value: 

𝑊𝑊tot + 𝛽𝛽𝑖𝑖 × 𝑊𝑊𝑖𝑖
𝑠𝑠𝑐𝑐𝑑𝑑 − 𝛽𝛽𝑗𝑗 × 𝑊𝑊𝑗𝑗

𝑠𝑠𝑐𝑐𝑑𝑑 + 𝛽𝛽𝑗𝑗 × 𝑊𝑊𝑗𝑗
𝑐𝑐𝑐𝑐𝑑𝑑

𝛾𝛾tot          (12) 

Comparing these new objective function values allows for understanding the best choice for allocating the 
new service request. 

The allocation procedure is summarized below. 
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Figure 15. Allocation procedure. 

Exit of a service request 

When a service 𝑆𝑆𝑖𝑖 exits an edge domain 𝐷𝐷𝑘𝑘, the corresponding reservations are deallocated. Furthermore, 
it allows for improving the QoS by reallocating a service that is allocated in reduced QoS mode to standard 
QoS. To this end, we consider the four following heuristics: 

• Highest QoS improvement (HQ): Selects the service 𝑆𝑆𝑗𝑗 with the highest QoS improvement (subject 
to the importance), i.e., with the highest 𝛽𝛽𝑗𝑗 × 𝑊𝑊𝑗𝑗

𝑠𝑠𝑐𝑐𝑑𝑑 − 𝛽𝛽𝑗𝑗 × 𝑊𝑊𝑗𝑗
𝑐𝑐𝑐𝑐𝑑𝑑. 

• Highest QoS improv. constrained to Cores (HQcC): This heuristic extends HQ but only considers 
services that use fewer cores than those freed by 𝑆𝑆𝑖𝑖, i.e., 𝑚𝑚𝑖𝑖. 

• Highest QoS improv. constrained to Bandwidth (HQcB): This heuristic extends HQ but only 
considers services that use less bandwidth than 𝑆𝑆𝑖𝑖, i.e., 𝛼𝛼𝑖𝑖. 

• Highest QoS improv. constrained to Cores and Bandwidth (HQcCB): It combines the previous two 
heuristics by considering the constraints on both cores and bandwidth. 

Services are considered only if allocated in reduced QoS mode. The selected service 𝑆𝑆𝑗𝑗 is then tried to be 
allocated to the edge with the algorithms already discussed. 

Furthermore, every time an edge or cloud node becomes empty due to a service exit, the corresponding 
physical machine can be turned off, reducing the overall cost 𝛾𝛾tot. 
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Service Migration 

The migration of a service 𝑆𝑆𝑖𝑖 from an edge domain 𝐷𝐷𝑘𝑘 to another domain 𝐷𝐷𝑐𝑐 can be managed as: an exit 
event from 𝐷𝐷𝑘𝑘 and an arrival event to 𝐷𝐷𝑐𝑐. Note that a migration can produce an increment or a decrement 
of the overall QoS-to-Cost ratio, depending on the pre-existing services allocated to 𝐷𝐷𝑘𝑘 and 𝐷𝐷𝑐𝑐, and the 
edge nodes in the two domains. 

Runtime monitoring and vertical scaling 

Since the computing nodes involved in the edge-cloud architecture are most commonly heterogeneous, it 
is possible that the initial 𝑁𝑁𝑖𝑖  estimate provided by the mobile device that requests the service can be either 
too large or too small, depending on the computing power of the nodes. 

Therefore, the system must be coupled with a monitoring mechanism to report to the local orchestrator 
(of the edge domain) periodically if there is any amount of unused budget in the reservations of each 
service. 

Given an estimate 𝑁𝑁𝑖𝑖 of the budget that is typically used in a reservation period, obtained by monitoring 
the system, a vertical scaling of the reservation can be performed. There are two cases: (i) the budget 
allocated to a reservation is too high, thus causing a underutilization of the node, or (ii) the budget 
allocated is not enough, not allowing to guarantee the CPU bandwidth and worst-case CPU latency 
constraints. 

In case (i), the system can be configured with a threshold 𝐹𝐹, expressed as a percentage of the reservation 
period, such that if 𝑁𝑁𝑖𝑖 < 𝐹𝐹 ⋅ 𝑁𝑁𝑖𝑖  then a vertical scaling decision is taken by reducing the budget to the 
maximum budget that has been observed to be used within a past reservation period. 

In case (ii), the budget is increased by a percentage 𝐺𝐺 of the reservation period. Then, the admission tests 
are executed again, considering the same allocation. If the admission test succeeds, then the allocation is 
left unaltered. Otherwise, an exit event is followed by a new arrival event of the same service 𝑆𝑆𝑖𝑖  are 
triggered so that a new feasible allocation can be found. 

3.3 Offloading and user-centric caching workflow 
Offloading and user-centric caching mechanisms aim to significantly improve the user experience through 
the correct preparation of the infrastructure and data necessary for fast and efficient user access to them; 
this implies caching data and applications in the network nodes that are closer to the user to reduce 
latency as well as using predictive models to anticipate the user's needs. One of the most critical issues to 
consider in the design of these mechanisms is user mobility. In a realistic scenario, users are not static, so 
such mechanisms must adapt to this behaviour. 

To improve user experience and mitigate operational problems, NANCY proposes innovative offloading 
mechanisms, which leverage the user profile to efficiently and dynamically predict his/her future 
movements and requirements. This approach allows anticipating the needs and optimising the 
performance of the system in a proactive way. To achieve this, the service requests made by each user are 
continuously monitored and these data provide valuable information about the user's behaviour patterns 
and preferences. The collected data are used to feed reinforcement learning models, as explained in 
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previous sections, to learn and make predictions about future requests and movements. In addition, these 
offloading mechanisms based on AI models permit adapting to network conditions in real time, which 
enables more efficient management of resources while optimising system performance. They also allow 
offloading and caching processes to be dynamically adjusted, facilitating system scalability and flexibility 
in resource management. 

Caching mechanisms, on the other hand, involve storing data that are useful for a service or user on nodes 
close to the point of consumption of such data. This approach aims to reduce latency and improve system 
efficiency by ensuring that relevant information is quickly accessible when needed. In NANCY, a wide range 
of caching strategies are being explored, all focused on improving user experience. They consider factors 
such as user mobility, variations in network load and the individual specifications of each user profile. 

To ensure the correct performance of the mechanisms mentioned above, SLAs are essential as they define 
the quality and reliability standards that must be met to guarantee user satisfaction and system 
performance. Therefore, SLA parameters express the minimum requirements for a service to be offered 
with an appropriate quality, taking into account: Availability, reliability, security, computing and network 
capacity. These parameters serve as a basis for the decision engines to trigger actions to maintain KPI 
levels in an adequate range. Considering the NANCY architecture, the workflow in Figure 16 is proposed 
to ensure the proper fulfilment of a given SLA when a request is received.  

The procedure starts with the UE requesting a certain service to a service manager within the NANCY 
architecture (1).  The service manager that receives this request, checks the UE subscription to make sure 
that it has access to such a service, and then builds the requirements for the service to be deployed and 
running without issues. These requirements are modelled in the form of an SLA (2) following the format 
proposed in Figure 16. Making use of the KPIs in the SLA, the service manager asks the AI blocks to 
determine where and how to deploy the requested service (3). The deployment decision is sent to the 
service orchestrator (4), which determines whether the service can be deployed in the local operator 
(ensuring the KPIs in the SLA) or not. In case the operator cannot fulfil the SLA, the service orchestrator 
forwards the service request to the marketplace to check if another operator can support providing the 
service (5). Once the final enforcement plan is ready (in the local operator or in an external one) (6), the 
corresponding service orchestrator sends the request to its attached resource orchestrator to configure 
each of the different domains participating in the service provisioning (7). 
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Figure 16. Offloading and caching workflow. 

Specifically, in the case that the marketplace is used to handle the service deployment because the local 
operator is not able to fulfil the service’s requirements indicated in the SLA, the marketplace module, 
which manages the publication and use of resources from other operators, handles the service 
provisioning request. Thus, the request is directed from the marketplace to the smart pricing module, 
which evaluates the available resources and prices from different network operators. Once the selected 
operator, with an associated price, is automatically determined by this block, it generates a new SLA and 
sends it to the service orchestrator of the operator that will provision the requested service. Additionally, 
the SLA is sent to the digital contract creator module, which incorporates extra business information into 
the SLA (see Figure 16), generating a digital agreement that is submitted and stored in the NANCY 
blockchain through the marketplace module. These inter-operator domain operations will be 
comprehensively explained in Deliverable 4.5: Smart Pricing Policies. 

As part of a continuous SLA accomplishment strategy, analysis engines perform a constant evaluation of 
the system status with the data collected by monitoring the infrastructure components, verifying that the 
KPIs established in the SLA are being met. Besides this task, these modules are also responsible for 
measuring resource usage to maintain an optimal state of the necessary resources, ensuring correct 
system performance. It also detects anomalies in the behaviour of users and the system itself and 
establishes predictive models to anticipate situations that could affect service performance. 
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In order to achieve SLA compliance, caching and offloading mechanisms are key enablers. Both, when used 
simultaneously, enhance service delivery and the overall system status. Table 7 presents which parameters 
caching and offloading mechanisms have a direct impact. 

 

Table 7 Benefits of offloading and caching mechanisms. 

 Performance Availability Capacity Network 
Offloading Reduces latency 

bringing services 
closer to the end 
user, and overall 
performance by 
distributing tasks or 
processing to more 
capable systems 

By distributing 
workloads across 
multiple systems 
preventing a single 
point of failure 

Reduces 
computational load 
on centralized 
servers and 
distributes it along 
the edge/fog 

Reduces the overall 
network traffic, 
avoiding accessing 
centralized servers 
every time. 
 

Caching Reduces latency, 
especially for 
frequently accessed 
data or services 

Cached content can 
still be accessed by 
services even though 
the original source is 
unavailable 

Reduces the load on 
centralized servers 

Reduces the overall 
network traffic, 
avoiding accessing 
centralized servers 
every time.  
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4. Offloading and Caching in NANCY Demonstrators and 
Testbeds 

4.1 In-lab testbeds 

4.1.1 Italian in-lab testbed 
The Italian in-lab testbed will provide the environment to validate the “NANCY virtualization technology 
for deployments at the edge” (novel lightweight virtualization solutions for ARM edge servers, based on 
VOSyS monitor) and the technology for the analysis of different resources utilization (provided by SSS) (see 
Section 3.2.3). The scenario will focus on exploiting the ARM Trust-zone hardware-enforced isolation for 
hosting critical VNFs, like for example the “NANCY Telemetry framework” based upon the Linux kernel 
scheduling technology provided by SSS, based on the SCHED_DEADLINE scheduler, for the analysis of 
different resources utilization. The NANCY virtualization technology, relying on TrustZone, can provide 
hardware-isolated compartments ideal for running lightweight virtual machines where to offload network 
functions or mining workloads.  This scenario will test and validate the technology proving the fact that a 
critical architectural function, like the “NANCY Telemetry framework”, is running in a protected 
virtualization environment, isolated from other applications. The NANCY Telemetry framework is a key 
architectural function since, in this specific context, the collected metrics serve as an input data stream for 
further processing by the offloading and caching logic. Figure 17 shows an SK-AM69x Texas Instruments 
board integrated into the Italian in-lab testbed (ARMv8 edge server provided by Virtual Open Systems). 

Besides, considering the technological advancements that have facilitated the development of immersive, 
interactive technologies, they are often related to video applications that are delay-intolerant to maintain 
users’ quality of experience (QoE) and real-time response. These stringent latency requirements can be 
met by offloading the video streams to an edge server with adequate performance. In addition, the 
introduction of AI expands the potential of video analysis and makes autonomous monitoring and real-
time threat detection possible. However, the effectiveness and efficiency of AI-powered video analysis 
applications rely heavily on the hardware infrastructure, specifically high-performance computing (HPC) 
architectures 
To list just a few examples of applications that can benefit from the above-mentioned technological 
advancements, it is worth mentioning:  

• Autonomous vehicles, that leverage multiple video cameras for environmental perception. Given 
the stringent latency requirements, these video streams need to be offloaded to the edge for the 
analysis of video streaming in real-time, e.g., for the automatic recognition of dangerous situations 
to alert both the drivers and pedestrians. This involves the real-time processing of video frames to 
extract valuable information.  

• Augmented and virtual reality (AR/VR) applications, that demand stringent latency requirements 
and necessitate the processing of camera streams from headsets at the edge, with results relayed 
back to the headset for visual display. 
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If the above applications perform the video analysis providing AR/VR functionalities and run in the same 
edge where the video streams have been offloaded but in an environment with higher levels of security, 
this provides the system with a higher degree of reliability. This set the context in which the “NANCY 
virtualization technology for deployments at the edge” will be tested and validated in the Italian in-lab 
testbed, in relation to offloading and caching scenarios. 
 

 

Figure 17. SK-AM69x Texas Instruments board in the Italian in-lab testbed. 

4.1.2 Greek in-lab testbed 

 

Figure 18: Main and Micro Operators in the Greek in-lab testbed 

The Greek in-lab testbed (Figure 18) is focused on evaluating and showcasing several NANCY components 
in a coverage expansion scenario. The particular scenario involves three main entities, namely the main 
operator, the micro-operator, and the end devices. The micro-operator can provide connectivity to the 
end devices that have poor or no connection with the main operator. Furthermore, the micro-operator 
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can also provide additional services to the end devices, such as offloading, security, and content caching, 
through the NANCY technologies. 

The caching mechanism aims to prefetch and store content closer to the end devices, thereby minimizing 
the latency and reducing the network load. By profiling the devices, the suitable content can be pre-
fetched from a content provider and cached either in the main operator’s or the micro-operator’s edge 
node. 

This offloading scenario is particularly focused on the offloading of a video transcoding service. Video 
transcoding is a resource-intensive process that aims to convert a video from a particular format, scale, 
and quality/resolution to another, in order to be compatible with a particular UE or reduce the size of data 
that needs to be transported between the BS and the UE. In this scenario, the video transcoding 
application (e.g., VLC, FFmpeg, etc.) will be shipped as a containerised image that will receive as input the 
initial video and will output the transcoded video. The container will be managed by the Orchestrator, 
which will decide its appropriate deployment based on the available resources and the processing 
requirements. 
 

4.2 Demonstrators 

4.2.1 Italian demonstrator 
The Italian Massive IoT testbed is designed to illustrate a fixed topology fronthaul network featuring direct 
connectivity. This configuration is intended to highlight particular facets and practical applications of IoT 
technology. Through this setup, the testbed aims to provide a comprehensive demonstration of how IoT 
systems can be efficiently integrated and managed within a network structure, emphasizing the potential 
for real-world deployment.  

Within the NANCY testbed, a use case focused on machine-type communication (MTC) is demonstrated. 
The goal of the deployed applications is to exhibit a critical MTC scenario. In this setup, the indoor testbed 
connects IoT devices simulating traffic lights using 5G links. This configuration meets several stringent 
requirements: Providing reliable and resilient connectivity, enabling a dynamically changing number of IoT 
devices (simulated traffic lights) over time, guaranteeing low end-to-end latency and ensuring strict data 
privacy and security. 

To meet low latency requirements, the IoT applications need to be offloaded and deployed within the MEC 
layer of the project's architecture. This strategic deployment ensures that the applications can operate 
with minimal delay, crucial for real-time IoT functionalities. The NANCY offloading capabilities will be 
demonstrated through a scenario where the edge layer is reconfigured. This reconfiguration aims to 
improve the high availability and resilience of the deployed IoT applications. The intent is to provide robust 
support for IoT operations, ensuring continuous and reliable performance even under dynamic or 
challenging conditions. This demonstration will showcase the effectiveness of offloading IoT applications 
to the edge layer by optimizing the deployment and maintaining QoS through adaptive management. 
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Concretely, the application to be offloaded to edge servers will be a real-time IoT solution designed for 
managing simulated traffic light devices, which have stringent low-latency requirements. This application 
is deployed using containerized virtualization technologies to ensure flexibility. The primary challenge is 
meeting the low-latency demands inherent to the real-time operation of the traffic light management 
system. Any delay in processing could result in inefficient traffic control, leading to congestion or even 
safety issues. Therefore, minimizing latency is crucial to maintaining the system's effectiveness and 
reliability. To address this challenge, the solution involves leveraging NANCY's advanced offloading 
capabilities. NANCY facilitates the intelligent deployment of the application at the network edge, 
significantly reducing latency by processing data closer to where it is generated. This edge computing 
approach ensures that the traffic management system can respond in real time, optimizing traffic flow and 
enhancing overall system performance. 

4.2.2 Spanish demonstrator 
The Spanish demonstrator constitutes a testbed composed of Unmanned Aerial Vehicles(UAVs) with 
Vehicular-to-everything (V2X) communication modules. These UAVs are capable of capturing video from 
the environment and streaming it. Moreover, one of these UAVs is additionally the entry point to the 5G 
network, as it has a 5G module in addition to the V2X module. Through this network of UAVs, and with 
each UAV being also packaged with limited computing resources in the form of a Raspberry Pi, the Spanish 
demonstrator will provide a resource pool capable of allocating offloaded tasks.  

All in all, this demonstrator aims to demonstrate NANCY user-centric offloading mechanisms, with a video 
streaming use case in which the captured video goes through preprocessing steps prior to being stored.  
These preprocessing steps may be adapting the codec of the video for a streaming application or applying 
object recognition software to the video. 

In addition to the aforementioned UAV resource pool, the Spanish demonstrator will employ MEC and 
cloud resources from the NANCY architecture as additional possible targets for deploying the VNFs that 
perform the different steps of video preprocessing. For this aim, the Spanish demonstrator will leverage 
the orchestration capabilities and decision engines from NANCY to determine the optimal allocation of 
these network functions according to the metrics indicated in Section 3.1 and to meet the KPIs of SLAs. 

Spanish demonstrator extension in UMU testbed 

The offloading and caching mechanisms are one of the key components to be shown in the extension of 
the Spanish demonstrator. Armed with a real-world B5G network, offloading and caching will be shown as 
part of the emerging trend of Digital Twins (DTs) and Trusted Execution Environments (TEE). Focusing on 
the first paradigm, offloading mechanisms will be shown in an enriched vehicular scenario. On-board units 
(OBU) will be used to establish a data session towards a DT, so-called virtual OBU (vOBU). This strategy 
permits to surrogate several services traditionally handled by the physical OBU to the vOBU: Data 
collection, session establishment with vehicular services, and portability through migration algorithms, 
among others. With this aim, vOBU units represent the digital counterpart of a moving vehicle, whose 
location changes frequently over time. vOBU units are the result of an offload request from part of the 
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vehicle, which connection and data management towards a centralized V2X service wants to delegate to. 
As a result, the physical OBU releases the resource consumption (CPU, energy, radio...) attached to this 
process towards a resource-abundant part of the infrastructure as the MEC domain is.  

The offload policy will be carefully handled, as latency in vehicular scenarios is a critical parameter to 
delimit. Once the offloading request is sent by the vehicle, a decision engine, following the KPIs of the 
service SLA, drives the orchestrator to deploy and connect the vOBU in the best worker node from a 
Kubernetes environment. AI-based location engines start monitoring the movement of the vehicle after 
its attachment to the network. Real-time radio measurements feed the engine to infer the vehicle’s GPS 
position. When an upcoming coverage outage is anticipated by the decision engines, a migration 
mechanism moves the offloaded task to the best following edge node by following the workflow defined 
in Section 3.3. Therefore, the vehicle trajectory is inferred thanks to an ML-trained engine, capable of 
performing a correlation of the radio metrics measurement and a GPS coordinate. This movement pattern 
is employed to estimate the QoS variability and a potential SLA violation. More specifically, this is the 
triggering point for the migration process towards more adequate processing and connectivity-provider 
nodes, i.e., edge node and gNB. This offloaded function migration is done seamlessly, crossing the borders 
of different operators' infrastructure if needed, guaranteeing continuous SLA enforcement. Besides, this 
complex orchestration process to enable the intra- or inter-domain offloading implies anticipated data 
caching in the new nodes hosting the vOBU as the state of such a function should be transferred as well 
before launching the new instance of the vOBU in its new location. 

TEE is the other big paradigm to be shown within the UMU in-lab testbed, and it is used to prove the 
benefits and potential of ARM-based OPTEE Trust Zones, critical cached content will be stored in such a 
protected environment, granting meticulous access permission to its content. The cached information will 
be used to streamline the service delivery by accelerating the authorization process, hence, the creation 
and enforcement of SLA. Privacy-preserving useful user information will be stored in the cache of close 
nodes. Which access, will be protected through the security capabilities provided by the OPTEE. Cached 
content is envisioned to include parameters such as UE’s Pseudonym and access attributes, former SLAs 
could be also stored to avoid the complexity of the SLA creation. More details about these processes will 
be given in D4.3. 

4.2.3 Greek demonstrator  
AR/VR applications have revolutionized the user experience by delivering seamless, high-fidelity content 
over 5G networks. These applications are very challenging since they require very high bandwidth, 
intensive computational capability and extremely low latency. With the evolution of 5G technology and 
the commercial deployment of 5G networks, these challenges could be addressed with caching playing a 
significant role in optimizing AR/VR video transmission by enhancing network performance and efficiency. 
With 5G, cached data can be stored at the edge of the network, being closer to end-users facilitating 
reduced latency since delivery can be achieved faster and more efficiently.  

Caching at RAN can significantly increase the performance of such AR/VR systems when compared to 
traditional techniques [106]. Regarding the Greek outdoor demonstrator, the AR/VR applications that will 
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be used are managed by efficient caching algorithms both in terms of storage and content retrieval. 
Moreover, the use of Blockchain will provide enhanced security and transparency to these processes while 
preventing unauthorized access to the 5G network.   

Besides caching, task offloading can also be implemented in OTE 5G networks for succeeding performance 
enhancement, latency reduction and optimizing resource utilization. The Greek demonstrator aims to 
achieve the required latency constraints and the quality of service (QoS) requirements for AR/VR 
applications. The possibilities of slicing and edge processing will be utilized to address these issues.  More 
specifically, with slicing, it is possible to ensure the necessary resources for a specific application, avoiding 
delays due to reduced throughput (especially during video transmission) or low packet prioritization. On 
the other hand, edge computing brings application hosting from centralized data centres down to the 
network edge, closer to the users and the data generated by applications, leading to a subsequent 
reduction of latency. 

Intensive computational tasks can be offloaded from user devices to edge servers where they will be 
processed, using AI mechanisms and algorithms. If needed, a collaboration between edge and cloud 
infrastructure, located in OTE premises, can be established in order to execute the offloaded tasks 
efficiently.   
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5. Conclusion and Outlook 
This deliverable presented the main activities carried out in NANCY’s T4.1, which is focused on the design 
and development of effective procedures and operational blocks to handle task offloading and user-centric 
data caching mechanisms. A well-defined end-to-end workflow has been designed to identify the involved 
components and their interactions within the NANCY architecture. Each of these components presents a 
specific role in this process that has been comprehensively described. In the intra-operator domain, it is 
worth noting the development of specific decision engines and resource management mechanisms that 
are able to cooperate thanks to the NANCY service and resource orchestrators with the aim of fulfilling the 
requirements established by the service’ SLA. To this end, an SLA-based infrastructure management 
scheme has been defined and presented in this document. Considering that the fulfilment of the SLA is 
highly desirable (if not mandatory) in communication infrastructures, sometimes a serving operator 
cannot cope with such requirements; therefore, a solution should be found in the inter-operator domain. 
To this end, the marketplace, DAC, and smart pricing modules, supported by an underlying blockchain, can 
cooperate with each other to find such a desired solution besides the boundaries of the current service 
provider. This implies a series of both control and technical procedures to allow the migration of a service 
from one domain or operator to a different one. Although T4.1 finishes its activities at the time of 
submitting this report, its participants will continue working on the developments accomplished in this 
task to integrate and demonstrate them in the NANCY’s demonstrators and in-lab testbeds. 
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